
Ellidiss
Technologies

任务关键系统&软件开发的方法和工具

 Methods and Tools
for

 Mission Critical
Software Intensive Systems

Collaborative R&D projects

In order to continuously improve its products, Ellidiss Technologies invests a lot of
resources in Research and Development activities by participating in collaborative applied
research programs such as IST-FP6 ASSERT, ITEA.SPICES, FRAE QUARTEFT, FUI
PARSEC, I&R SMART, IRT St Exupery INGEQUIP, H2020 PERASPERA ERGO and
MOSAR. Ellidiss also maintains strong technical relationships with various academic
partners, such as Lab-STICC in Brest, Telecom ParisTech, ISAE, LAAS and IRIT in
Toulouse and INRIA in Rennes.

Software Tools Editor

Ellidiss Technologies edits tools for the modeling and model processing activities of mission
critical software intensive systems development. The company runs three strongly
interconnected activities:
- The long-term maintenance and end-user technical support of its HOOD based
development tools in operation in major industrial projects, such as Airbus A3xx family,
Airbus A400M, Airbus Helicopter Tiger, Eurofighter Typhon, Leonardo AW101, AW149 and
M346, as well as various spacecrafts payloads.
- The development of new modeling and model processing tools using the AADL standard
either as a native or as a pivot language.
- Contribution to applied research projects and partnership with academic laboratories and
industrial stakeholders.

Our Activities

Business

Ellidiss Technologies distributes and supports its products worldwide and has a distributor in
China. The company also contributes actively to the SAE AS-2C international
standardization committee (AADL) and was the main contractor of an European Space
Agency frame contract for the development of the TASTE software engineering tool-set.

http://taste.tools http://www.h2020-mosar.euhttp://www.h2020-ergo.eu

These projects have received funding
from the European Union’s Horizon 2020
research and innovation programme
under grant agreements n° 730086 and 821996

This project has received funding
from the European Space Agency
under frame contract n° 4000104809

Development of Critical Software:

Due to the increasing importance of Software in critical Systems for many application domains
such as Avionics, Space, Ground Transportation, Automotive, Medical equipments, and other
Cyber-Physical Systems, Software development teams that are involved in such projects need
solutions that help them to:
- Provide a seamless path between System Engineering and Software Engineering activities.
- Support efficiently the various steps of the Software development life-cycle, including Model
Driven Engineering, code and documentation generation as well as reverse engineering.
- Offer when appropriate “correctness by construction” modeling approaches, and provide “early
verification” solutions otherwise.
- Enforce “good practices” for the development process in order to master the complexity of large
scale projects in real industrial contexts and in the long term.

requirements

design teststests

verification

source codesource code

early late

Our solution:

Our solution focuses on the Architectural Design of the future Software application to enable
Verification and Production activities that are supported by the following tools and technologies:
- Stood for AADL: a graphical editor to directly edit AADL models. It is strengthened by the
HOOD industry proven design methodology and advanced project management features.
- AADL Inspector: a variety of state-of-the-art independent analysis or production tools efficiently
interconnected within a common user-friendly framework.
- LMP: an innovative and flexible technology to ensure the required interoperability between the
modeling and model processing tools. Dedicated support is provided to process AADL models.
- GMP: a flexible toolbox to build domain specific graphical editors.
- Stood for HOOD and CP-HOOD: mature tools that perfectly fit for long term maintenance of
large scale legacy projects in Ada or C.

Our Offer

Model Driven Engineering

Model Driven Engineering (MDE) solutions enforce the use of modeling languages in
the early stages of the system and software development process whereas Code
Driven Engineering fully relies on lower level programming languages. The main
advantages brought by MDE approaches are that they:
- Reduce the gap between system and software engineering activities.
- Anticipate software testing and integration issues by early model based verifications.
- Increase software development productivity when associated with automatic code
and documentation generators.

Architecture Analysis and Design Language

Without rejecting the other approaches, we have selected the Architecture Analysis
and Design Language (AADL) to be used either as a native or as a pivot modeling
language, as it is the only one that offers:
- A high level of semantics that enables the use of advanced model processing for
performance, safety and security analysis without custom extensions.
- A set of pre-defined modeling constructs that are as close as possible to the
engineering domain, without being dedicated to a too small segment of the
development life-cycle.
- An architecture oriented approach that provides modularity and scalability to manage
the increasing size and complexity of real industrial systems.
- A textual representation that ensures models accessibility as well as easy
configuration and version management.

Modeling languages

Three main MDE approaches are usually observed:
- Direct use of OMG standards such as UML, that must be enriched with one or more
profiles (i.e. SysML, MARTE) to carry out advanced model processing tasks.
- The specification of a Domain Specific Modeling Language (DSML) expressed by a
proper meta-model and requiring the development of appropriate tools (i.e. Capella).
- The use of a standard Architecture Description Language such as AADL to define a
common infrastructure of the system that can be completed by domain specific
properties or sub-languages to cover the various model processing requirements.

Our Technologies

AADL

Stood for AADL

Although the AADL is a textual language, the standard also defines a graphical notation that
can be used to illustrate hierarchical architectures. The Stood tool, developed by Ellidiss
provides much more than graphical editing. It supports a complete architectural and detailed
design process based on the HOOD (Hierarchical Object Oriented Design) methodology
starting from import of software requirements to code and documentation generation.

Declarative and Instance Models

Like all Object-Oriented languages, the AADL declarative model specifies a set of
classifiers. This organization is well appropriate for defining libraries of reusable
components. However, in most cases, advanced model processing requires access to a
completely expanded instance tree, starting from the root system down to the low level
elementary components and taking into accounts the software distribution on the hardware.
This intuitive view of the system can be directly edited graphically with Stood and processed
by AADL Inspector.

AADL features and connections

The purpose of AADL features is to specify the functional interface of a component. A
feature can be an incoming or outgoing port (event, data or event data), a subprogram
entry point or a data access point. Features are ends for AADL connections.

AADL components

AADL components belong to predefined categories for which precise semantics are
defined by the standard.
- Execution platform components represent the hardware parts of the system which may
be: Processors, Buses, Memories and Devices.
- Application software components describe the applicative model running on the system
in terms of: Processes, Threads, Subprograms and Data.
AADL components have a type that describes their functional interface and one or
several implementations defining their internal structure and in particular their sub-
components and sub-components interactions.

AADL properties

Default semantics of AADL constructs are described by the standard, and appear in the
models either implicitly (run-time semantics) or explicitly with predefined properties.
Additionally, it is possible to enrich the semantics of AADL models by defining user-
defined property sets that can apply to AADL component categories, features and
connections.

http://standards.sae.org/

AADL

The Architecture Analysis and Design Language (AADL) has been standardized by the
SAE, avionics systems division, under number AS 5506. Current version of the standard
(v2.2) has been issued in 2016. Version 3 of the standard is in preparation. The AADL is
a textual and graphical language that can be used to design and analyze the software
and hardware architecture of performance-critical real-time systems. An AADL model
describes a system as a hierarchy of components with their interfaces and connections.

Verifiable Model Driven Engineering

One of the main benefits of using the AADL for modeling critical systems is that this
language has been developed in the purpose of being verified. The standard specifies
numerous legality rules that can be checked automatically by tools to insure that the
model is correctly formed according to the AADL semantics. Moreover, a common
architectural description of the system can carry a variety of information that may be
processed separately in order to provide analysis reports in various areas:
- Static Analysis (Modeling Rules, Footprint Analysis, ...)
- Timing Analysis (Schedulability, Simulation, End to End Flows Analysis, ...)
- Safety Analysis (Fault Tree Analysis, Failure Modes and Effects Analysis, …)
- Security Analysis (Confidentiality, Integrity and Availiability Analysis, ...)
- Model exploration and inline processing with the LAMP verification language.

AADL tools

Since the first release of AADL in 2004, many modeling and verification tools have been
developed. Several Open Source tools have been developed by Universities or Research
Institutes. Ellidiss and its partners develop and distribute commercially supported AADL
tools and has become a leader in this area. These products are:
- STOOD for AADL: graphical editor, code and documentation generation, requirements
traceability.
- AADL Inspector: modular analysis framework for AADL. It includes a set of static analysis
tools, the Cheddar schedulability analysis tool, the Marzhin dynamic simulator, the
Ocarina code generator and full access to model exploration and inline processing thanks
to the embedded LAMP verification engine.
- TASTE: complete AADL based tool-chain developed for the European Space Agency.

In a more general point of view, the use of AADL as a pivot language enables the realization
of complete cost-effective tool chains that can be customized to fit the constraints of
industrial software development processes.

AADL Extensions

The AADL standard comes with a set of extensions that enlarge the scope of the
language for more particular usages. These extension capabilities include the definition
of new Properties to annotate the architecture (Property Sets) and sub-languages
(Annexes). Some of these Annexes have already been published and others are still
being studied by the AADL committee.
- Error Model Annex.
- Behavior Annex.
- Data Modeling Annex.
- Code Generation Annex.
- ARINC 653 Annex.
- Security Annex.

AADL Inspector

AADL Inspector is a light and modular framework for processing AADL models. It makes an
intensive use of the LMP technology. This product can read AADL specifications and apply
to them a variety of processing tools organized as modular plug-ins and managed
separately. Each processing plug-in is declared by a configuration file that specifies whether
a model transformation is required or not, and if a remote tool has to be called. AADL
Inspector is the ideal way to connect specialized tools that are being developed
independently, without requiring them to be written in a unique language or already
integrated within the same framework. In other words, AADL Inspector does not require all
the processing tools to be implemented in EMF/Java. AADL Inspector also enriches the
AADL standard by defining hierarchical project structures, model execution scenarios and
inline LAMP verification rules.

AADL Inspector plug-ins

AADL Inspector plug-ins can be added in a “plug and play” manner. However, the product
comes with a set of already installed tools:
- Import of UML/MARTE, SysML, Capella or FACE models.
- Static rules analyzers, for compliance checking with AADL legality rules.
- Scheduling analysis and static simulation over the hyper period with Cheddar.
- Interactive event based simulation with Marzhin.
- Scheduling Aware end to end Flow Latency Analysis (SAFLA).
- Fault Tree Analysis with a connection to Arbre Analyste as an external tool.
- A LAMP interpreter to let the user dynamically explore and process the AADL model.
- A set of Security verification rules templates implemented with LAMP.
- Software source code generation with Ocarina.
- Analysis report production with an embedded PDF document generator.

Virtual Execution of the model

AADL architectures can be enriched with standard Behavior Annexes to express the
functional behavior of the future system. Behavior Annexes are fully compliant with the run-
time semantic defined by the core of the AADL standard and define finite states automata
that can typically be attached to thread and subprogram components. Each transition may
lead to the execution of a sequence of actions, including reading and writing port values,
sending events, calling subprograms, defining critical sections and performing arithmetic
operations. The Marzhin simulator can then interpret these statements and virtually
executes the AADL model for the purpose of an early verification of the desired behavior of
the system to design. The AADL simulation can interact with the user thanks to
automatically generated dialogues or with pre-defined scenario files that can be stored
together with the AADL model in the project structure.

Logic AADL Model Processing (LAMP)

LAMP is an original and powerful model processing language that can be directly
embedded within AADL models as a textual annex. It is based on the use of the Prolog
language and the LMP framework. LAMP is especially useful for:
- Rapid prototyping of new model processing plugins.
- Development of customized (private) processing tools at corporate or project level.
- Model exploration and debugging.

Model Processing

Although many efforts are still required in order to improve the way large scale and complex
models are edited, today's challenge in Model Driven Engineering mostly consists in how
these models can be processed. By model processing, we mean:
- Model Queries.
- Model Constraints.
- Model Verifications.
- Model to Model Transformations.
- Model to Text: Source Code and Documentation Generation.
All these needs can be satisfied by the LMP technology that can be used to develop tools
plugins (offline) as well as by the LAMP dynamic checker that enables user defined
processing rules inside the model to be analysed (inline). Both use the power of the Prolog
language at model level.

Tool Chains

Due to the variety of modeling languages and tools and the increasing need for advanced
model processing modules, Ellidiss Technologies has defined a modular and flexible
solution to ease the development of complete tool chains. This approach is based on three
main technological components:
- The AADL language, that can be used as a native modeling language or as a hidden pivot
language when a UML profile or a DSML is used at the front end.
- The GMP technology to develop Domain Specific graphical front ends that produces
standard AADL models.
- The LMP technology that is used to implement all the model processing needs with a
common standardized language, including the import of XML or XMI based models.

Timing Analysis

Safety Analysis

Security Analysis

End to End Flow Analysis

Power Consumption

Cost Analysis

Requirements Coverage

Simulation

Code Generation

Timing Analysis

Safety Analysis

Security Analysis

End to End Flow Analysis

Power Consumption

Cost Analysis

Requirements Coverage

Simulation

Code Generation

pivot
model
pivot
model

OSATE

MASIW

textual
AADL

OSATE

MASIW

textual
AADL

STOOD
graphical editors

HOOD-AADL-UML

Your next DSM
graphical editor

XMI, XML, BNF

UML Profiles
graphical editors

XMI

Capella
graphical editors

XMI

LM
P

L
M

P
LM

P
L

M
P

LM
P

LM
P

LM
P

LM
P

LM
P

LM
P

LM
P

LM
P

L
M

P

LM
P

L
M

P

G
M

P

TASTE
graphical editors

XMLG
M

P

LM
P

GMP: Graphic Model Processing

AADL perfectly fits the need for engineering teams who want to fully master the details of
their real-time embedded system architecture with a standardized notation. However, in
many cases, system architects prefer to use a Domain Specific textual or graphical
Modeling Language (DSML) in order to work with custom concepts or maintain legacy
projects. Ellidiss Technologies offers a seamless way to take profit of both a specific
approach for modeling activities and generic tools for model processing. This combined
solution requires to execute the following steps:
- Formal identification of the used domain specific language (meta-model).
- Development of a light graphical tool, using the Graphic Model Processing (GMP)
technology.
- Specification of a semantic mapping between this DSML and standard AADL constructs.
- Implementation of automatic model transformation from and to AADL, using the Logic
Model Processing (LMP) technology.

LMP benefits

- LMP offers a single solution to implement model queries, model constraints and model
transformations instead of having to use several dedicated languages
- LMP is based on the standard prolog language (ISO/IEC 13211-1)
- LMP is declarative, modular and formal (boolean logic), which open the door for tool
qualification.
- LMP is flexible and can be used to process heterogeneous models or incomplete models.
- LMP is commercially supported and benefits from industrial return of experience

● Airbus: involved in the development of DO-178 certified projects (A380, A350)
● European Space Agency: used in the TASTE graphical editors
● Ellidiss: AADL Inspector model adaptors and Stood code generators

LMP: Logic Model Processing

LMP applies the principles of Logic Programming to Model Driven Engineering. In a few
words, each model is expressed by a list of prolog facts and each processing function is
implemented as a list of prolog rules. Applying the rules to the predicates will produce the
awaited result (verification report, target model, source code or documentation text).

prolog
engine

Facts baseinput resultparser or
generator

Parsers:
- aadlrev
- xmlrev
- adarev
- crev
Generators:
- stood
- taste

Rules bases

processing library

Rules basesRules basesRules basesRules bases

Model

in file
or

in memory

textual
or

byte code
Model

or
Report

or
Source code

…

prolog
engine

Facts baseinput resultparser or
generator

Parsers:
- aadlrev
- xmlrev
- adarev
- crev
Generators:
- stood
- taste

Rules bases

processing library

Rules basesRules basesRules basesRules bases
Rules bases

processing library

Rules basesRules basesRules basesRules bases

Model

in file
or

in memory

textual
or

byte code
Model

or
Report

or
Source code

…

LMP Dev Kit

The LMP Dev Kit provides the LMP designer with a set of tools and libraries to increase the
productivity and the quality of the development of LMP applications. This toolbox is composed
of three compartments:
- Tools for the generation of Facts bases (AADL and XML/XMI parsers)
- Tools for the development of Rules bases (Ecore2LMP and LMP Designer graphical editor)
- Tools for the run-time execution of the LMP application (sbprolog)

Analysis Use Cases

Real-Time Systems

Modeling and early validation of real-time features is a key concern for embedded
applications. With our modeling and verification approach, it is possible to check that the
task set is schedulable, that there are no deadlock or priority inversion. The most popular
scheduling protocols are supported: Rate Monotonic, Deadline Monotonic, POSIX, Earliest
Deadline First, …

The response time of each thread as well as the processor load are estimated according to
three different computation methods: Theoritical feasibility tests and static simulation over
the hyper-period that are directly provided by Cheddar, whereas statistical values are
computed from the output of the Marzhin event based simulator. All these results are
summarized in a table for an easier analysis.

Time and Space Partitioning

Time and Space Partitioning (TSP) is a required practice for Integrated Modular Avionics
(IMA) or security management. Such architectures can be modeled and analyzed thanks to
the use of the ARINC 653 AADL Annex. The Marzhin simulator can emulate the scheduling
of the partitions on the processor, and of each task set on each partition.

Global network timing analysis

This approach fully supports the modeling and global timing analysis of several processors
connected by a bus. Each node of the network is described by a Real-Time software
running on a processor and each inter-node communication generate messages that are
schedules on the bus.

Safety Analysis

Interpretation of Error Model annexes included inside AADL architecture models can be
used to perform usual safety analysis activities. AADL Inspector implements an AADL to
OpenPSA model transformation and a connection to the remote Arbre Analyste tool to
perform Fault Tree Analysis:

http://www.arbre-analyste.fr/en.html/

Preventing “spaghetti”wares

Each HOOD component can be represented by a black box view that exposes a Provided
Interface and a Required Interface, and a white box view that shows sub-components in
case of a non-terminal object of the design hierarchy or the implementation of the actual
Software entities (functions, data types, variables, constants, exceptions) in case of a
terminal object.

The criteria for this top-down decomposition of the System is given by the very intuitive
« low residual coupling » principle: all the entities that interact the most together must be
located within the same branch of the hierarchy. This leads to an architecture where
residual connections between the various Software units are minimized, which is a key for
building easy to integrate and to maintain Software applications.

HOOD

The Hierarchical Object Oriented Design (HOOD) method was created in the late eighties
by the European Space Agency, in order to provide a Model Driven solution on top of the
Ada programming language for its large scale projects such as Ariane, Hermes and
Columbus. It has been applied to the most important avionics and space projects in Europe
and continuously supported by Ellidiss.

As opposed to the AADL or UML, HOOD is not only a modeling language. It also defines a
complete development process from requirements analysis to Ada, C or C++ code
generation of distributed real-time Software.

Mastering complexity

With HOOD, a project is composed of a set of main modeling units called Designs. A design
can lead either to a completely autonomous Software application (an executable file) or a
library of linkable Software entities (functions, data types, classes, ...).

Each HOOD design is the root of a hierarchy of components that is usually built following a
top-down approach that drives the architectural design phase of the Software development
process.

HOOD and AADL

Due to the numerous similarities between the AADL Software components and the
architectural design constructs offered by HOOD, Ellidiss Technologies has been able to
integrate most of the AADL into its Stood tool which was initially developed to support the
HOOD methodology.

By offering both AADL and HOOD inside its Stood tool, Ellidiss provides a unique
solution to help AADL users to master the complexity of large software architectural
models.

Ellidiss Technologies
www.ellidiss.com

info@ellidiss.com
24 quai de la douane

29200 Brest
France

+33 (0) 298 45 18 70

Ellidiss
Technologies

© Ellidiss Technologies – January 2020

30 years of support for major industrial projects

HOOD design tools for Ada and C/C++:
- Eurofighter Typhoon.
- Airbus A340, A380, A350, A400M.
- Tiger helicopter.
- Rafale fighter.
- Leonardo AW101, AW149 helicopters and M346 trainer
- Legacy Ada code reverse engineering.

15 years of investment in innovative software technology

- Contribution to the AADL standardization committee (SAE AS-2C).
- AADL graphical modeling tools: Stood for AADL, Adele, TASTE.
- Model processing runtime framework: AADL Inspector.
- Model processing development framework: LAMP, LMP Dev Kit.
- Contribution to collaborative R&D projets

Products and Services

- Commercial Off-The-Shelf (COTS) software tools: CP-Hood, Stood, AADL Inspector.
- Technical support, Training, Tool customization, Maintenance.
- Technology: GMP (graphical editors) and LMP (model processing).
- Specific software tool development.
- Tool prototype development for collaborative research projects.

