AADL Inspector 1.9

User
Manual

WA Al WCQUALULS

END deadlock:;

(= E e (A

DATA D
9 |-- deadlock occurs if concurrency control protocol is removed
10 PROPERTIES
11 Concurre

=> Priority Ceiling Protocol:;
NTATION dead®

PROCESSOR
sl : PROCESS P.I;

1l Processor Binding => (x @ (cpul)) applies to proce

-

nic_Protocol);

26 'rotocol => (T
27 PROCESS P)

28 END P;

29

30 PROCESS IMPLEMENTATION P.I

31 SUBCOMPONENTS
32 tl : THREAD T.I:
33 t2 : THREAD T.I;
Strengthened
by LAMP

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 1

®or

File Edit To
BEog® % @
Show root | control_system X Static Analysie LAMPLab Timing Analysis Safety & Security Analysie Code Generation Doc Generation
g

)ﬁ Projects.
all_examples.aic

[pescrition
patems sic

calculatoraic
canbus.sic
coffee aic
display_systemaic
flight_deck_doer.aic
mars_path inder.sic
muticore.sic
pacemakeraic
redundancy. aic
requistor.aic
satelte.aic
Gote_generation.aic:
end_to_end_fow aie
lamp_examples. aic
wheel_braking_system aic

5. safety_securty.aic

@ mage

] Descrition

TITT T I T T T T T T i1 1T

£ conir
G control_system_diagram aad!
55 control_system_types aadi
§ scenarot asc

75 Environment

23253|-- Generic
23254|-- Real-Time,
23255
23286|-- Updated: March 2023

ntrol System
Security and Safety amalysis

23258
BACKRGE ControlSystem Pkg
Ic
6L[WITH ControlSysterTypes:
23262

£3|5YSTEM ControlSystem

/ ’
write ('Composite Assurance Case Assessment:'), nl,
getFlowslatency,
checkSecurityRules

/ /

END Controlsystem;
2

YSTEM IMPLEMENTATION ControlSystem.others

23274|SUBCOMONENTS

23275 Sensors : SYSTEM Sensors.others;

23276 Network : BUS Network:

23277 Controlunit : SYSIEM Controlunit.others;

23278 Actuators : SYSTEM Actuators.others;

23275 Dashboard : SYSTEM Dashboard.others;

23281 caxl : PORT Dashboard -» Control

23282 cox2 : PORT g -> Dashboard.monitoring;

23283 cox3 : PORT Controlunit.sensors_settings —> Sensors.sertings:

23284 cnx4 : PORT Sensors.status -> Controlunit.sensors status;

23285 cnsS : PORT Sensors.measures > Controlunit.measures

23286| [Timing => Immediate; };

23287 cnw6 : PORT Controlunit.actuators settings —> ASTUators.settings

23288| { Timing => Tmmediate; };

23285 cox7 : PORT ACTuatOrs.status -> Controlunit.actuators_status:

23290 cnus : BUS ACCESS Network -> Dashboard.Network:

23281 cosd : BUS ACCESS Network -» Sensors.Networks

23292 coxll : BUS ACCESS Network -> Controlunit.Network:

23293 coul0 : BUS ACCESS Network -> Actuators.Network:

23294 |FLOWS

23295 £l : END T0 END FLOW Sensors.fl -> cnx5 -» Controlunit.fl -> cnxé - ACtaators.fl;
EERTIE.

23297 Actual Comnection Binding => (reference (Network)) applies to cnxl,cnx2, cnx3,cnxd,on:

23295 use behavior errorlibrary::failstop;

23300 composite error behavior

23301 states

23302 [Dashboard. FailStop or Sensors.FailStop or ControlUnit.FailStop or Actuators.Fail:

23303 end composite;

23304| properties

23305 ::0ccurrenceDistribution => [ProbabilityValue => 0.0c0; Distribution => Fixed

23306(1 4] 7

23307|END ControlSystem.others;

23308

we om | B

Deadine Computed Max Cheddar MaxMarzhin Avg Cheddar Avg Narzhin Win Cheddar in lfarz
£ FJsensors aca_cpu 500% 656%
) /Jsensors.acq_sw
£ Tacq_driver 100 500000 5 5 500 500 5 5
& (Jeontroiunt.cir_cpu 18.00% 18.40%
B {Fcontrohint.ctr_sw
i 200 2000000 138 % 13800 36.00 138 »
100 10.00000 2 28 27.00 2800 28 2
© Tactuators.act_cpu 15.00% 2%
) /Jactuators.act_sw
5 Fact_ariver 100 1500000 % 6.00 £
=) [Jaashboara.dsba_cpu 1800% 1935 %
) 7dashboard dsbd_sw
;7keyboard_orver 200 20.00000 20 20 2000 2000 20 20
Frscreen_driver 100 10.00000 1 10 10.00 10.00 10 1
B Gonetwork 1950% 1835%
B <} VirualLink
enxt 200 zooooo 2 2 2200 200 2 2z
e 200 300000 143 3 143.00 200 122 B
s 200 zooooo 165 14500 185
enxt 100 200000 8 1280 7
onxs 100 11.00000 5 1" 1700 11.00 186 n
e 200 200000 140 140.00 500 120 B
onx. 100 200000
< >

7] dashboard dsbd_or

Simulator Stop

Pierre Dissaux

Ellidiss Technologies
http://www.ellidiss.com/

aadl@ellidiss.com

page 2 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

http://www.ellidiss.com/

Contents

I 1111 T [0 ToX T o OO OO OSSPSR 5
B = =1 (0] (=351 - 1 (] o RSO 7
2.1 INSEAITALION ...ttt ettt et b bt R ettt b et b et bt enes 7
2.2 DIStFIDULION CONTENT......eiitiiiieee ettt sttt s et et b e s beebeebe e e enbeneenbe st e 7
2.2.1. BiN SUDGITECIOMES ...ttt bbbttt bbb e e et et seeneas 7
2.2.2. CONFIG SUDTIMECIONY ...ttt bbbttt 9
2.2.2.00 PIUGINS oottt bbb E R R bR e Rt E et bt r et b e nr e e b nr e 9
22211 AADL 0ff-line Static ANAIYSIS:coiiiiiiiieie e 9
2.2.2.1.2. AADL on-line Static Analysis (LAMP Lab):ccoooiiiiiiiieeee e 10
2.2.2.1.3. AADL TimiNG ANAIYSIS:ciueiieiiieieeeeieie st e et et sreste s e enaeseeseeseenrens 10
2.2.2.1.4. Other ProCeSSING TOOIS:civiiiie et e ettt e e e e st besbesteere e e e seenrenre e 10
2.2.2.1.5. AADL MOUel TEMPIALES:eviiiiiiceiecieese ettt be e e e e saeenreenaeenes 11
2.2.2.1.6. MISCEITANEOUS: ...ttt bbbt b et nn e 11
A 111 Vo[- USSR 11
2.2.3. EXAMPIES SUDAITECIONY ...ttt bbbttt 11
2.2.3.1. AADL Inspector eXamples OVEIWIBWcccerieiierieinieriee sttt 11
2.2.3.2. Native AADL eXAMPIES ...ttt 12
2.2.3.3. Converted AADL @XAMPIEScviiiiiiiiieiie ettt 16
2.2.4., ENVIronmMent SUDAIFECTONYc.viuiiiiieicce bbb 17
2240, EHdiSS PrOPEITY SELS....iiuiieiiiteiietiite ettt sttt b ettt bbbt be e 18
2.2.4.2. EllidisS AADL LIDIareS......cciiiiieitiiiieeeeeee sttt ettt 18
2243, LAMP LD oottt et e bbbt bttt re e 18
2.2.5. Lol [0 Lo Lol o [T (= (o] PSS 19
2.2.6. [T oYU] oo [T =T ox (o] oSS 19
2.2.7. (0] 401 0 F= Vo I [T 1= 0] o1 o] 1 S SS R 19
2.3 LIRS .ttt bbb bR R AR E b E R Rt R £ E £ e e et Rt R e bt b e et e b e b e 21
2.3.1. NOUE TOCKEA TICBNSES ...ttt sttt et s tesbeeneeneeeeneeneenne s 21
2.3.2. FIOALING HCENSES ...ttt bbb bbbttt sttt 21
2.3.3. Lot T4 o] PSSR 22

3 Graphical USEE INTEITACEc.i it bbbttt bttt nb e 23
3.1 Main menu and DULEON DAFooi it nee e 23
3.1.1. L= T O PSSR 23
3111 ULIHIIES SUD-IMEINU ...ttt bbbttt bbbt ettt et sr e 25
3.1.1.2. TempPlates SUD-MENU.......cccuiiiiiiiitie sttt ettt e et e e e s e e s teesteesaeesbeenbeeneesneesreens 25
3.1.1.30 IMPOIT SUD-MENU ...ttt be e e s e e s taesteesaeenaeenbeaneenseesreens 26
TR0 I S e d o To A1 1 o R 1111 o T RS PRUSPR 28
3.1.2. BT MEBNU L.t b e bbbttt b et bbbt be e e b nne s 29

K TN 0 O A VU (oI (o] 00T O 29
TN O 1 o o S 31

TN O TR 1= L (o (11 SRS 31
TN O 1= 1Tt oo S 31
3.1.25. SImulation Control PANEIc.ooiiiiiiecieeece et nee e 33
3.1.25.1. General Simulation Control Panel..............cocvviiiiiiiece e 34
3.1.25.2. Marzhin Simulation Control Panel............ccooiiiiiiiiii s 34
3.1.25.3. Cheddar Simulation Control PANEL............ooi it e 35
3.1.25.4. Simulation Control Panel Help ..o e 36
3.1.2.6. Edit thread PrOPEITIES .. .coueiuieieeeiie ittt sttt bbbttt et bbb et e b e b e 36
3127, Edit thread PriOritiBS i ettt b ettt bbbttt nae b e 37
3.1.2.8. Edit thread PIaCEMENT .. .cc.i it ettt e bt bbbt nbe e 38
TN O TR o) (=Y (=] =SS 39
3.1.3. I 10 ES30 21T 0T S 40
3131, SHALIC ANAIYSIS ..ttt ettt et 40
3.1.3.20 LAMP LAb .ottt et bt e et st re bt re e ae e 41
31330 TIMING ANAIYSIS ..oeveeeieiie e ettt ettt 43
3.1.3.4. Safety & SECUIILY ANAIYSISocuiiiiiiiiieiieieee et bbbt e e e e 43
TN T O o - € 1= o 1= - o]0 B OSSPSR 44

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 3

3.1.4. HEID MEBNU 1ttt et st e et e e e et e s ae st e e beensese e e e teseestesneaneeneeneeeenrens 45

3.1.5. BULTON DAE ...ttt bbbt bbb 45
3.2 0] T=T ot A o] {011 S SS 46
3.2.1. PrOJECT DIOWSEI OVEIVIEW ...ttt bbb 46
3.2.2. Project file CONEXTUAL MENUcoiiiiiiiii e 47
3.2.3. AADL file CONEXTUAT MENUoviiie e et sb et e 48
3.2.4. Scenario file CONtEXTUAL MEBNUc.eiiiiiiiece e e 48
3.2.5. Description file CONEXTUAT MENU ..ot 49
3.2.6. Image file CONTEXTUAL MENUcviiiiiiiiiic s 49
3.3 SOUICE FHES AIBAvvi ettt ettt sttt st be et s bt b e bt e et eere st e e 49
3.3.1. SOUPCE FIlES AIrBA OVEIVIEW......c.viviitiieiicie ettt bbbt sb et sr et b et nne e 49
3.3.2. EditiNg AADL fIlES ..o.vi ittt e e et nrenre s 51
3.3.3. Editing Simulator SCeNario fileS........cccoviviiiiiiicc e 52
3.4 0T a0 R (o1 F- V- SO 53
3.4.1. Processing t00IS Ara OVEIVIEW.ccuieieeeeieie e e siestee e et e saeste e stesra e e e e stesbesresraereenseeesrenes 53
3.4.2. SEALIC ANAIYSIS ...ttt b h bbbt b bbb e b 54
3.4.3. LAMP LaD ...ttt ettt ettt ettt ne st e e 54
4.3 L. LAIMP LA OVEIVIBW ...eiiiiiieiieieie ettt sttt sttt sttt s et e e sa et sbeeneeneenteneeseeneas 54
3.4.3.2. FIOW IGtENCY BNAIYSIS ...cviieiiiteiietiit ettt b et b bbbttt 60
34.3.3. SECUIMLY ANAIYSIS...eviieiiiteieeie ittt bbbt b bbbttt b et b et be e 60
34.3.4. SYSML 10 AADL ..ottt ettt ettt be et 61
34.35. FACE 10 AADL ..ottt ettt bbbttt bbbttt bttt 62
3.4.3.6. CAPELLA 0 AADL ..ottt ettt sttt sttt bttt 62
3.4.4. TIMING ANAIYSIS ..o et e e et e st e e ta e be e te e ee s e e sneeareenreenaeenes 63
3.4.4.1. Processor load and Thread reSPONSE tIME........uciieieiieeie et se e s ste e ae e esreens 63
3.4.4.2. Cheddar SImulation tIMEIINEScoiiiiiiiiie e 63
3.4.4.3. Scheduling TheOretiCAl TESES......cciiiiiiiieiie e 64
3.4.44. Scheduling SIMUIALION TESEScuiiviiieiiiiee e 64
3.4.45. Scheduling Aware Flows Latency Analysis (SAFLA) With LAMPcccocovniiiinnineneee, 64
3.4.5. Safety & SECUILY ANAIYSIS ...o..oiiiiiieii bbbt 65
3.4.6. (O0aTo e T 1< 1T o PSSR 66
3.4.7. (Do Lol €1 1= - £ oo SO PRSS RSP 67
3.5 SIMUIALION BIEA. ...ttt et bbbt e e b bbbt eb e e et e e e nn e b e 68
3.5.1. SIMUIALION ArEA OVEIVIBWc.viiiiiiiiieiieiie ettt bbbttt be bbbt et nbesr e 68
3.5.2. SIMUIALOr CHION DULIONS........ceiiiieiiiec e bbbt sae s 68
3.5.3. EXEEINAI 1O ..o bbb bbbttt nae 69
3.5.4. LI AL =TT B T €17 PSR 69
3.5.5. L0 A 0 (] o S SRUORROR 69
3.5.6. SIMUIALION TIMEIINES ...ttt reene e ee st nrenes 70
3.5.7. Navigation to the AADL SOUICE COUEoeiiuiriiiiiirieieiisiertees et 70
3.6 Status Dar AN EITOr REPOIcviiiiieiie ettt bbb et 71
4 Used Key WOTAS and ACIONYIMSouiiitiieiiiterieieste ettt st ete st st sbe st st sbe e ebesbeseabesbeseabesreseebesbeneenesneneas 72

page 4 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

1 Introduction

AADL Inspector is a model analysis framework for critical and software-intensive systems. It
focuses on design verification activities of the development life cycle and addresses a variety
of topics including static rules checking, timing, safety, and security analysis, as well as
combination of these in customizable assurance cases. Verification tools are either built-in or
user defined thanks to the powerful LMP (Logic Model Processing) technology and the AADL
LAMP annex. The tool operates at architecture model level and does not require the final
source code to be available. AADL Inspector can process the following kinds of architectures
with appropriate abstractions:

- Multi-threaded software (running on a RTOS: Real-Time Operating System).
- Multi-partition software (TSP: Time and Space Partitioning).

- Multi-processor distributed software with network communication.

- Multi-core architectures with static tasks allocation.

In order to be able to perform advanced model processing in a homogeneous way and to reduce
the effort of developing new analysis plug-ins, AADL Inspector operates on a common
language that can be either the original input or the intermediate result of a prior foreign model
transformation. The common language that has been chosen is the Architecture Analysis and
Design Language (AADL) declarative model. The formal definition of the AADL language
can be found in the SAE AS-5506 document that is made available on the official site
https://www.sae.org/standards/content/as5506d. More information about this language is
available on the Ellidiss wiki page: https://www.ellidiss.fr/public/wiki/AADL, and the
OpenAADL web site www.openaadl.org.

AADL Inspector is packaged into a standalone distribution that minimizes installation and
maintenance effort to ease the everyday use of the product on standard personal computers or
network servers. The product is available for both Windows and Linux platforms.

The goal of AADL Inspector is to encompass a variety of specialized tools to process a
complete AADL specification composed of a set of text files. These files can be created within
AADL Inspector itself, loaded from pre-existing local or remote libraries or automatically
generated by an import wizard. AADL files can also be organized into hierarchical projects to
facilitate the management of large models and the reuse of libraries of components. The
processing tools can be used to analyse various facets of the architecture or to offer code
generation and documentation capabilities. These processing tools are organized in a modular
and extendable way so that they can be customized, and additional ones can be easily included.

Although AADL is a textual language, a graphical representation is also available. The Stood
software architecture design tool can be used in association with AADL Inspector in several
ways.

- Create well-structured AADL projects using a top-down graphical decomposition of the
system to design, automatically generate the corresponding AADL text, and analyse it
with AADL Inspector.

- Automatically create a graphical representation in Stood for an existing AADL textual
model in AADL Inspector.

- Combine the two preceding features to perform round-trip engineering.

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 5

https://www.sae.org/standards/content/as5506d
https://www.ellidiss.fr/public/wiki/AADL
http://www.openaadl.org/

The standard installation of AADL Inspector 1.9 implements the following model processing
tools:

Static Analysis of AADL models, using two different frameworks: LMP and Ocarina.
This covers parsing of AADL declarative models, verification of standard AADL semantic
rules (Legality, Consistency and Naming rules) and building the deployed instance model that
is required for most purposes. Customized static rules can be added to fit corporate or project
specific usage.

LAMP Lab. LAMP (Logical AADL Model Processing) is a powerful and flexible
solution to incorporate online assurance cases within AADL specifications. It takes the form of
AADL Annex subclauses whose sublanguage is standard Prolog. The LAMP verification
engine checks all the user specified verification goals, supports the definition of reusable
libraries of rules and can process analysis results of the Timing Analysis plugin, such as
computed response times and simulation events.

Timing Analysis of deployed AADL instance models using three complementary
approaches: Scheduling theoretical tests and static simulation over the hyper-period with the
Cheddar analysis kernel, and dynamic simulation with the event based Marzhin simulator.
Moreover, response time statistics are provided in a table and Scheduling Aware Flow Latency
Analysis (SAFLA) is also proposed there.

Safety & Security Analysis. This plugin proposes transformations from AADL
architectures enriched with Error Model annexes into various input models for existing safety
analysis tools. Currently, proposed bridger uses the OpenPSA language to connect with the
Arbre Analyste Fault Tree Analysis (FTA) tool.

Code Generation using the Ocarina tool and the PolyORB-HI-Ada or PolyORB-HI-
C middlewares.

Documentation generation to keep track of timing analysis results.

The current AADL workspace on which the processing tools apply, can managed thanks to a
set of advanced functions such as:

Creating hierarchical projects to facilitate teamwork and reuse of libraries.
Using predefined AADL model templates.

Importing foreign models (SysML, Capella, FACE?) into AADL.

Loading AADL models from remote git repositories.

Specifying simulation scenarios.

Identifying the current root of the system instance hierarchy.

Defining the thread priorities according to predefined ordering algorithms.
Binding threads to available processors with predefined allocation algorithms.
Modifying the main thread real-time properties in a spreadsheet.

Editing textual AADL files and applying text formatting rules (autoformat).
Writing your own online model processing tools with the LAMP environment

The current version of AADL Inspector supports the following standard definitions. Note that
some processing tools may only comply with a subset of the standard.

AADL Core v2.3 (AS 5506D)

AADL Behaviour Annex v2.0 (AS 55606/3)

AADL Error Model Annex v2.0 (AS 5506/1A)

AADL Data Model Annex (AS 5506/2)

AADL ARINC 653 Annex v2.0 (AS 5506/1A)

AADL Annex for the FACE Technical Standard Edition 3.0 (AS 5506/4)

1 FACE is a trademark of The Open Group

page 6 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

2 Before starting

2.1 Installation

Installation of the product only requires the following easy actions:

Get a copy of the installation package for the desired platform (Windows, or Linux)
from the Ellidiss website: http://www.ellidiss.com/

Run the installation program on Windows or uncompress and expand the archive file
on Linux.

Launch the AADLInspector executable file located in the bin subdirectory of the
installation directory, or the corresponding desktop shortcut on Windows.

Downloaded packages usually come with a temporary trial license that can be used free of
charge. If you purchased the product or this temporary license has expired, please contact
Ellidiss customer support service to get the appropriate license information and installation
procedure that fits your situation. A standard installation requires less than 50 Mbytes of free
disk space.

2.2 Distribution content

Once installed on the computer, the AADL Inspector installation directory contains the
following subdirectories:

- bin subdirectory

- config subdirectory

- examples subdirectory

- environment subdirectory
- include subdirectory

- doc subdirectory

Note that after a first launch of the tool, a directory is created to store temporary files and to be
used as a default storage area for generated documentation and code. The actual location of this
temporary directory can be customized by the tmpDirectory parameter in the
config/AIConfig.ini file, or the -1 command line option. The default location of the
temporary directory is within the user’s home directory.

2.2.1. Bin subdirectories

These directories contain the executable files for the current platform and Java archive files
that are shared by all platforms. The only external requirement is the availability of a proper
Java 1.8 (or higher) Run-time Environment (JRE) to run the simulator. These files are:

- AADLInspector main executable file

- AIMonitor remote process monitoring executable file
- aadlrev executable file (AADL syntactic analyser)

- xmlrev executable file (XML syntactic analyser)

- sbprolog executable file (Prolog engine)

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 7

http://www.ellidiss.com/

- cheddarkernel executable file (Cheddar schedulability analyser)

- ocarina executable file (AADL compiler and code generator)

- aadl-utils executable file (AADL file splitter)

- Marzhin, VAgent and VCore Java archive files for the Marzhin simulator

aadlrev 2.17 is a standalone AADL syntactic analyser that is used by the LMP (Logic
Model Process) plug-ins to convert AADL specifications into a list of Prolog predicates. This
utility tool can analyse textual AADL files that comply with AADL 2.3 (SAE AS-5506D), the
AADL Error Model v2 (SAE AS-5506/1A Annex E), the AADL Behaviour Annex (SAE AS-
5506/2 Annex D), and the AADL ARINC 653 Annex (SAE AS-5506/1A Annex A). In addition,
the previous version of the AADL Error Model (future SAE AS-5506/1 Annex E) is also
supported by aadlrev. Most of the AADL 1.0 (SAE AS-5506), 2.0 (SAE AS-5506A), 2.1
(SAE AS-5506B) and 2.2 (SAE AS-5506C) syntax is also recognized and can be automatically
converted into the newest 2.3 format.

xmlrev 1.3 is a standalone XML syntactic analyser that is used by the LMP (Logic Model
Process) plug-ins to convert XML or XMI serialized models into a list of Prolog predicates.
This utility is used by the import wizards to load files having extensions such as .uml, .xml,
.Xmi, .ecore, .sysml, .capella, and to convert them into a list of Prolog predicates for
further processing.

cheddarkernel 3.3.2 is a command-line version of the Cheddar v3.3 schedulability
analysis tool. Cheddar models (. xm1v3) are generated from the AADL specification thanks
to a dedicated LMP model transformation. Cheddar outputs (feasibility test reports and static
timelines) are displayed by the AADL Inspector graphical interface. Cheddar is an open-
source project managed by the University of Brest: http://beru.univ-brest.fr/cheddar

sbprolog 3.1 is an open-source Prolog engine that is used by the LMP (Logic Model
Processing) technology. AADL Inspector uses LMP to implement the various AADL rules
checkers and model transformations. SB-Prolog was developed by State University of New
York at Stony Brook and the University of Arizona.

marzhin 2.2 is a multi-agent simulator implementing the AADL run-time. It consists of
three Java archive files and requires a Java 1.8 Run-time Environment (JRE) to operate. No
JRE is provided with the AADL Inspector distribution. Marzhin v2 models (.xml) are
generated from the AADL specification thanks to a dedicated LMP model transformation.
Marzhin outputs (dynamic timelines) are displayed in the AADL Inspector graphical
interface. Marzhin is developed in collaboration by Virtualys and Ellidiss Technologies.

ocarina 2.0 is an open source AADL syntactic and semantic analyser. It embeds various
back-ends including Ada and C code generators using the polyORB-HI middleware. Ocarina
was initially developed by Telecom ParisTech and is now maintained by ISAE with support
of ESA: http://www.openaadl.org/ocarina.html

aadl-utils 1.0 is another standalone AADL processing tool. It is used here with
command line option -s to convert an AADL file containing several Packages or Property
Sets into a directory of the same name containing on separate file per Package or Property Set.
This may be required to interoperate with OSATE who enforces this restriction.

page 8 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

http://beru.univ-brest.fr/cheddar
http://www.openaadl.org/ocarina.html

2.2.2. Config subdirectory

This directory contains initialization, configuration and license files that are used by the
executable files. The files having a . sbp extension contain a binary form of the LMP (Logic
Model Processing) rules that are used to perform each model processing action. Checkers
provide a direct textual output into the AADL Inspector window, whereas bridgers perform
dedicated model transformations to interface with ancillary tools such as Cheddar, Marzhin
or Arbre Analyst. Activation of these processing rules is performed from within a dedicated
service declared in an AADL Inspector plugin (see below).

The files having a .ais extension contain a description of each AADL Inspector plugin.
Each plugin defines one or several services that will be available via menu options, buttons or
the command line. Each service is described by a sequence of elementary instructions.

The AIConfig.ini file contains the declaration of several groups of user variables: config,
projectExplorer, plugins, gantt, accelerators and userConstants. These options are not
supposed to be changed by the end user without assistance from technical support or explicit
recommendation provided in user documentation.

The License file contains the validation keys that enable the use of the fully featured
configuration of the tool in compliance with the terms of end user license. Please refer to
chapter 2.3 for more detailed information on that topic.

In the standard distribution, the config directory contains the following additional sub-
directories and files:

2.2.2.1. plugins

These plugins can be removed and customized. New plugins can also be added there. They are
not platform dependent and are located in the plugins subdirectory. This section only lists
the files that correspond to hardwired features (i.e., that cannot be edited by the user). These
features are provided in their binary form (. sbp files).

Note that many other features are provided with their source code in the write protected
Environment/El1lidiss/LAMPLib subdirectory (cf. 2.2.4.3). User customizable
features can also be added by including LAMP annex subclauses inside the AADL models.
User features can fully reference all the predefined features, either in standalone binary form
(LMP), or in source code form and embedded in an AADL package (LAMP).

2.2.2.1.1. AADL off-line Static Analysis:

This first group of features contains a set of predefined analysis rules that apply to selected
AADL model. Some of the rules are defined in Prolog and use the AADL LMP parser and
libraries, others are checked thanks to specific Ocarina services are embedded within its
executable file. These rules cannot be modified by the modified by the user for now.

1 StaticAnalysis.ais: plugin description file.

- metrics.sbp: AADL parse and instantiate with LMP.
- naming.sbp: AADL naming rules checker.

- legality.sbp: AADL legality rules checker.

- consistency.sbp: AADL consistency rules checker.

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 9

arinc653.sbp: ARINC 653 rules checker.

2.2.2.1.2. AADL on-line Static Analysis (LAMP Lab):

The second group of features use the same LMP technology as above, but the Prolog rules can
be directly included inside the AADL model within dedicated LAMP annex subclauses.
Features listed in this section are used to execute LAMP code or to create additional
specialised fact bases or rules to ease the implementation of advanced features. This user
interactive way of using the model processing technology is called LAMP Lab(oratory) and
makes use of the LAMP Lib(raries). See 2.2.4.3 for further details about LAMP L.ib.

2 LAMP.ais: LAMP Lab plugin description file.

Import.ais: LAMP model import plugin description file.

Export.ais: LAMP model export plugin description file.

lampchecker. sbp: run checking rules defined in LAMP annexes.

lampexec. sbp: execute a LAMP query.

lampimport.sbp: run SysML, FACE, or Capella to AADL model transformations
implemented in LAMP.

instances. sbp: display AADL instance model predicates.
omgumlparser.sbp: create a UML 2.5.1 facts base using the OMG metamodel.
omgsysmlparser . sbp: create a SysML 1.5 facts base using the OMG metamodel.
mdsysmlparser. sbp: create a SysML facts base with Magic Draw ™ extensions.
faceparser. sbp: create a FACE 3.0 facts base.

ecore. sbp: create a LMP parser from a metamodel expressed in Ecore.

emof . sbp: create a LMP parser from a metamodel expressed in EMOF-.

uml . sbp: create a LMP parser from a metamodel expressed in UML.

2.2.2.1.3. AADL Timing Analysis:

The third group of features provides ancillary files for the integration of the Cheddar
scheduling analysis tool and the Marzhin run-time simulator within AADL Inspector.

3 TimingAnalysis.ais: plugin description file.
schedulability.sbp: AADL to Cheddar 3.2 model transformation.
marzhinv2.sbp: AADL transformation rules for Marzhin.
chronogram. sbp: timelines configuration rules.

scenario. sbp: simulator scenario template generator.
Marzhin.xml, MarzhinLogs.xml: simulation configuration files.

2.2.2.1.4. Other Processing Tools:

The next group includes a variety of other model processing tools using either internal LMP
and LAMP features or external tools.

4 SafetySecurityAnalysis.ais: plugin description file.

5 CodeGenerator.ais: Ocarina interface plugin description.

6 DocGenerator.ais: document generator plugin description file.

openpsa. sbp: generate a fault tree from AADL EMV?2 into an OpenPSA file.
marte.sbp: UML/MARTE to AADL model transformation (obsolete)
capella.sbp: Capella to AADL model transformation (replaced by a LAMP

page 10 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

feature)

2.2.2.1.5. AADL Model Templates:

This group includes a set of rules to generate AADL model templates for demonstration
purpose or training purposes.

Templates.ais: plugin description file.
rts.sbp: template of a multi-thread model.

tsp. sbp: template of a multi-partition model.
amp . sbp: template of a multi-processor model.
bmp . sbp: template of a multi-core model.
lamptemplate. sbp: template of a lamp model.

2.2.2.1.6. Miscellaneous:

The last group contains a list of general-purpose features that can be used by the other groups
or are associated with dedicated AADL Inspector user interface functions.

Others.ais: plugin description file for inline features.

Utilities.ais: plugin description file for helpers and external tools.
aadlgen.sbp: AADL printer (unparser).

aadlgen?2. sbp: light version of the AADL printer (i.e., without Prolog libraries).
aadlgen3. sbp: fat version of the AADL printer (with all Prolog libraries).
readRTProperties.sbp: AADL real-time properties reader.
writeRTProperties.sbp: AADL real-time properties writer.
rootselector.sbp: AADL instance model root inference.

2.2.2.2. images

This directory may contain images that can be referenced in the plugin definition files. It is
especially useful to specify a specific icon to launch a customized service or to change the
company logo that is included in the generated documentation.

2.2.3. Examples subdirectory

2.2.3.1. AADL Inspector examples overwiew

This directory contains a set of AADL examples to practice the use of AADL Inspector. Five
types of files are accepted:

.aic: AADL Inspector project files containing a list of individual file pathnames or
URLSs, or of sub-project references.

.aadl: individual AADL source files. Each file may contain several Packages and
Property Sets.

.asc: AADL Inspector simulation scenarios files.

. txt: textual description files.

image files of various formats.

It is recommended that a project file is loaded rather than individual AADL files to ensure all
the required AADL Packages and Property Sets that are required to activate the analysis tools
are opened.

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 11

Each proposed example uses a subset of the AADL standard or AADL Inspector features. The
following table provides a list of these features with an identification character. Each project
description contains the list of characters corresponding to the used features.

denotes use of AADL ARINC 653 Annex 2.0 (SAE AS-5506/1A)

denotes use of AADL Behavior Annex 2.0 (SAE AS-5506/3)

denotes use of AADL Core Language 2.3 (SAE AS-5506D)

denotes use of AADL Data Model Annex (SAE AS-5506/2)

denotes use of AADL Error Model Annex 2.0 (SAE AS-5506/1A)

denotes use of AADL Annex for FACE 3.0 (SAE AS-5506/4)

denotes use of AADL Properties for Stood diagram layout

denotes use of AADL LAMP Annex (model processing language)

wroOmmogo|m| >

denotes use of simulation scenario (.asc files)

2.2.3.2. Native AADL examples

This is the list of native AADL examples that are provided in the distribution of AADL
Inspector. Note that the AADL specification is provided in source text form. Shown diagrams
are for illustration purpose only and require the use of the Stood tool to be edited (cf. 3.1.1.4).

patterns.aic:
This group contains seven sub-projects listed below.
They illustrate the main communication and scheduling protocols that are supported by

AADL and can be analysed with AADL Inspector.

o dataflow.aic:[BCGS]

Dataflow communication between threads.

It can be used to observe the effect of Sampled, Immediate and Delayed data port
connections.

SHE |

o messages.aic:[BCGS]
Message based communication between threads using queued events.
It can be used to observe input queue overflow.

o shared data.aic:[BCG]
Shared data communication between threads with critical sections.
It can be used to observe the effect of the Priority_Ceiling_Protocol to avoid a

deadlock.

page 12 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

o client server.aic:[BCG]
Subprogram call communication between threads.
It can be used to observe the effect of the client-server synchronisation protocols.

o arinc653.aic:[ABCG]
Two-layer hierarchical scheduling.
It can be used to investigate time and space partitioned systems with the AADL
ARINC653 Annex.

o scheduling.aic:[C]
Ilustration of the supported scheduling protocols:
= Rate Monotonic (RM),
= Deadline Monotonic (DM),
= High Priority First (HPF),
*= Round Robin (RR) and
= Earliest Deadline First (EDF).
o dispatching.aic:[CS]
Various thread dispatching protocols.
It can be used to compare the behaviour of Periodic, Sporadic, Aperiodic, Hybrid,
Timed and Background threads.

- calculator.aic:[BCS]

Integer arithmetics with the AADL Behaviour Annex.

It can be used to show the math library capabilities and the interaction between the user and
the simulator.

- canbus.aic: [CG]
Bus communication between processors.
It can be used to observe interactions between threads scheduling and bus messages

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 13

scheduling.

- coffee.aic:[BCGS]

A coffee machine control system.
It can be used to show conditional computation with the AADL Behaviour Annex.

S E | @i

St

- display system.aic:[C]

A large model (5 processors, 13 processes and 123 threads).

It can be used to check the scalability of the tools. Note that due to its size, full analysis of
this model can take several minutes.

- flight deck door.aic:[BCGS]
Access control to a flight deck door.
This model was developed to interact with a 3D virtual reality simulation (not provided).

- mars pathfinder.aic:[CG]

Several threads with different priority and sharing common data.

It can be used to observe the priority inversion problem. It is dapted from:
https://github.com/OpenAADL/AADLIib/tree/master/examples/pathfinder_system

- multicore.aic:[BCG]

Partitioned scheduling on a dual-core processor.
Threads running on different cores are sharing data resource. It can be used to practice the

automatic thread placement wizard.

page 14 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

- pacemaker.aic:[BCGS]
Ventricular pacemaker simulator.
= :‘

- redundancy.aic: [BCGS]

A simplistic Fault Detection Isolation and Recovery system.

It uses the AADL Behavior Annex to detect erroneous values and isolate the corresponding
devices.

- regulator.aic:[BCGS]

A temperature regulation system.

It can be used to illustrate the design and analysis of a discrete control system with the
AADL Behaviour Annex.

- satellite.aic:[CG]
A model defined in the AADLIb github repository.
It can be used to experiment remote model loading via the internet.

bt

- code generation.aic: [C]
Basic test case for Ada and C code generation with Ocarina.
Take care to only select one of the two files at a time.

- end to _end flow.aic:[CL]
A dataflow across a network.

Can be used for SAFLA (Scheduling Aware Flow Latency Analysis). Thread response
times are computed by the Marzhin simulator.

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 15

- lamp examples.aic:[BCL]

Two separate models to learn about LAMP annex capabilities.

LAMP allows you to perform inline AADL model processing by adding Prolog rules
within dedicated annex subclauses and libraries. The first example shows how to explore
AADL model and annexes elements. The second example uses output of the real-time
simulation to check timing assurance cases.

- wheel braking system.aic:[CE]
A model copied as is from the OSATE examples base to experiment Fault Tree Analysis
with Arbre Analyste. The diagram shown below was generated by this tool.

- safety security.aic:[BCEGLS]

A generic sensor-processing-actuator control system to highlight combined timing analysis
(flow latency), safety analysis (fault tree) and security analysis (custom security rules).

This example was used to a illustrate paper presented during ERTS 2020 conference.
https://hal.univ-brest.fr/hal-02433963/document

2.2.3.3. Converted AADL examples

These examples require a dedicated model transformation to build the AADL model.
This can be achieved with the provided import features. Examples for trying import features
are located into folder examples/Foreign Models.

- SYSML example.sysml:[CL]

SysML v1 example derived from a Magic Draw one.

Transformation rules are defined in LAMP annex clauses. They can be edited in
environment/El11idiss/LAMPLib/SysML2AADL.aadl.

Use menu File/Import.../Import SysML model (.sysml, .xmi, .model) or the related button.

- FACE example.face:[CLF]

Homemade FACE example based on information provided by the AADL annex for
FACE. Imported AADL model can be analysed and executed with the Marzhin simulator.
Transformation rules are defined in LAMP annex clauses. They can be edited in
environment/Ellidiss/LAMPLib/FACE2AADL/*.

Use menu File/Import.../Import FACE model (.face) or the related button.

- FACE FlightControl.face:[CLF]
Other FACE demonstration example. Imported AADL model can be analysed and

page 16 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

executed with the Marzhin simulator. Transformation rules are defined in LAMP annex
clauses. They can be edited in: environment/Ellidiss/LAMPLib/FACE2AADL/*
Use menu File/Import.../Import FACE model (.face) or the related button.

- CAPELLA FlightEntertainment.capella:[CL]

The demonstration example that comes with release 5.1.0 of Capella.

The Capella Physical Architecture to AADL transformation rules are defined in LAMP
annex clauses. They can be edited in:
environment/Ellidiss/LAMPLib/CapellaPA2AADL.aadl.

Use menu File/Import.../Import CAPELLA PA model (.capella) or the related button.

- AADL TextFacts example:[BC]

An example to show how to create AADL models from LMP Prolog predicates.
The full list of predicates that can be used to build the AADL model is at:
https://www.ellidiss.fr/public/wiki/aadlDeclarativeModel

Imported AADL model can be analysed and executed with the Marzhin simulator.
Use menu File/Import.../Import Textual facts (.pro) or the related button.

- AADL TableFacts example:[BCL]

An example to show how to create AADL models from a CSV table with semi-colon
separators. Each table row represents a Prolog fact with the fact name in the first column,
and its parameters in the following columns. The full list of predicates that can be used to
build the AADL model is at:

https://www.ellidiss.fr/public/wiki/aadlDeclarativeModel

Imported AADL model can be analysed and executed with the Marzhin simulator.

Use menu "File/Import.../Import Table facts (.csv)" or the related button.

Note that only those AADL files that are explicitly selected will be considered by the various
processing tools. When a file is selected, a green tick is shown on its icon. To select or unselect
a file, simply click on the corresponding icon or the one of the parent projects.

2.2.4. Environment subdirectory

The environment subdirectory contains the common AADL Property Sets and Packages
that are required to properly use the processing tools. They are organized into several projects
to isolate the scope of each group of predefined entities and avoid potential conflicts due to
assumptions made by some of the processing tools. The proper environment configuration is
automatically set by each processing plugin.

- AlIEnvironment.aic: lists all the environment subprojects to be loaded at launch
time. It references the four following ones:

- Standard.aic: lists the Property Sets and packages that are explicitly defined in the
AADL standard and its published annexes.

- Ocarina.aic: lists the additional Property Sets that are required by the services
offered by Ocarina.

- Cheddar.aic: lists the additional Property Sets that are required by the services
offered by Cheddar.

- Ellidiss.aic: lists the additional common Property Sets and Packages that are
used by the examples. The LAMP libraries (LAMP Lib) are stored there too.

Note that the AADL files that are part of the environment cannot be modified directly within
the AADL Inspector editor. Changes must be done either offline with a remote text editor, or

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 17

after prior move of the files to a writable workspace.

2.2.4.1. Ellidiss Property Sets

The following AADL Inspector specific Property Sets are provided to complement the
standard ones:

- ai.aadl: list of specific Properties used by AADL Inspector.

- stood.aadl: list of specific Properties used by Stood for AADL.
- 1lmp.aadl: list of specific Properties used by LMP features.

- lamp.aadl: list of specific Properties used by LAMP features.

2.2.4.2. Ellidiss AADL Libraries

The following AADL Packages contain the definition of a set of Components that are
frequently reused in the examples for the interface with the Marzhin simulator.

- math.aadl: list of Data and Subprogram Components implementing simple
arithmetic functions useful while writing AADL Behavior Annex expressions.

- gui.aadl: list of Device Components useful to emulate the User Interface with the
Marzhin simulator.

2.2.43. LAMP Lib

LAMP Lib offers a list of AADL Packages containing LAMP Annex subclauses composed of
Prolog rules. These rules provide an extensive API to the selected AADL declarative and
instance models as well as advanced processing features that are used by the pre-configured
analysis plugins and may also be reused by any other user defined analysis tool.

- LAMPDeclarative.aadl: accessors to the AADL declarative model.

- LAMPInstance.aadl: accessors to the AADL instance model.

- LAMPBehavior.aadl: accessors to AADL Behavior Model 2.0.

- LAMPError.aadl:accessors to AADL Error Model 2.0.

- LAMPSimulation.aadl:accessors to the Marzhin simulation events.

- LAMPFlows.aadl:end to end flow exploration rules.

- LAMPLexical.aadl: AADL 2.3 reserved words and lexical rules.

- LAMPUtilities.aadl: library of general-purpose Prolog rules.

- LAMPPrinting.aadl: library of general-purpose Prolog printing rules.

- LAMPResponseTime.aadl: Scheduling Aware Flow Latency Analysis (SAFLA).
- LAMPSecurity.aadl: example of security analysis rules.

- CVS2LAMP.aadl: CSV parser generating Prolog facts.

- SysML2AADL.aadl: SysML v1 parser generating Prolog facts.

- CapellaPA2AADL.aadl: Capella Physical Arch. parser generating Prolog facts.
- FACE2AADL.aic: FACE parser generating Prolog facts:

FACE2AADL.aadl: main FACE processing rules.
FACE2AADLcdm.aadl: FACE Conceptual Data Model processing rules.
FACE2AADL1dm.aadl: FACE Logical Data Model processing rules.
FACE2AADLpdm.aadl: FACE Physical Data Model processing rules.
FACE2AADLuop.aadl: FACE Unit of Portability Model processing rules.
FACE2AADLint.aadl: FACE Integration Model processing rules.

0O O O O O O

page 18 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

o FACE2AADLsim.aadl: FACE Integration Model for Marzhin simulations.
- AADL2Stood.aic: AADL reverse engineering for the Stood design tool:

o AADL2Stood.aadl: Stood tool interface rules.

o AADLSIFGen.aadl: SIF file generation rules (input file for HOOD tools).

o AADL2HOOD.aadl: AADL to HOOD mapping rules.
- AADLPrinter.aic: AADL specification generator (unparser)
LAMPAADLGen.aadl: main API to the AADL printer.
LAMPBAGen.aadl: AADL Behavior Annex printer.
LAMPEMV2Gen.aadl: AADL Error Model Annex printer.
LAMPPRValueGen.aadl: AADL Property value printer.
X2AADL.aadl: AADL printer API for model transformations.

0O O O O O

2.2.5. Include subdirectory

The include subdirectory contains libraries that are required by some of the ancillary tools
embedded in AADL Inspector. Currently, it is only needed for generating code with Ocarina.

2.2.6. Doc subdirectory

This directory contains this manual that can be opened from the ?/Help main menu. Other
documentation volumes provide more details on the use of the processing tools. Note that some
of these specialized documentation volumes have not been updated recently, however, most of
the provided information still remains valid.

2.2.7. Command line options

AADL Inspector can be launched from a command line. The following optional parameters
are available:

- -—-help
show the list of command line options.
- =-a filel.aic,file2.aadl,file3.asc, ..
open the specified AADL Inspector files at startup.
- -r dirl, dir2,..
open all the AADL Inspector files contained in the specified directories.
= -1 tmpdirname
use the specified location to create the temporary files. If used, this information
overrides the one specified by the tmpDirectory parameter in the ATConfig. ini file.
- =—--selectroot id
set the root of the AADL instance hierarchy to the specified model element id.
— --config configdirname
use the specified location to set the pathname to the config directory.
- --plugin tool.service
start a service of a tool as defined in a . ais file of the config directory.
- -—--result file
--result stdout
store the plugin result file in the specified file or in the console (Unix only).
to be used with option --p1ugin
— -—-pluginVar variable=value
set the value of a variable for further use in a plugin (evariable)
to be used with option --plugin
- —--show false
launch AADL Inspector without showing the graphical interface (batch mode)

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 19

default is true (GUI is displayed).
- -—-marzhinAddress address
set the IP address of a remote Marzhin simulator to connect to.
- -—-marzhinCmdPort integer
set the command socket port number to connect to a remote Marzhin simulator.
can also be used to specify the command port number of the embedded simulator.
- --marzhinDataPort integer
set the data socket port number to connect to a remote Marzhin simulator.

can also be used to specify the data port number of the embedded simulator.
- -—-marzhinAcknowledgePort integer

set the acknowledge socket port number to connect to a remote Marzhin simulator.
- can also be used to specify the acknowledge port number of the embedded simulator.

- --marzhinScenario ascfilename
--marzhinScenario ascfilename, scenariol, scenario?2

apply specified scenario file (.asc) and optionally select individual scenarios while
starting the Marzhin simulator.
- -—--tickMax value
define the default duration for Cheddar and Marzhin simulations.
when value is an integer, use it as the maximum execution and display time (in ticks).
when value is the word hyperperiod, ask Cheddar to compute the tasks set hyperperiod
and use it as the maximum execution and display time (in ticks).
- --debug integer
if set to 1 or 2, display debug information to the console.
if set to 2, display information about the Marzhin simulator.
if set to 0, no console is shown (default).
— —-server true
launch AADL Inspector in server mode (on Linux only).
when running in server mode, AADL Inspector accepts the following commands on its

standard input:
o loadFile filename
o launchTool tool.service

An example of use of the command line activation of AADL Inspector is to run Cheddar on a
set of specified AADL files and get the results in a specified output file:

bin/AADLInspector
-a examples/dataflow.aic
--plugin Schedulability.cheddarTheoTest
--result dataflow.xml
--show false

Such a command will create a file containing the result below (fragment). The detailed
description of the Cheddar output is provided in a separate annex document.

<results>
<feasibilityTest name="processor utilization factor" ..>
<computation name="base period" reference="all" value="300" ../>

<computation name="processor utilization factor with deadline"
reference="all" value="0.78333" ../>

<computation name="processor utilization factor with period"
reference="all" value="0.78333" ../>

</feasibilityTest>

<feasibilityTest name="worst case task response time" ..>
<computation name="response time"

page 20 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

reference="root.my platform.CPU.my process.Tl" value="15" ../>
<computation name="response time"

reference="root.my platform.CPU.my process.T2" value="10" ../>
<computation name="response time"
reference="root.my platform.CPU.my process.T3" value="5" ../>
</feasibilityTest>
</results>

2.3 License

A valid license is required to use AADL Inspector. Various kind of licences are available,
including free of charge evaluation and education licenses. Payment of a license fee is required
for commercial or industrial usage of AADL Inspector. Please contact your Ellidiss sales
representative for more details (sales@ellidiss.com).

Since version 1.7, license information is stored in a separate License file that must be
located inside the config directory. Licenses can be attached to a particular computer and
limited in time or managed by a license tokens server over the network.

2.3.1. Node locked licenses

When the license is attached to a specific computer, or for temporary evaluation licenses, the
information that must be stored inside the License file is provided looks as follows:

Main License

owner <licensee identification>
mac <computer identification>
date <expiration date>

tool AADL Inspector

version 1.8

key <encryption key>

licenseKey <license key>

End License

Note that the complete contents of the License file must be provided by Ellidiss. None of
these fields can be modified by the end user; otherwise, the license key will become invalid.

2.3.2. Floating licenses

When the licenses are managed by a floating license server over the network (ETFL), the local
License file must contain the following data:

Main License
owner <licensee identification>
licenseServer <server IP address>

licenseServerPort <server port address>

End License

Note these fields must be compliant with the license server installation. Please contact the
license server administrator to fill in the local license data.

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 21

mailto:sales@ellidiss.com

2.3.3. License errors

In case of a mismatch between the license information and the computer identification or the
current date, an error message box is displayed.

== X

7 |0I Use of this version of AADLInspector is allowed only with STOOD.
"~ Please contact the support at: aadl@ellidiss.fr =

oK |

q -~ 1 Your license is invalid (error 0030).

An error number is provided to help identify the license problem. Here are the most usual
issues that may occur while installing the license key:

- 0010: this license has expired

- 0020: this license date is invalid

- 0030: this license is attached to another computer

- 0040: this license is linked to a Stood license

- 0050: this license is not valid for this version of the product

- 0067: this license is not valid for specified license server path
- 0069: this license is not valid for this tool

This list of error codes is not exhaustive. Please provide the precise error code when you
contact the tool support team (support@ellidiss.com) to solve the issue.

page 22 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

mailto:support@ellidiss.com

3 Graphical User Interface

AADL Inspector opens a single window that encompasses a main menu bar, a button bar, a
project browser, a source files area, a processing tools area, a simulation area and a status bar,
as shown below:

File Edit Tools 7
Bog s : 5
Show root control_systel Static Analysis LAMP Lab Timing Analysis Safety & Security Analysis Code Generation Doc Generation
rojects e . 2 D THE SIH ﬁ

Deadine Computed Max Cheddar Max Marzhin Avg Cheddar Avg Marzhin ™
oller 200 20.00000 138 % 138.00 36.00
100 10.00000 28 26 27.00 26.00
15.00 % 2679 %

B

[£] Description J7proce!

datafiow.aic = [Jactuators.act_cpu

El [7actuators.act_sw
; er

Processina Tools

SYSTEM ControlSyste 2000000 20 20 20.00 20.00
23264|ANNEX LAMP {** \ 10.00000 10 10 10.00 10.00
23265 = networ 19.50 % 4390%
shared_data.aic 23266| write('Composite AssuPwnce Case Assessment:'), nl, = - VirtualLin
clent_serveraic 23267 getFlowsLatency, cnxt 200 2.00000 22 2 22.00 200
arinces3.aic 23268 checkSecurityRules I cnxz 200 2.00000 143 3 142.00 3.00
scheduling.aic 23288/t e SOUfCG FI es cnx3 200 200000 145 145.00 v
23270(%41; < N
23271|END ControlSystem;
TMPLEMENTATION ControlSystem.others < > < >
50 60 70 80
a
|
23275 Dashboard : SYSTEM Dashboard.others; o]
23280|CONNECTIONS |
23281 Dashboard. settings -> Controlunit.Sertings: 50
23282 cnx2 Controlunit.monitoring -> Dashboard.monitorings =
8 I

ettings -> Sensors.settings;
o

> Controlunit.sensors_status;
Status Bar

u 25 75
sw . -
/v act_driver _— | —
ttings 2 ettings 7
B/ dashboard.dsbd_ s 0 100 I
t.actuators_ ;
SS Network -> Dashboa: n
E x5 ork -> Sens:
E nxil : work -> Com ri; 2 n
nxl0 : BUS ACCESS Network -> Actuators.Network: onx
94 FLOWS en
23295| 1 : END TO END FLOW Sensors.fl -» cnxS -> Controlunit.fl -> cnxé —> Actuat o
< > cnx:

3.1 Main menu and button bar

Simulation Area =——

Simulator Stop

The Main Menu Bar contains the following pull-down menus: File, Edit, Tools and ? (Help).
The button bar provides shortcuts for frequently used menu options.

File Edit Tools

EocgE®E T S WSS W E R E R Be
3.1.1. File menu

The File menu controls all file actions that have a global scope. When a model is loaded,
imported or created from this menu, it will appear at the top level in the project browser (i.e.
one level below the Projects folder). Other file actions with a more restrictive scope are
provided by the contextual menus associated with the items of the project browser. The tool
can process several files that together define a complete AADL specification. The
recommended way to manage multiple files is to link them with an AADL Inspector project
file (.aic). There is no particular restriction for the naming and contents of the AADL files.
In particular, files containing several AADL Packages and Property Sets are allowed.

After having been loaded, AADL files must be selected to define the boundaries of the model
to be processed. A file can be selected on unselected by clicking on its icon in the project
browser tree. Files may be selected individually or collectively if the encompassing project is
selected. When a file is selected, a small green tick is shown on the corresponding icon.

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 23

A

For most processing actions, all the selected files are concatenated together before being
processed by the analysis tools. Please note that load ordering may have an impact on obtained
result, especially if the root of the AADL instance hierarchy has not been explicitly defined.
This ordering may be modified by moving the file items up or down in the project browser tree
with the mouse.

File

Edit Tools 7

Mew Aadl

MNew Project

E.—_, Load

3 Load from Github
£=l Reload Al

¥ save Al

Utilitie=
Templates...
Import...
Export...

A S .

=i Print

B8 quit

New Aadl: create a new AADL file in memory.

New Project: create a new AADL Inspector project file in memory.

Load: load the contents of the specified AADL files or projects into memory.

Load from Github: load files from remote AADL libraries (requires internet access).
Reload All: cancel all the non saved changes in the project browser.

Save All: save to the relevant files all the changes in the project browser.

Utilities: customizable file utilities (cf. 3.1.1.1)

Templates: creates a new AADL model applying a predefined template (cf. 3.1.1.2).
Import: convert a foreign model into AADL and load it (cf. 3.1.1.3).

Export: convert currently selected AADL model into a foreign model

Print: build an analysis snapshot of the current project and create a PDF file. This
feature is specified in the DocGenerator.ais plugin definition.

Quit: quit AADL Inspector

Note that if a file cannot be found — for instance while fetching it from github and that there is
no internet connection — a message is shown in a dialog box:

Project loading error >

The file
e Ci/Projets/AADLInspector/Al-1.7 Aestcases17/AestETEFlow.aadl

does not exists,

page 24 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

3.1.1.1. Utilities sub-menu

File Edit Tools ¥
 New Aadl
Mew Project
E, Load
3 Load from Github
£=l Reload Al

¥ save Al
[E] Load all the AADL Inspector examples

Templates... b | 5% Split AADL packages for OSATE
Import... L4

Export... L

=i Print

B8 auit

The Utilities sub-menus offer two useful features.
- Load all the AADL Inspector examples: shortcut to open all the examples in a single
project hierarchy. Same as load examples/all examples.aic.
- Split AADL packages for OSATE: modify the current AADL file structure of the
selected project to ensure that each file contains a single Package or Property Set and
copy them to the chosen directory to comply with this OSATE restriction.

Note that the contents of this sub-menu can be customized by editing the Utilities.ais
plugin definition file.

3.1.1.2. Templates sub-menu

File Edit Tools 7

' Mew Aadl
Mew Project
r;, Load
3 Load from Github
£l Reload Al

¥ save Al
Utilities L
Templates... L3 570 Multi thread

Import... ¥ | &% Multi partition
Export... *

Multi processor

g
(=} Print T Multi core (Partitioned Scheduling)
g

[E Cluit LAMP model processing
The Templates sub-menus can be used to quickly create an AADL model of a predefined kind
with user parameterization. While selecting one of these sub-menu options, a dialog box is
opened to enter the parameters value.

- Multi thread: create an AADL model of the given name with the given number of

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 25

threads. This template can be the starting point for new real-time software (RTS)
architectures. Threads are located on a single process and run on a single processor.

- Multi partition: create an AADL model of the given name with the given number of
partitions. This template can be the starting point for new time and space partitioned
(TSP) software architectures. Threads are distributed on several processes and run
during statically defined time slots on a single processor.

- Multi processor: create an AADL model of the given name with the given number of
processors. This template can be the starting point for new asymmetric multi processor
(AMP) software architectures. Threads are distributed on several processes and run on
different processors connected together by a bus.

- Multi core: create an AADL model of the given name with the given number of cores.
This template can be the starting point for new bound multi processor (BMP) software
architectures. Threads are located on a single process and run on different cores to
which they are statically bound.

- LAMP model processing: create an AADL model of the given name with pre-set
LAMP annex place holders.

3.1.1.3. Import sub-menu

File Edit Tools 7
Mew Aadl
MNew Project
E, Load
3 Load from Github
£=! Reload Al

¥ save Al
Utilities
Templates...

7L Import SysML model (.sysml, xmi, .model)
Export... P [Import FACE model (face)

(=} Print Elmpnrt CAPELLA PA model (.capella)

@ Quit e Import Table facts (.csv)

Import Textual facts {.pra)

Import Binary facts (.sbp)

2
2

The Import sub-menus can be used to create a new AADL model from “foreign” modelling
languages. Proposed foreign models are SysML, FACE, CAPELLA and AADL models
expressed as table, textual or binary facts bases as specified by the LMP process.

SysML, FACE and CAPELLA model import features are implemented with LAMP, and the
corresponding transformation rules are provided in the LAMPLib repository (cf. 2.2.4.3). They
can thus be customized as needed.

LMP (Logic Model Processing) was developed by Ellidiss Technologies to support advanced
model processing tools. Dedicated LMP features have been packaged to support the AADL
language. In particular, AADL models can be fully represented by a LMP Prolog facts base
that can itself be serialized in a table, textual or binary format.

- Import SysML.: create a new AADL model from a foreign model expressed in SysML
1.5 with Magic Draw ™ extensions. The file navigator asks for a .sysml, .xmi

page 26 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

or .model file.

- Import FACE: create a new AADL model from a foreign model expressed in FACE
3.0. The file navigator asks for a . face file.

- Import Capella model: create a new AADL model from a foreign model representing a
CAPELLA Physical Architecture. The file navigator asks for a . capella file.

- Import Table facts: create a new AADL model from a LMP Prolog textual facts base
generated by parsing a CSV file. The file navigator asks for a . csv file. Each row of
the table represents a fact, first column must contain the fact name and the other
columns are used for the fact parameters. Default separator character is a semicolon.

- Import Textual facts: create a new AADL model from a LMP Prolog textual facts base.
The file navigator asks for a . pro file.

- Import Binary facts: create a new AADL model from a LMP Prolog binary facts base.
The file navigator asks for a . sbp file.

The Import Textual facts feature provides a very convenient way to create an AADL model
without taking care of the statements ordering and syntax. LMP predicates can be used to
automatically generate the AADL specification. These predicates can be included into a .pro
file with any text editor or generated by a tool. An example of such a list of predicates is shown
below:

begin.

isComponentType ('text import pkg', 'PUBLIC', 'text import',6 'SYSTEM', 'NIL').

isComponentType ('text import pkg', 'PUBLIC', 'struct', 'DATA','NIL').

isFeature ('PORT', 'text import pkg', 'text import', 'input', 'IN', 'DATA', 'struct', 'NIL', 'NIL').
isFeature ('PORT', 'text import pkg', 'text import', 'output', 'OUT', 'DATA','struct', 'NIL', 'NIL').
isPackage ('text import pkg', 'PUBLIC').

End.

The exhaustive list of LMP predicates is described in the Ellidiss technical support website:
https://www.ellidiss.fr/public/wiki/aadlDeclarativeModel.

Note that the LMP predicates may have their last parameter (line number) or not, and that
either the first predicate is isVersion/4 or two dummy predicates begin. and end. are
inserted at the beginning and at the end of the file.

Then, the use of the Import Textual facts menu to load this file will automatically create the
corresponding AADL specification:

FACERGE text import plkg
FUBLIC

SYSTEM text import
FEATURES
input : IN DATR POET struct;
output : OUT DATA PORT struct;
END text import;

DATL struct
END struct;

END text_import pkg:

A similar result can be obtained while loading the binary form of the Prolog predicates (. sbp
files) or with a CSV representation of the Prolog facts. Corresponding . csv file content for
the example shown above would be:

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 27

https://www.ellidiss.fr/public/wiki/aadlDeclarativeModel

A\
A\

isComponentType; text import pkg; PUBLIC;text import;SYSTEM;NIL
isComponentType; text import pkg; PUBLIC;struct;DATA;NIL;

isFeature; PORT; text import pkg;text import;input;IN;DATA;struct;NIL;NIL
isFeature; PORT; text import pkg;text import;output;OUT;DATA;struct;NIL;NIL
isPackage; text import pkg; PUBLIC

However, using native textual Prolog facts should be preferred as the CSV format requires an
additional parsing step.

3.1.1.4. Export sub-menu

File Edit Tools 7
Mew Aadl
MNew Project

E, Load

3 Load from Github
£=! Reload Al

Utilities r
Templates... L4
Import... L4

i) New AADL instance diagram

(= Print Update AADL instance diagram
B8 aui Generate SIF file

The Export sub-menu provides AADL reverse engineering features. It gives the ability to
create a new Stood Design or update an existing one. One of the possible reasons to perform
such an operation is to create a graphical representation of the instance hierarchy of the
currently selected AADL model. Another reason is to update a previously generated AADL
model from a pre-existing Stood Design. Finally, this feature can also be used to perform
round-trip engineering cycles between the Stood for AADL graphical design tool and the
AADL Inspector analysis framework.

- New AADL instance diagram: perform a model transformation from the current AADL
instance model to a SIF input file for the Stood tool, then launch Stood and
automatically create the corresponding editable Design.

- Update AADL instance diagram: perform a model transformation from the current
AADL instance model to a SIF input file for the Stood tool, then launch Stood and
automatically update the corresponding editable Design if it was previously created.

- Generate SIF file: perform a model transformation from the current AADL instance
model to a SIF input file for the Stood tool. Such a SIF file can then be manually
loaded in a separate Stood session to create a new Design or update an existing one.

Note that the Stood product must be installed prior to using these features. Stood can be
downloaded from the main Ellidiss website. The default demonstration license is sufficient to
experiment the AADL round-trip engineering process.

Note also that AADL Inspector must be properly configured prior to using these features. This

consists in checking the default value of the following environment variables in the
config/AIConfig.ini file:

page 28 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

- The StoodToolPath variable must contain the actual location of the main Stood
executable file after the installation of the product on the computer.

- The StoodWorkDir variable must contain the path of a directory where the user has
full access rights and wants to store the created Stood designs.

- The StoodProjectName variable must contain the name of the Stood Project file
that will be created to group the created Stood designs. It will be located in
StoodWorkDir.

- The StoodScriptName variable must contain the name of the temporary Stood
script file that will be created during the reverse engineering process. This file will also
be located in StoodWorkDir.

Default value for these variables is:

StoodToolPath ../Stood-5.5/bin.w32/stood.exe

StoodWorkDir ./stood_workspace/

StoodProjectName | AADLProject

StoodScriptName | SIFimport

3.1.2. Edit menu

The Edit menu provides advanced functions used to perform changes on the input AADL
specification. When possible, the original source text is not modified, and the changes are
applied to an extension of the main system implementation of the project instead.

Edit Tools ?
D Auto format

i, search

!" Search reset

Select root
El Simulation Control Panel

@ Edit thread properties
@ Edit thread priorities
@ Edit thread placement

A,
% Preferences

3.1.2.1. Auto format

This wizard re-writes the current AADL file into a normalized form. It impacts the case of
identifiers and keywords, the indentation, and the number of blank lines. This feature can also
be used to convert older AADL files into AADL 2.3 syntax, except for some values of v1.0
Property Associations.

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 29

1 |package math public 1 |PACEAGE math

2 |data float end float; 2 |FUBLIC

3 |data complex end complex; 3

4 |data inplementation conplex.impl |4 [DATA float

5 |subconmponents 5 |[EHD float:

6 |re:data float: &

T |im:data float: 7 |DATL complex

8 |end complex.impl:; 28 |[EHD complex:

9 |end math; 3
10|DATE TMPLEMENTATICN complex.impl
11 |5UBCCHPCHENTS
12 re : DATAE float:
13 im : DATA float:
14|EHD conmplex.impl;
15

16|END math;

The Auto format wizard runs the AADL parser on the original AADL specification as shown
on the left-hand side of the picture above, performs an « identity » model transformation and
then applies the AADL unparser to get a formatted AADL specification as shown on the right
hand side.

Note that it is possible to customize the format produced by the Auto format wizard thanks to
dedicated AADL properties. These properties can be applied to any AADL entity, but we
recommend inserting them at the Package level. The currently supported AADL unparser
properties control the case of identifiers and keywords, as well as the automatic insertion of a
header. This Property Set is defined in the AADL Inspector environment folder (cf.
2.2.4.1) and is automatically loaded when needed.

PROPERTY SET lmp IS

unparser id case : ENUMERATION (AsIs,Upper,Lower) => Lower
APPLIES TO (ALL);

unparser kw case : ENUMERATION (AsIs,Upper,Lower) => Upper
APPLIES TO (ALL);

unparser insert header : ENUMERATION (Yes,No) => No
APPLIES TO (ALL);

unparser output filename: AADLSTRING
APPLIES TO (ALL);

debug mode : AADLINTEGER
APPLIES TO (ALL);

END lmp;

The next picture shows an example of use of these formatting properties.

page 30 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

g o ‘;‘;‘;_‘_i'f - 15/data COMPLEX

—— _:_-'-/_- __l

4 |- (c1Ellidiss Technolooie: 16|end COMPLEX:

oy Lillillloos 1Ll 2 E] 1.?

5 |- 12Jan2017))

S 18 |data I:er.plerr.entatlr:nn CCHPLEX.IMPL

- 19 |zubconponents

. 20| RE : data FLORT;

- 21| IM : data FLOAT:

3 ackage MATH

o E_Jblig 22|end COMPLEX.IMPL;

23

11 - -

12|data FLOAT 24 properties
25 Imp: iunparser id case =» upper:

13|end FLOAT; - -

14 26 Imp: iunparser kW case =»> loWer;
27 Ilmp: iunparser insert header => yes;
28|end MATH:

29

3.1.2.2. Search

The Search tool can be used to look for all occurrences of the specified text. The scope of the
search can be the currently displayed file or the complete set of loaded files. Clicking on the +
button opens the list of all the text occurrences that have been found. Select a line in this list to
navigate to the corresponding source text editor.

Search |package |
[] Case Sensitive [] Reg exp .

[] Current file onky

E Close (@I Previous

N N | = t.:-,- Reset
8 : PACEAGE dataflow Pkg -~

| Search |package | -
1 i 83 : PACKAGE HW
[] Case Sensitive [] Reg exp 127 : PACKAGE messages Pkg
[] Current file only 212 : PACKRGE shared data Pkg
| 1[320 : PACEAGE client_ server Pkg

[E& Close < Previous 429 : PACKAGE Parcitions Pkg v

an % Reset

3.1.2.3. Search reset
Clean up the Search information in the dialog box and the source text editors.
3.1.2.4. Select root

The Select root wizard shows the AADL System Implementation component that has been
automatically identified by AADL Inspector to be the root of the instance hierarchy and
allows the user to change it if needed.

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 31

A

Mame | Line | Selection

Display_Systern:Al_adaptation:display.impl 4442 v
Display_Systemn:COU_Processor_Software. mpl 12336
! Display_Systern:MFD_D_Processor_Software.lmpl 12961
i Display_System:L_Cutboard_MFD_PP_Processor_Software. mpl 13384
I| Display_System:R_Outboard_MFD_PP_Processor_Software.lmpl 13827
| Display_Systemn:Processor_Node_CDU.Impl 15309
Display_Systern:Processor_MNode MFD_D.Impl 15908
Display_Systern:Processor_Mode_ L Outboard_MFD_PP.lmpl 16375
Display_Systern::Processor_Mode_R_Cutboard_MFD_PP.Impl 16656
Display_Systern:Display.lmpl 17416
Apply Cancel [] Extend current model

Note that it is also possible to quickly identify the current root System Implementation by
clicking on the Show root button located on top of the Projects browser:

@ | ai_display_system 2 display_system X

Proje 1 PLCELGE Display System: :AT adaptation
EHre display_systemn.aic 2 PUBLIC
= 3 WITH Di=splay System;
-
o -display_syst 4 [WITH AI:
« display_system.aat 5
Environment & |SYSTEM display
7 EXTENDS Display System: :display
8 END di=zplay:
g

BN (SYSTEM IMPLEMENTATION displav.impl
11 |[EXTENDS Display System::display.impl

Most of the analysis and processing tools require the AADL declarative model to be
instantiated and deployed first. AADL Inspector does not require this instantiation to be done
statically, and the AADL instance model is not stored to avoid the risk of processing an
outdated model. In practice, the instance model is built on the fly together with the proper
model transformation that is required for each processing tool.

However, several instance models can be inferred from a given declarative model. It is thus
mandatory to define which System Implementation represents the root of the instance hierarchy
(System Instance). The Select root wizard provides the list of candidate System
Implementations and selects the one to be the root of the AADL instance hierarchy.

The root system that will be considered by the analysis tools will be (in decreasing priority
order):

- the first found System Implementation containing an AI: :Root System Property
association with the value “SELECTED” ;

- the first found System Implementation containing an AI: :Root System Property
association with any other value;

- the first found System Implementation containing an
Actual Connection Binding Property association;

page 32 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

- the first found System Implementation containing an
Actual Processor Binding Property association.

- the first found System Implementation containing an
Allowed Processor Binding Property association.

- the first found System Implementation that is not instantiated as a Subcomponent in the
scope of the current Project.

If another root is selected in the Select Root System dialog box, two options are possible: either
create an extended root system to avoid altering the existing files or directly modify the current
model. These options are controlled by the tick box Extend current model in the dialog box.

When the Extend current model box is ticked, a new system component is created in memory
only and is located in a new proxy package. The newly created system extends the one in the
existing model and contains an AI::Root System => “SELECTED” property
association so that it becomes the new current root system.

Show root ai_display_systemn X display_systemn X @ Display_Systern_proxy
Projects 12037
12098 |PACEAGE Display System proxy
12099 |PUBLIC

displ + 12100|WITH Display System;
we CISPIY_SYSIEM-8at g 59 09 |WITH AL;

8 Fpsp
Environment 12103 |SYSTEM display
12104 |EXTENDS Display System: :display
12105|END display;

Ehree display_system.aic
« ai_display_system.

12106
12107|5Y5TEM IMPLEMENTATICHN display.impl
12108 |EXTENDS Display System: dis ay.impl

12109|PRCPERTIES

12110 AT::root_ systen
12111 |END display.impl;
12112

12113 |END Display System proxy;
12114

When the Extend current model box is not ticked (default), an AI::Root System =>
“SELECTED” property association is directly added to the chosen system component in the
original model. Note that the formatting of the original file (characters case, line returns and
indentation) may be modified in that case.

3.1.2.5. Simulation Control Panel

The Simulation Control Panel is used to edit the various simulation parameters that can be
controlled by the user. This dialog box can be opened from the main menu or button bar and is
also automatically opened when the Marzhin simulator is started. It is composed of four tabs
that can be used to control the display and behaviour of the time simulators.

The timing analysis tools are using a virtual time scale whose unit is a tick. Correspondence
with the actual time units that are used in the AADL model is given by the reference time unit.
The reference time unit is the smallest time unit found in all the Period property associations.

The value of the reference time unit for the model being processed can be given by the Static
Analysis tool:

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 33

Static Analysis | AMP Lab Timing Analysis Safety & Security Analysis C

aadlrev2.l5 (c)Ellidias Technologies 14Apr2022
AADL-2.3 + BA-2.0

3.1.25.1. General Simulation Control Panel

General Marzhin Cheddar Help

Simulaticn

initial Display Range .. 200

Zoom factor

(w01 () 05 (@8 x1 (w2 () x4

Filters

() Show procezses (8 Show threads/data () Show features

D Minimize Custom filter

Synchronization

The General tab controls the appearance of the timelines frame. The horizontal axis (time) can
be squeezed of extended with the Zoom factor. Note that the zoom factors can be customized in
the AIConfig.ini configuration file. The vertical axis (model entities) can be selectively
deployed thanks to the display Filters. The effect of these filters is described below:

- Minimize: only displays the Processors and the Buses.

- Show processes: adds a time line for each Process.

- Show threads/data: adds a time line for each Thread and shared Data subcomponent.

- Show features: adds a time line for each port, data access and subprogram access
feature.

- Custom filter: this option is selected when the display filters are directly controlled
from within the simulation display area.

When the Synchronization box is ticked, the selected filter applies to both Cheddar schedule
table and Marzhin simulation traces, and custom filters can be applied separately on each
simulation trace.

When no other information is available, the time axis is displayed between 0 and the value
given by the Initial Display Range box. Its default value can be specified by the
stDisplayPeriod constantinthe ATConfig.ini file.

3.1.25.2. Marzhin Simulation Control Panel

The Marzhin tab is used to interact with the Marzhin simulator. It contains a remote-control
panel for the simulator main commands (start/pause/resume, stop, refresh, go to last tick and
optimize) that are described in section 3.5.1, a save as VCD... command to store the current

page 34 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

simulation trace in a file, and a Speed factor selector and a display area where messages
generated by the simulator are shown.

Note the value associated with each speed factor can be specified in the gantt section of the
main configuration file config/AIConfig.ini. The first value indicates the one that will
be selected by default.

"speedFactors"™ "5 1 2 10 20" \

General Marzhin Cheddar Help

> O & ™
Speed factor

O x O x2 @® x5 O =10 (O x20

EventPortIn SIZE FIFO ERROR at tick 132 on thread ::root.my platform.cpu.my process.rece ™
EventPortIn SIZE FIFO EBRCR at tick 162 on thread ::root.my platform.cpu.my process.recs
EventPortIn SIZE FIFO ERROR at tick 142 on thread ::root.my platform.cpu.my process.rect
EventPortIn SIZE FIFO ERROR at tick 122 on thread ::root.my platform.cpu.my process.recs
EventPortIn SIZE_FTFO ERRCR at tick 102 on thread ::rooct.my platform.cpu.my process.rect .,

< >

o]

When scheduling discrepancies occur during the simulation, error messages are logged in the
text box located at the bottom of the control panel.

3.1.25.3. Cheddar Simulation Control Panel

General Marzhin Cheddar Help General Marzhin Cheddar Help
Simulation Simulation

Max Computation Time |:| Max Computation Time |75 |

Cheddar was akle to compute a hyper periocd

Ok Ok

The Cheddar tab can be used to define the time window for computing the Cheddar static
simulation (Cheddar Schedule Table). Minimizing the Max Computation Time can
significantly reduce the analysis time on large models. Its default value can be specified by the
stMaxSchedPeriod constant in the config/AIConfig.ini file or set to the hyper
period in case of a periodic system. This hyper period is computed by Cheddar (when possible)
if the selection box is ticked. This tab also contains a save as VCD... command to store the
current simulation trace in a file.

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 35

3.1.2.5.4. Simulation Control Panel Help

General Marzhin Cheddar Help

Processors:
Occupied
Available

Partitions:
Suspended
Running

Threads:
Unknown state
State ready

— State suspended

B State running

| Awaiting resource

I Aowaiting return

Dispatch jitter
| Getresource

Release resource
Send event
Call
Current deadline
Period

Data:
Ocoupied
Available W

The Help tab provides a caption for the colour code that is associated with the various states of
the modelling entities that are observed during the simulation. The default values are explained
in section 3.4.2. Note that this colour code can be customized in the
config/AIConfig.ini configuration file.

3.1.2.6. Edit thread properties

This wizard opens a spreadsheet to edit usual real-time Properties and apply them to the current
model. The current Property values that are found in the selected AADL files are shown.

Others Priorities Processor Placement
MName Dispatch_Protocol | Period | Compute_Execution_Time | Deadline | Dispatch_Offset | First_Dispatch_Time | Dispatch_litter
my_process.t] periodic 20ms 3Ims.3ms 20 ms 0ms 0ms 0ms
|| my_process.t2 periodic 20ms 3ms.3ms 20 ms Oms Oms Oms
| | my_process.t3 periodic 20ms 3ms.3ms 20 ms 0 ms 0rms 0 rms
|| my_process.td periodic 15ms 3Ims.3ms 15 ms 0ms Oms 0ms
Apply Cancel [Extend current model

When these values have been modified, the corresponding AADL Property associations are
either directly changed inside the current model or declared as contained Properties of an
extension of the current root System Implementation. The extended root System is created in

page 36 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

memory only and is located in a new proxy Package. The newly created System contains an
AI::Root System Property association so that it becomes the new current root System to
ensure that the new Property values are used.

The Extend current model tick box is used to control whether the current model is modified
(default case) or an extended root System is created. Note that the formatting of the original file
(characters case, line returns and indentation) may be modified in the former case.

|Base_T3,rpE5 leath XlHW Xlsj,rnr_hrcrncrus X|@ dataflow_Pkg_proxy

542 | PACKRGE dataflow Pkg proxy

543 (PUELIC

544 WITH dataflow Pkg:

S45(WITH AI:

S48

S47[SYSTEM dataflow

548 EXTENDS dataflow Pkg::dataflow

S49(END dataflow:

S50

S51(SYSTEM IMPLEMENTATICON dataflow.others

552 EXTENDS dataflow Pkg::dataflow.cothers

S53(PROPERTIES
554 Tiroot_system =
555 ispatch Offset => Sms APPLIES TO my process.T3;
S5E(END data] :

557

558 |END dataflow Pkg proxy;

5Eo

3.1.2.7. Edit thread priorities

This wizard opens a spreadsheet to manually specify or automatically compute the Threads
priority according to rate monotonic (RM) or deadline monotonic (DM) algorithms.

Others Priorities Processor Placement

FM DN
Mame Priority
| my_process.t] 1
|| my_process.t2 2
: my_process.t3 3
rmy_process.td 4

Apply Cancel [] Extend current model

When priorities have been modified, the corresponding AADL Property associations are either
directly changed inside the current model or declared as contained Properties of an extension of
the current root System Implementation. The extended root System is created in memory only
and is located in a new proxy Package. The newly created System contains an
AI::Root System Property association so that it becomes the new current root System to
ensure that the new Property values are used.

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 37

The Extend current model tick box is used to control whether the current model is modified
(default case) or an extended root System is created. Note that the formatting of the original file
(characters case, line returns and indentation) may be modified in the former case.

3.1.2.8.

Edit thread placement

This wizard opens a spreadsheet to automatically compute the Threads placement onto the
available Processors according to various placement algorithms. Typical use of this tool is to
statically allocate Threads on a multi-core architecture.

Note that global schedulers implying dynamic Thread migration between Processors (cores) are
not supported yet.

274 |5Y5TEM IMPLEMENTATION product.impl
275 |5UBCOHMPONENTS

378
577

hard :
zoft

S2T78|FROFERTIES

579
280
281
282
283
284
283

allowed processor binding =>

REFERENCE (hard.Proc_S5ystem.
REFERENCE (hard.Proc_S5ystem.

allowed processor binding =>

REFERENCE (hard.Proc_S5ystem.

allowed processor binding =>

REFERENCE (hard.Proc_S5ystem.

S86|END product.impl;

SYS5TEM soc_leon4::soc.
FROCESS edgelDetection.

asic_leon4;
impl ;

i
Corel),
Core2))
i
Corel))

i
Corel)) PPPZIES TO =zoft.edge;

APPLIES TC soft.getlLine;

APPLIES TO soft.sharp:

As shown above, the original model must contain a set of Threads located in a global Process
that is bound to a group of Processors with Allowed Processor Binding Property
associations. This initial situation is reflected in the Processor Placement wizard. As follows:

Others Priorities Processor Placement

FF

EF 'HF 'S5T ‘&I

MName Actual Processor(s) Allowed Processor(s)

soft.getline M/A hard.proc_system.corel, hard.proc_system.cored
soft.sharp M/ hard.proc_system.corel

soft.edge /A hard.proc_system.core2

Apply

Cancel

[] Extend current model

Then, it is possible either to allocate an actual processor to each thread manually, or to apply
one of the placement algorithms that are proposed by Cheddar: first fit (FF); best fit (BF);
next fit (NF); small task (ST) or general task (GT).

page 38 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

Others Pricrities Processor Placement

FF 'EF 'HF ‘5T 'Gr

Mame Actual Proceszor(s) Allowed Proceszor(s)
. soft.getline hard.proc_system.cored hard.proc_system.corel, hard.proc_system.cored
| | soft.sharp hard.proc_system.corel hard.proc_system.corel
soft.edge hard.proc_system.cored hard.proc_system.cored
Apply Cancel [] Extend current model

When the proposed placement is accepted (Apply button), the wizard generates corresponding
AADL Actual Processor Binding Property associations. These Properties are either
directly inserted inside the current model, or declared as contained Properties of an extension
of the current root System Implementation. The extended root System is created in memory
only and is located in a new proxy Package. The newly created System contains an
AI::Root System Property association so that it becomes the new current root System to
ensure that the new Property values are used.

The Extend current model tick box is used to control whether the current model is modified
(default case) or an extended root System is created. Note that the formatting of the original file
(characters case, line returns and indentation) may be modified in the former case.

Note that the current wizard does not check that the actual binding matches the allowed
bindings list.

app X@EPP_PVUXY x

16483

16484 PACKAGE app proxy

16485 |PUBLIC

16486 WITH app:

16487 WITH AI;

16488

16489 |5YSTEM product

16490 |EXTENDS app: :product

16491 |END product:

16482

16493 |5YSTEM IMPLEMENTATICN product.impl
16494 |EXTENDS app::product.impl

16495 |PROPERTIES

16496| AI::root_system => "SELECTED";
164897 Aorual Processor Binding =>

16498 (reference (hard.proc system.corel))
16499 APPLIES TO soft.getline;

16500 Aorual Processor Binding =>

16501 (reference (hard.proc system.corel}))
16502 APPLIES TC soft.sharp:

16503 Aorual Processor Binding =>

16504 (reference (hard.proc system.corel))
16505 IZC'.PPZIES TC soft.edge;

16506 END product.impl;

16507

16508 END app proxy:

3.1.2.9. Preferences

The Preferences menu opens a dialog box to change the fonts used by the application. Two
fonts are used by the tool. The Ul Font applies to all menu items, tab names and the project
explorer elements. The Viewer Font is used to display text in the editing area as well as in the

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 39

analysis report areas. The latter one is intended to be a monospaced font.

Ul Font |Helvetica, || change
Viewer Font |Cuurier,9 | Change
Update config file Apphy Close

Note that the default values are defined in the ATConfig.ini file. It is possible to update
these values using the Update config file button.

3.1.3. Tools menu

Tools 7
Static Analysis »
LAMP Lab »
Timing Anakysis r
Safety & Security Analysis #
Code Generation r

The Tools menu provides access to the processing tools and services that are defined in the
.ais files located in the config directory. Five tools are available with the standard
distribution: Static Analysis, LAMP Lab, Timing Analysis, Safety &Security Analysis, and Code
Generation. Each menu item opens a submenu that gives access to the services offered by the
corresponding tool.

Each item of the Tools menu corresponds to a tab in the Processing tools area in the left-hand
side part of the main window, and each submenu is associated with a button of the
corresponding tab (cf. 3.4).

3.1.3.1. Static Analysis

The static analysis services make use of two different and complementary technologies. One is
based on the Logic Model Processing (LMP) toolbox and the other one is provided by calls to
the Ocarina tool.

Tools ¥

pE Farse and Instantiate (LMP)
LAMP Lab / ap Parse (Ocarina)
Timing Analysis ’ o) Instantiate (Ocarina)

Safety & Security Analysis *

or “heck Consistency Rules (LMP)
Code Generation

tc Check Legality Rules (LMP]
pe Check Maming Rules (LMP)
g53 Check ARINC 653 Rules (LMP]

- Parse and Instantiate (LMP): parse the selected AADL files, instantiate the model from
the root System instance (cf. 3.1.2.4), perform quick consistency analysis and provide
statistics about both the instance and the declarative AADL models.

- Parse (Ocarina): parse the selected AADL files and check the consistency, legality and

page 40 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

naming rules defined by the standard, with a call to Ocarina —p.
- Instantiate (Ocarina): instantiate the AADL model with a call to Ocarina —i.
- Check Consistency Rules (LMP): verify the consistency rules defined by the standard.
- Check Legality Rules (LMP): verify the legality rules defined by the standard.
- Check Naming Rules (LMP): verify the naming rules defined by the standard.
- Check ARINC 653 Rules (LMP): verify rules for partitioned systems.

3.1.3.2.

LAMP Lab

LAMP stands for Logic AADL Model Processing. It is an online processing language that can
be directly included within AADL Packages and Components as Annex sub-clauses. This
language is the same as the one that is used for the definition of the off-line predefined plug-ins
and wizards (LMP). LMP consists of a set of parsers, a Prolog engine and libraries to access
and process model elements. These features are available to create customized assurance cases
functions that can be modified interactively. The LAMP services are organized in three groups

as shown below:

Tools ¥
Static Analysis »
LAMP Lab d &5 Run LAMP
Timing Analysis r ﬁ LAMP query
Safety & Security Analysis ¥
Code Generation » | L Add raw XML/XMI facts

L Add SysML facts

i/l Add FACE facts

*3 Add CAPELLA facts

e Add simulation events facts
+m Add response time facts

i Add native prolog code

3 Add CSV facts

=¥ Clean up all add-ons

ﬁ Show LAMP console

[B] Show AADL declarative model facts
[Z] Show AADL instance model facts
[%] Show imported XML/XMI facts
Show imported SysML facts

[F | Show imported FACE facts

[£ | Show imported CAPELLA facts

[5 | Show simulation event facts

[E| Show response time facts

[F| Show imported prolog facts or rules
|E| Show imported csv facts

The first group of services control the execution of the LAMP engine:

- Run LAMP: load the contents of all the LAMP annexes that are found in the selected
AADL user files and environment libraries and run the included queries (goals).

- LAMP query: same as above but ignore the goals that are included inside the LAMP
annexes and ask for a query in a dialog box instead.

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 41

The second group of services provides a way to load additional facts bases or rules to the one
derived from the selected AADL model and the predefined LAMP annexes. All these
additions are inclusive, so take care that they do not conflict. This is especially useful to
experiment cross-model processing. Note that only one file of each type can be loaded at a
time.

- Add raw XML/XMI facts: parse specified XML file and load corresponding Prolog
facts before next execution of the LAMP queries.

- Add SysML facts: parse specified XMI file, interpret it according to the UML and
SysML metamodels and load corresponding Prolog facts before next execution of the
LAMP queries.

- Add FACE facts: parse specified XML file, interpret it according to the FACE
metamodel and load corresponding Prolog facts before next execution of the LAMP
queries.

- Add CAPELLA facts: parse specified XMI file, interpret it according to the CAPELLA
metamodel and load corresponding Prolog facts before next execution of the LAMP
queries.

- Add simulation events facts: run Marzhin simulator and load corresponding Prolog
facts before next execution of the LAMP queries.

- Add response time facts: run the AADL Threads response time computation wizard and
load corresponding Prolog facts before next execution of the LAMP queries.

- Add native prolog code: load selected Prolog code (facts, rules or both) before next
execution of the LAMP queries.

- Add CSV facts: parse specified CSV file and load corresponding Prolog facts before
next execution of the LAMP queries.

- Clean up all add-ons: remove all previously added Prolog extensions before next
execution of the LAMP queries.

Note that the Add CSV facts feature included in LAMP Lab differs from the Import Table
facts of the import sub-menu (cf. 3.1.1.3). The latter creates an AADL model from Prolog
predicates represented as a CSV table, whereas the former can load an agnostic CSV table
and create predicates named isCSVPredicate with one parameter per column and the
row number for the last parameter.

The third group of services show the various available sources of information in the display
area. Only one source of information is shown at a time.

- Show LAMP console: display output produced by the last execution of LAMP.

- Show AADL declarative model facts: show the list of Prolog predicates that represent
the current AADL declarative model.

- Show AADL instance model facts: show the list of Prolog predicates that represent the
current AADL instance model.

- Show imported XML/XMI facts: show the list of Prolog predicates generated from
previously added raw XML or XMl file.

- Show imported SysML facts: show the list of Prolog predicates generated from
previously added SysML file.

- Show imported FACE facts: show the list of Prolog predicates generated from
previously added FACE file.

- Show imported CAPELLA facts: show the list of Prolog predicates generated from
previously added CAPELLA file.

- Show simulation events facts: show the list of Prolog predicates that represent the

page 42 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

logged Marzhin simulation events.

- Show response time facts: show the list of Prolog predicates that represent the
computed Thread response time by Cheddar and Marzhin.

- Show imported prolog facts or rules: show the list of Prolog predicates that were
previously added.

- Show imported csv facts: show the list of Prolog predicates that were previously added.

3.1.3.3. Timing Analysis

The timing analysis services make use of two different and complementary tools. One is based
on the Cheddar scheduling analysis tool and the other one is provided by the Marzhin
simulator. These services make use of standard AADL real-time Properties as well as a subset
of the AADL Behavior Annex.

Tools 7
Static Anahysis k
LAMP Lab r

[T] Processor Load & Thread Response Time Analysis

Safety & Security Anahysis *

Code Generation » Simulation Timelines (Cheddar)

qie Theoretical Tests (Cheddar)
sin Simulation Tests (Cheddar)

ﬁ Scheduling Aware Flows Latency Analysis (SAFLA) with LAMP

- Processor Load & Thread Response Time Analysis: compute statistics for processor
load and thread response time from the various outputs given by Cheddar and
Marzhin, and show them in a spreadsheet for comparison.

- Simulation Timelines (Cheddar): static simulation computed by Cheddar.

- Theroritical Tests (Cheddar): set of feasibility tests checked by Cheddar.

- Simulation Tests (Cheddar): set of tests based on the static simulation computed by
Cheddar.

- Scheduling Aware Flows Latency Analysis (SAFLA) with LAMP: associate response
time computation done by Cheddar and Marzhin with AADL Flows analysis done by
LAMP to provide an estimate of End-to-End Flows latency.

3.1.3.4. Safety & Security Analysis

This plugin groups both safety and security analysis services.

Tools 7
Static Analysis L4
LAKMP Lab ¥
Timing Analysis k
SRR PUE VR 5 Open PSA export file
Code Generation r # Fault Tree Analysis (Arbre Analyst)

ﬁ Check security rules with LAMP

The safety analysis services aim at interfacing external tools that support model driven safety
analysis. These model transformations make use of the AADL Error Model Annex (EMV?2)
and are currently focusing on Fault Tree Analysis (FTA).

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 43

- Open PSA export file: generate a file complying with the Open PSA model exchange
format to export fault trees from EMV?2 declarations.

- Fault Tree Analysis (Arbre Analyst): generate an Open PSA file as above and launch
the Arbre Analyst tool to display a graphical fault tree. Note that the Arbre Analyst
tool is not included into the AADL Inspector distribution. This tool can be found at the
following address: https://www.arbre-analyste.fr/en.htmi

Note that once installed onto your computer and checked the terms of the license, you need to
update the corresponding file pathname in the ATConfig.ini file before being able to use

this service, for instance:

variable userConstants { \
"FTAToolPath" "{C:/Projets/AADLInspector/Safety/arbre analyste-
2.3.2-win32/Arbre Analyst.exe}" \

The security analysis service makes use of customizable LAMP rules:

- Check security rules with LAMP: execute the LAMP query checkSecurityRules
that is defined in LAMPLib. It is based on a simplistic user defined security model with
a single AADL Property defining the security level associated with a Data classifier.

Note that these security model and rules can be customized to fit specific security policies. As
the rules defined in LAMPLib are read-only, it is necessary to either move the file
LAMPSecurity to a writable workspace before editing it. An alternate solution is to edit it
with another text editor, however AADL Inspector will need to be restarted to take changes
into account in that case.

3.1.3.5. Code Generation

The code generation services are provided by Ocarina back-ends. Please refer to the Ocarina
documentation for detailed explanations about the use of these features.

Tools 7
Static Analysis »
LAMP Lab »
Timing Anakysis k

Safety & Security Analysis ¥
a4 PolyORE HI Ada
C' PolyORE HI C
== Other Ocarina backends

- PolyORB HI Ada: generate Ada source code files for the PolyORB-HI-Ada
middleware. A dialog box asks about the location of the generated code. A default
location is proposed in the AADL Inspector temporary directory.

- PolyORB HI C: static generate C source code files for the PolyORB-HI-C middleware.
A dialog box asks about the location of the generated code. A default location is
proposed in the AADL Inspector temporary directory.

- Other Ocarina backends: gives access to the other available Ocarina back-ends. The
actual back-end to use can be selected in a dialog box.

page 44 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

https://www.arbre-analyste.fr/en.html

Note that Ocarina generates the source code architecture and glue code with the Operating
System. However, it requires the applicative functional code to be made available for a
complete build of the software. Access to the functional code can be specified by
Source Text AADL Properties.

3.1.4. Help menu

The ? menu provides information about AADL Inspector.

¥

Help »
About

License info

Open install dir
Open config dir
Open tmp dir
Open log file
Open doc dir
Open code dir

Help: open the help files. Note that the name of the help file directory and the
application that is used to open it can be customized in the AIConfig.ini file. By
default, this application will be the default one for . pdf files on Windows and xpdf
on Linux.

About: display the version of the software.

License info: provide information about the license.

Open install dir: open the installation directory.

Open config dir: open the configuration directory.

Open tmp dir: open the temporary directory.

Open log file: open the messages log file.

Open doc dir: open the default documentation directory.

Open code dir: open the default code generation directory.

3.1.5. Button bar

The Main Button Bar provides another entry point for menu actions.

File Edit Tools 7

E.'—‘@@@ di-micsﬁi,%j&D@@@@% E

The effect of these actions is described in the corresponding menu section. Button association
with menu bar items is given below from left to right:

File/New Aadl

File/New Project

File/Load

File/Load from Github

File/Reload

File/Save All

File/Utilities/Load all the AADL Inspector examples
File/Utilities/Split AADL packages for OSATE

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 45

File/Import/Import SysML model (.sysml, .xmi, .model)
File/Import/Import FACE model (.face)
File/Import/Import CAPELLA PA model (.capella)
File/Import/Import Table facts (.csv)
File/Import/Import Textual facts (.pro)
File/Import/Import Binary facts (.sbp)
File/Export/New AADL instance diagram
File/Export/Update AADL instance diagram
File/Export/Generate SIF file

Edit/Auto format

Edit/Select root

Edit/Simulation Control Panel

Edit/Edit thread properties

Edit/Edit thread priorities

Edit/Edit thread placement

Edit preferences

File/Quit

3.2 Project browser

The Project Browser offers advanced structuring and navigation features to manage AADL
projects. AADL Inspector projects are organized hierarchically and can contain several kinds
of files. AADL Inspector projects contents are defined in . aic files.

The Project Browser has two main sections: Projects, where user defined AADL Packages and
Property Sets can be loaded or created, and Environment, where standard or tool dependent
AADL Packages and Property Sets are stored. Contents of the latter cannot be modified from

3.2.1. Project browser overview

the AADL Inspector user interface.

=+

Projects

—I{E-,,- dataflow.aic

Image
—["| Description
—" synchronous.aadl

e hw.aadl
& dataflow.asc

Image
—["] Description

Environment

w Ellidiss.aic

] =1

canbus.aic

ecosclar.aadl

ecosclar_types.aad|
bus_properties.aad|

Standard.aic
Ocarina.aic

Terminal items in the AADL Inspector project hierarchy can be:

AADL files: containing standard textual AADL declarations (.aad1l).
Scenarios files: defining inputs values and time for the simulator (. asc).

page 46 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

- Description files: allowing for a textual documentation of the project (. txt).
- Image files: read-only illustration associated with the project
(.Jpg; .Jjpeg: .xbm; .bmp; .png; .gif).

Note that a single textual description file and a single image file can be inserted within a given
project.

The items of the Project Browser may be in different non-exclusive states that are indicated by
a change of the corresponding icon or colour of the text label:

- loaded project file (icon)

- w selected project file (icon)

- loaded AADL file (icon)

- read-only AADL file loaded from a remote git repository (icon)

- e selected AADL file (icon)
- W loaded scenarios file (icon)
- & selected scenarios file (icon)

- datafiow.aadl default file state (label)
- EEEEEERL currently displayed file (label)
- datafow.aadl modified file (label)

Note that the scenarios files are not really terminal nodes in the browser tree. Indeed, individual
scenarios are shown as sub-items in the hierarchy although they are all included in the same
file. They can be selected individually if needed.

A contextual menu is associated with each kind of item and is updated according to its states to
only offer the valid actions in each case.

3.2.2. Project file contextual menu

When a project file is selected in the browser, the following contextual menu options are
available, depending whether the file has been loaded (on the left) or has just been created (on
the right).

Mew Project Mew Project
Mew Aadl Mew Aadl
&= Mew Scenario &= Mew Scenario
[| Mew Description [| Mew Description
@ Mew lmage @ Mew lmage
& Load & Load
% Load from Github % Load from Github
£ Reload [¢ Rename
@ Save @ Save
@ Save layout ¥ Remove
» Unload

- New Project: create a new sub-project slot in memory.

- New Aadl: create a new AADL model slot in memory.

- New Scenario: create a new scenario template in memory. Note that scenarios can be
created on instance models only. If not done yet, select the project (green tick) and use
the Show root button on top of the Project Browser.

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 47

New Description: create a new textual description in memory.

New Image: create a new image slot in memory.

Load: open a file navigator to load any of the accepted file types.

Load from Github: open a dialog to load an AADL file from a registered server.
Reload: reload the project.

Rename: rename the project file that has just been created.

Save: save the project file and its contents.

Save layout: save the selected and opened status of each file contained in the project.
Unload: remove the loaded project and its contents from the project.

Remove: remove the (virtual) project that has just been created and its contents.

3.2.3. AADL file contextual menu

When an AADL file is selected in the browser, the following contextual menu options are
available depending on the status of the file. From left to right: a loaded file that is not
displayed, a loaded file that is displayed, a file that has just been created and is not displayed
and a file that has just been created and is displayed.

£ Reload £ Reload [# Rename [# Rename
@ Save @ Save @ Save @ Save

@ Duplicate @ Duplicate @ Duplicate @ Duplicate
4By Show +=r Hide 4By Show +=r Hide

» Unload » Unload ¥ Remove ¥ Remove

Reload: reload the AADL file.

Rename: rename the AADL file that has just been created.

Save: save the AADL file.

Duplicate: create a copy of the AADL file.

Show/Hide: open or close a corresponding editor in the Source File Area.
Unload: remove the loaded AADL file from the project.

Remove: remove the (virtual) file that has just been created.

3.2.4. Scenario file contextual menu

When a scenario is selected in the browser, the following contextual menu options are available
depending whether the file content is not displayed (on the left) or is displayed (on the right).

@ Reload @ Reload

£ Update S i List £ Update S i List
=y Update Scenario Lis =y Update Scenario Lis
@ Save @ Save

E‘ﬂ Duplicate E‘ﬂ Duplicate

48 Show +=r Hide

» Unload » Unload

Reload: reload the scenario file.

Update Scenario List: update the scenario contents after editing in the Source File Area.
Save: save the scenario file.

Duplicate: create a copy of the scenario file.

Show/Hide: open or close a corresponding editor in the Source File Area.

Unload: remove the loaded scenario file from the project.

page 48 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

3.2.5. Description file contextual menu

When a textual description file is selected in the browser, the following contextual menu
options are available depending whether the file content is not displayed (on the left) or is
displayed (on the right).

[Leoad description [& Load description
@ Save @ Save

4By Show +=r Hide

» Unload » Unload

- Load description: open a file navigator to load a . txt file.

- Save: save the description file.

- Show/Hide: open or close a corresponding editor in the Source File Area.
- Unload: remove the description file from the project.

3.2.6. Image file contextual menu

When an image file is selected in the browser, the following contextual menu options are
available depending whether the file content is not displayed (on the left) or is displayed (on
the right).

& Load image |_:| Load image
4By Show + Hide
» Unload » Unload

- Load image: open a file navigator to load a .jpg .jpeg .xbm .bmp .png oOr
.gif file.

- Show/Hide: open or close a corresponding viewer in the Source File Area.

- Unload: remove the image file from the project.

3.3 Source files area

After having been loaded in the Project browser, the files can be opened in the Source file
area. Closing an editor in the Source file area does not unload the corresponding file from the
browser.

3.3.1. Source files area overview

The Source file area is composed of:

- aset of file selector tabs
- afile editing area
- aline number area

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 49

memaories 2| processors X\ bus_properties 2| deployment X

Gof |propercy se gployment is &
g59
860 Bllowed Transport &

File selector tabs

el (BED Sockets,

262 SpaceWire) ;

263 —— Bupported transport A4PT

864 File editing area

265 Transport LPT : Deployment::hllowed Transpor
= Iransport APT of a bus

m

8&8 Location :@: aa

B | J— Dwrmooomn™

t Combined files line number area :»

T rrnrae = ammmaa mrarc st o e imars = T

To load a file in the editing area a drag and drop action is possible instead of using the
File/Load menu: open the appropriate directory, select the desired file, depress, and hold the
left mouse button then drag the mouse until the AADL Inspector window is reached.

To find all the occurrences of a word in the displayed text, select the desired word and press the
Ctrl1-F key to open the search dialog box. Note that the Next button must be pressed to start
the search.

18879 |PACKAGE AirConditioner Pkg

18880 |PUBLIC

18881 |(WITH Ellidiss: :Math: :Int;

1 Z|RENAMES Ellidiss::HMa88R: : Int: :LLL;

1 J(WITH Ellidiss::Gui;

18884 |RENAMES Ellidiss::Gui: :ALL|

18885(WITH AT

1 & Search |hﬂath

1888T|SYSTEH AirConditioner

18883 |[END RirConditicner; [Case Sensitive [Reg exp

1 8 [] Current file only

18890|SYSTEM IMPLEMENTATION AircC

18891 |SUBCOMPONENTS [Close & Previous | | 2> Next |
18852 Settings : DEVICE IntSels

18893 Temperature : DEVICE Int] = %?Fﬁsa
18894| HeaterStatus : DEVICE Lijqgg . WITH Ellidiss::Math::Int; A
18895 HeatRegulator : SYSTEM Hij, : RENAMES Ellidiss::Math::Int::4LL;

l'f'fff CONNECTIONS) [|18 : WITH Ellidiss::Math::Int;

S I G bl | 5552 : RENAMES Ellidiss::Math::Inc::

18898 cnx 1 : PORT HeatRegulati|,, : WITH Ellidiss::Math::Int:

18898 cnx 2 : PORT HeatRegulatil,qn,7 ; rnteger RENAMES DATA Ellidiss::Math::I
18900) cnx 3 : PORT HeatRegulatil,ngcg : wITH Ellidiss::Math::Int;

18301 1FROPERTIES 20 : RENAMFS F1lidiss::Math::Tnt::ATT: v
18902(-- required by Ccarina < 5
18903 AT::root system => "SELE{

18904 |END AirConditioner.others;

A contextual menu (right mouse button click) is associated with the current file selector tab.

¥ Hide
¥ Hide All
¥ Hide Others

@ Reload
@ Save

- Hide: closes the currently selected tab.

page 50 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

- Hide All: closes all the opened tabs.

- Hide Others: closes all the opened tabs but the current one.
- Reload: reload last saved version of the corresponding file.
- Save: update the file with current content of the editor.

When a file has been modified, an icon appears on the tab to indicate that the changes have not

been saved. Clicking on the save icon of the tab will save the file in a similar way as the
contextual menus.

|HW X@ synchronous X|_

Note that clicking on the grey cross at the right-hand side of a tab closes the tab, and has thus
the same effect as the Hide contextual menu item.

Files that can be displayed in the Source files area are:

- textual AADL files: .aadl.

- simulator scenario files: . asc.

- textual description files: . txt.

- image files (read-only):. jpg .Jjpeg .xbm .bmp .png Or .gif

Note that only text files can be modified in the Source files area. No editing functions are
proposed for image files that can only be loaded and displayed.

3.3.2. Editing AADL files

The textual contents of a file editor associated with an AADL file must comply with the syntax
defined by the standard. No verification is done on text input before an analysis tool is
launched.

AADL Inspector accepts AADL files that encompass several packages and property sets.
However, the user must be aware that other AADL tools may have a more restrictive policy,
such as enforcing the single package or property set per file rule.

When an AADL model is edited, line numbering is activated. Line numbers correspond to
those of a virtual file that would be the concatenation of all the actual AADL files that are
selected in the Project browser.

Note that a cross-reference contextual menu opens the search dialog box on the identifier
pointed by the mouse. This is especially useful when editing Prolog code inside LAMP
AADL annex subclauses:

satellite.aic 20078 |ANNEX LAME [*¥
code_generation.aic 2007%| /% comments in Prolog code use a C style ¥/
end t_u end flow ai 20080 write('hello!"), nl, /% uses standard Prolog I/0 %/

20081| checkR _"' - - 1 rule defined below at pack:

lamp_examples.aic & -
« - g 20082| (isTg'wd search checkReflnit j if the simulator was run be

[[] Description

: 20083 { wr (), search checkRefUnit - e id: '), write(X))i
v Bl LR 20084 Writer-mo-srmrrecrorr-rrace—evailabkle')), nl,
LAMPExample2.a2 150085 printHeader. /% calls a rule defined in LAMPLib/LZ}

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 51

3.3.3. Editing Simulator Scenario files

The textual contents of a file editor associated with a scenario file must comply with a specific
XML syntax. No verification is done on text input before the scenario is saved.

The structure of a scenario file is as follows:

<scenarii>
<interface>
<feature type="data" id="input"
aadlID="my platform.cpu.my process.tl.input"/>
<feature type="data" id="output"
aadlID="my platform.cpu.my process.tl.output"/>

</interface>
<scenario name="sl" description="">
<probes>
<probe ref="output"/>

</probes>
<tick value="0" next="tick+10”>
<action ref="input" value="1"/>

</tick>

</scenario>
</scenarii>

When a new scenario file is created from the Project browser (project contextual menu), its
contents is initialized with the list of ports that can be triggered within the scenarios. This list is
provided in the <interface> section and corresponds to all the input ports of the threads
that are found in the current set of selected AADL files. A short name is given for each port so
that it can be easily reused in the scenario specification.

A list of independent scenarios can then be added. Each scenario can be selected individually
in the Project Browser. A scenario is defined by an optional <probes> section and a list of
<tick> sections.

The <probes> section can be used to open a visualisation probe on the specified port when
the scenario starts. Probes can also be opened at any time while the simulation is running.
Probes may be attached to input or output ports.

The <ticks> sections indicated what value that is inserted automatically into an input port
variable at the instant denoted by the tick value. In case of an input event port, no value is
needed. It is also possible to specify a sequence of ticks thanks to the next attribute which
may contain an arithmetic formula to define the value of the next tick. For instance, a periodic
activation of an event port will be obtained by the following statement:

<tick wvalue="0" next="tick+10">
<action ref="input"/>
</tick>

page 52 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

3.4 Processing tools area

The Processing Tools Area allows for selecting the processing tool to be applied to the set of
AADL files that are selected in the Project Browser and display the corresponding execution
result.

3.4.1. Processing tools area overview

The Processing tools area is composed of:

- aset of tool selector tabs
- one or several service control buttons
- aread-only result display area

Static Analysis |LAMP Lab Tirning A sis Safety & Security Analysis Code Generation Doc Generation

HE “ofP o OC L B53

Tools selector tabs

aadlrevz.l4 (c)Ellidiss Tect
AADL-2.2 + BA-2.0

ologies 16Apr2021

the reference time unit is: ms Services control buttons

"""""""""""_T_""T_T"N" Result display area
Root System Instance: AirConditiomer Pkg: iR IETS

13390 (system)..... root
18917 (processor)... root.heatregulator.heatd: . . .
o i - 5 Navigate to instance in code
13916 (pProcesS3) ... rDDt.neatregalatDr.neﬂt
13939 (thread)......... Eegulator (PERICDIC)
13940 (thread) ..o HeaterCooler (PERICDIC)
13941 (thread) ..o Sensor (PERICDIC)
150la

(subprogram) err (25748 . e
__________________________ -~ Navigate to classifier in code

- Tools selector tabs can be configured by adding or removing tool description files
(.ais files) in the config subdirectories of the installation directory

If one of the analysed files is modified, the background colour of the result display area
becomes gray to indicate that the information is potentially out of date.

When the selected analysis tool cannot be executed normally for the current AADL
specification or if the AADL syntax is not correct, the corresponding error message will appear
in an additional temporary Report tab.

When line numbers are shown in the generated report, clicking on them will highlight the
corresponding lines in the Source Files Area.

Note that while working on large AADL projects, processing actions may take a significant

time (up to a few minutes). Depending on the processing tool that is running, other user actions
may not be allowed, and the display may not be refreshed during that time.

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 53

3.4.2. Static Analysis

The Static Analysis tool encompasses a set of independent rules checkers that verify various
facets of the semantic correctness of the source AADL specification. Each rules checker is
implemented as a service of the static analysis tool and can be activated by pressing the
correspondent button:

Static Analysis |LAMP Lab Timing Analysis Safety & Security Analysis Code Generation Doc Generation

HE “opP o CC “IC 'HC BH

- we call the AADL parse and instantiate LMP service.
- “or call the AADL parse and verify Ocarina service.
- i call the AADL instantiate Ocarina service.

- ‘cc call the AADL Consistency rules LMP checker.

- ‘e call the AADL Legality rules LMP checker.

- 'nc call the AADL Naming rules LMP checker.

853 call the ARINC 653 rules LMP checker.

When an error, warning or information message is displayed by a processing tool, the line
number of the corresponding AADL code is shown in the Processing Tools Area. Clicking on
a line number updates the display of the Source Files Area to make the relevant line visible.

More detailed explanations about the scope of each of these checkers can be found in separate
documentation.

3.43. LAMP Lab

The LAMP Lab(oratory) tool can be used to experiment the use of the LAMP language to
implement advanced create customized assurance cases that may be modified interactively by
the bend-user. LAMP Lab can process heterogenous inputs including AADL, SysML, FACE,
CAPELLA, any XML based domain-specific models, as well as Prolog fact bases that can be
loaded in several forms.

3.4.3.1. LAMP Lab overview

LAMP stands for Logic AADL Model Processing. It is an online processing language that can
be directly included within AADL Packages and Components as Annex sub-clauses. This
language is the same as the one that is used for the definition of the predefined plug-ins and
wizards (LMP). LMP consists of a set of parsers, a Prolog engine and libraries to access and
process model elements.

LAMP Lab provides a full access to the pre-existing Prolog parsers and libraries of the LMP
framework, as well as to the LAMP Lib(rary) that are included in AADL Inspector standard
distribution.

A LAMP annex sub-clause contains standard Prolog source code that will be interpreted

dynamically after the Run LAMP & or LAMP query £ putton is pressed. A template of a
LAMP annex sub-clause can be used to start a new LAMP project:

page 54 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

File Edit Tools 7
 New Aadl
MNew Project
|5__|;, Load
3 Load from Github
£=! Reload Al

Utilities r

Templates. .. L S0 Multi thread

Import... ¥ | & Multi partition

.2 Print T Multi processor

[E Cluit T Multi core (Partitioned Scheduling)

LAMP model processing

This creates a new AADL file that can be customized by the designer to create his own LAMP
analysis rules. Note that navigation across Prolog code is made easier thanks to a contextual
search menu looking for references to a given Prolog rule or for its definition (rule :-).

Show root | @ new_LAMP project

%]

= Projects 1
new_LAMP_project.a
Environment 3

4

10
11
12
13
14
15
16
17
13
15
20
21
22
23
24
23
26
27
28
29
30
21

.

o1 & LA

- AADL Inspector Template
-- Model Process with LAMP Annex

FACEAGE new_lamp project pkg
FUBLIC

—-— Placeholder to specify which rules to launch.
—-— Otherwise, could ke located within the model to process
RBSTERACT lamp goal
-- Bules to process in ssquence
-— Use semicolon separator
LANNEY lamp [**
goal—l=

goal '@; search goal_1

x| i
., search goal_1 :-
END lamp g-

END new_lamp project_plkg:

FACERAGE new_lamp project_lamp pkg
FUBLIC

-— Bules definition

-— May ke split in sewveral annexes if needed
ANWNEX lamp {[**
goal_ 1 :- write('list all found component types: "), nl.

J.J.]_'-

As shown by the picture below, LAMP Lab merges end-user facts and rules on top of a Prolog
engine and pre-defined libraries. Facts come from syntactic transformation from a variety of

data sources into Prolog text

or bytecode. Rules come from LAMP annexes embedded inside

applicative AADL specifications and predefined Prolog, LMP and LAMP libraries.

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 55

2 LAMP Lab » LAMP

Console
/ \

LAMP Rules LAMP Facts
LAMP Goals AADL Facts
in AADL Components -
L SysML Facts
LAMP Rules =
in AADL Packages 1 Capella Facts
LAMP Lib i FACE Facts
in'AADL Environment
v I XML Facts |:| End-user code
LMP I;|brar|es ‘n Resp.Time Facts |:| Ellidiss© source code
Prolog Libraries @ Simulation Facts |_| Ellidiss© binary code
h
Prolog Engine Native PrologFacts | | Open-source

The LAMP Lab services are organized as follows:

Static Analysis LAMP Lab Timing Anatysis Safety & Security Anahysis Code Generation Doc Generation

B WRESTWIT BEODDNEEEHERERELEEH®

£ 10ad the contents of all the LAMP annexes that are found in the selected AADL
user files and environment libraries and run the corresponding queries (goals).

- 2 do the same as above but ignore the goal definitions found in the LAMP annexes
and ask for a query in a dialog box instead.

. parse specified XML file and load corresponding Prolog facts for next executions
of the LAMP queries.

- & parse specified XMI file, interpret it according to the UML and SysML
metamodels and load corresponding Prolog facts for next executions of the LAMP
queries.

- i parse specified XML file, interpret it according to the FACE metamodel and load
+(bzo,rresponding Prolog facts for next executions of the LAMP queries.

- 2 parse specified XMl file, interpret it according to the CAPELLA metamodel and
load the corresponding Prolog facts for next executions of the LAMP queries.

- s run Marzhin simulator and load corresponding Prolog facts for next executions of
the LAMP queries.

- " run the AADL Threads response time computation wizard and load corresponding
Prolog facts for next executions of the LAMP queries.

- f': load selected Prolog code file for next executions of the LAMP queries.

- v |oad selected CSV file, convert each row into a Prolog fact and load corresponding
Prolog code for next executions of the LAMP queries.

- ¥ remove all previously added Prolog extensions for next executions of the LAMP
queries.

- & display output produced by the last execution of LAMP.

page 56 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

2] show the list of Prolog predicates that represent the current AADL declarative
model. The definition of these predicates can be found on the Ellidiss wiki:
https://www.ellidiss.fr/public/wiki/aadlDeclarativeModel

- [Z] show the list of Prolog predicates that represent the current AADL instance model.

- =] show the list of Prolog predicates generated from previously added raw XML or
XMl file.

- [*] show the list of Prolog predicates generated from previously added SysML file.
- [El show the list of Prolog predicates generated from previously added FACE file.
- [£] show the list of Prolog predicates generated from previously added CAPELLA file.

- [E] show the list of Prolog predicates that represent the logged Marzhin simulation
events.

- [El show the list of Prolog predicates that represent the computed Thread response time
by Cheddar and Marzhin.

- [El show the list of Prolog predicates that were previously added.
- [¥] show the list of Prolog predicates converted from previously added CSV file.

LAMP annex sub-clauses that are defined at an AADL Package level specify end-user
processing rules libraries. Predefined LAMP libraries (LAMP Lib) are provided in the
Environment section of the Project Browser. Predefined libraries provide a complete access to
all the AADL modelling elements (declarative and instance model, Behavior annex and Error
Model V2 annex), as well as various utility and processing rules (AADL generator, security
and flow analysis, SysML to AADL, FACE to AADL and CAPELLA to AADL model
transformations, AADL reverse engineering, and so on). User defined LAMP libraries can be
added inside standard AADL files belonging to the project. Predefined libraries are always
implicitly selected whereas user defined libraries must be explicitly selected to be usable.

LAMPBehavior.aad|
LAMPError.aadl
LAMPFlows.aad|
LAMPRespongeTime aadl
LaMPSimulation.aadl
LAMPSecurity aadl
LAMPPrinting.aadl
LAMPLexical. aadl
LaMPUtilities.aad|

Show root | LAMPFlows X
Projects 2987 -
¢ all_examples aic 259688 IMP standard lik 2
Enwvirenment 28889 (c) Ellidiss Techno
Standard.aic 29890
Ocarina.aic 25851
Cheddar.aic 29852
Ellidiss.aic 22633
aiaad| 29894 —- (29 {c£.RI200035)
gui aadl Loeo| L ac2d) bug fix in case oot dsexwended
Imp.aad| 29897
math.aad| 29698 |PACKAGE ellidiss::larp::flowsexploration
stood.aad| 29699 |PUBLIC
|EITI|}.EEI:|| 29700
LAMPLID.aic 29701 |RNNEX lamp {**
LAMPInstance aadl 28702
LAMPDeclarative.aadl N T T TN

28704 || getEndToEndFlow({Id, Flow, StopAt,Elems):

28705|] returns the list cf elements of the given end to end flows
2870&|] of the given compcnent instance and expands across the

28707|] architecture and down the hierarchy until reaching specified
28708 || category of components.

28709 - Id {+): compconent instance identifier (e.g. "root')
28710|] - Flow {+): end to end flow identifier

28711|] - StophAt (+): flow decomposition limit {e.g. "THREAD')

28712|] - Elems (-): list of flow elements across the hierarchy
LT T L =y

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 57

https://www.ellidiss.fr/public/wiki/aadlDeclarativeModel

Environment
Standard.aic
Ocarina.aic
Cheddar aic
Elidiz=.aic
— ai.aadl
— gui.aadl
— Imp.aadi
— math.aadl
— stood.aadl

—42 lamp.aad| /{ LAMP predefined libraries
B+ LAMPLIb.aic

— LANMPInstance.aadl
— LANMPDeclarative.aadl
— LANMPBehavior.aadl

— &% LAMPError.aad /{ Flow latency analysis

— LANMPFlows.aadl

— LANMPResponzeTime.aadl

— LANMPSimulation.aadl S it s

|45 LaMPSecurity aadl ecurity analysis

— LAMPPrinting.aadl

! LAMPLexical.aad| SysML to AADL transformation
— LAMPUtilties.aadl

— SysMLZAADL aadl .
|4 CapelaPAZAADL aa m/{ Capella to AADL transformation

— ' CSVZLAMP.aadl

B« AADLPrinter. aic CSV parser
— 4% x2AADL.aadl
— 4% LAMPAADLGen.aad| AADL text generator

— LAMPEMV2Gen.aadl
— LANMPBAGen.aadl

— %' LAMPPRValueGen. aadl .
B FACEZAADL aic /{ FACE to AADL transformation

— FACEZAADL . aadl

— FACEZ2AADLcdm.aadl
— FACEZAADLIdm.aadl
— FACEZAADLpdm.aadl
— FACEZAADLuop.aadl
— FACEZ2AADLInt.aadl

— 2 FACEZAADL=im.aadl . .
B AADLZStuud.aiu:/< AADL reverse engineering

— AADLZ25tood. aadl
— 2 ALDLZHOOD. aadl
— LAMPSIFGen.aadl

LAMP annex sub-clauses that are inserted at an AADL Component level specify goals that
control the execution of the LAMP processing engine. All the goals found within the selected

set of AADL files will be executed in sequence, except if the LAMP query is explicitly
defined in a predefined menu or a dialog box.

Both rules and goals use the same standard Prolog language syntax and semantics with a few
SB-Prolog specific features and behaviors. However, other restrictions apply while being used
inside a LAMP annex:

- If it exists, a LAMP annex within an AADL Component (goal) cannot be empty and
must not end with a dot.

- The size of a LAMP annex subclause cannot exceed 65536 characters. However, it is
possible to add several annexes within the same Component or Package.

page 58 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

An example of use of a user-defined LAMP program using pre-defined LAMPLib rules is
shown below:

FPACKAGE lamp pkyg
PFUBLIC

SYS5TEM lamp
END lamp:

e e VN Y O . I]

SYSTEM IMPLEMENTATICN lamp.i
SUBCOMPOMENTS
hw : PROCESSCE hw:
14 zw : PROCESS sw:
11|PROPERTIES
12 SCHEDULING PROTOCOL =»> (Rate Monotonic Protocol) APPLIES TO hw:
13| ACTUAL PROCESSOR BINDING =»> (REFERENCE (hw))} APPLIES TO sw:
14 [ANNEX LAMP {*#*
15| /* goal =/ i LAMP goal definition in an AADL Component
le printProperties
17|®%};
18 END lamp.i:

(8 5]

s

19

25

26|LNHEX LAMP {** .

27| /* user defined IﬂV{ LAMP rule definition in an AADL Package

28 printProperties -

29 getClassProperties('',P,V,0), printPropercv(P,V,0).,

30 fail.

31 printProperties.

YL Calling LAMP rules defined in LAMP libraries.
33

34(END lanp pkg;

Static Analysis LAMP Lab Timing Analysis Safety & Security Analysis Code Generation

8 8 W w il E i e RSB B E O
F K s s s s o W
| LAMP conscle |
| {c) Ellidiss Technologies, 2023 |
| Last command: LAMP Checker |

8K o v e SO

x] ARDL fact base lcoaded.
] no XML fact base loaded.
] no SysML fact base loaded.
] no FACE fact base loaded.
] no CAPELLA fact base loaded.
] no Simulation fact bkase loaded.
] no Response Time fact base loaded.
] no Natiwe Prolog fact base loaded.
] no C5V fact base loaded.
[®] LAMP rules bases loaded.
[x] LIMP gueries loaded. Result of LAMP execution

LAMP> executicon started.

scheduling protocol =» (rate Monotonic Protocol) APPLIES TO hw
actual processor binding => (REFERENCE (hw)) AFFLIES TO aw

LAMP> execution completed.

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 59

The following sub-sections provide more details about some of the proposed processing rules
in LAMPL1ib. Note that corresponding source code is read-only when accessed from within the
AADL Inspector text editor. To customize these rules, apply one of the three possible
solutions:

- Create a copy of the relevant LAMPLib files into a writable workspace and take care to
rename all the declared rules not to interfere with LAMPL1ib ones. There is no need to
restart AADL Inspector to execute the modified rules. This is the recommended
solution.

- Move the relevant LAMPLib files to a writable workspace, restart AADL Inspector,
do your changes, test them interactively and then replace the modified files in the
LAMPLib area.

- Edit the relevant LAMPLib files with a separate text editor and restart AADL
Inspector each time you need to execute the modified rules.

3.4.3.2. Flow latency analysis

The getFlowsLatency query performs Scheduling Aware Flow Latency Analysis
(SAFLA). This rule finds all the End-to-End flows in the current root system, compute their
maximum latency using Marzhin simulation, and prints the result in the LAMP console. The
source code is available in file:

Environment/Ellidiss/LAMPLib/LAMPResponseTime.aadl.

There are three ways to activate this analysis tool. The first one consists in adding a LAMP
goal within the AADL specification to be processed and then to press the Run LAMP button of
the LAMP Lab button bar. This solution is used in the examples end to _end flow.aic
and safety security.aic.

abstract lamp goal
annex lamp {** getFlowsLatency **};

end lamp goal;

The second way to launch this service is to use the LAMP query button:

i Gl:uallgetFIDwsLatenc:,r |3

Cancel

The last one fully hides the LAMP machinery and is available via a dedicated button in the
Timing Analysis tab:

Static Analysis LAMP Lap Timing Analysis
m THE SIN

3.4.3.3. Security analysis

The checkSecurityRules query performs security analysis. As the AADL Security
Annex has not been published yet at the time this feature was developed, it uses a simplistic
user defined security model with a single property defining the security level associated with

page 60 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

Data classifiers and a few examples of possible corresponding verifications. The source code is
available in file:

Environment/Ellidiss/LAMPLib/LAMPSecurity.aadl
There are three ways to activate this analysis tool. The first one consists in adding a LAMP
goal within the AADL specification to be processed and then to press the Run LAMP button of
the LAMP Lab button bar. This solution is used in the example safety security.aic.

abstract lamp goal

annex lamp {** checkSecurityRules **};

end lamp goal;

The second way to launch this service is to use the LAMP query button:

Guallcheckiecurit}rﬂules |

- Cancel

The last one fully hides the LAMP machinery and is available via a dedicated button in the
Safety & Security Analysis tab:

Static Analysisl AMP Lab Timing Analysis Safety & Security Analysis
o
ﬁ

3.4.3.4. SysML to AADL

The sysml2aadl query performs a model transformation between an input SysML Prolog
fact base and an output AADL Prolog facts base. The input facts must be imported at first. The
output facts must be post-processed with the runAADLgen LAMP query to generate a proper
AADL file. The source code of the mapping rules between the two languages is available in
file:

Environment/Ellidiss/LAMPLib/SysML2AADL.aadl

There are two ways to activate this transformation tool. The first one consists in adding a
LAMP goal within an AADL specification, manually load the SysML model thanks to the
Add SysML facts button of the LAMP Lab button bar and then to press the Run LAMP button of
the same LAMP Lab button bar.

abstract lamp goal
annex lamp {** sysml2Z2aadl, runAADLGen **};
end lamp goal;

The second way fully hides the LAMP machinery and is available via a dedicated button in the
File/Import/Import SysML model (.sysml, .xmi, .model) menu, or corresponding button of the
main button bar:

File Edit Tools

LRI O EREEICEY

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 61

3.4.35. FACE to AADL

The face2aadl query performs a model transformation between an input FACE Prolog fact
base and an output AADL Prolog facts base. The input facts must be imported at first. The
output facts must be post-processed with the runAADLgen LAMP query to generate a proper
AADL file. The source code of the mapping rules between the two languages is available in
directory:

Environment/Ellidiss/LAMPLib/FACE2AADL/

There are two ways to activate this transformation tool. The first one consists in adding a
LAMP goal within an AADL specification, manually load the FACE model thanks to the Add
FACE facts button of the LAMP Lab button bar and then to press the Run LAMP button of the
same LAMP Lab button bar.

abstract lamp goal
annex lamp {** faceZaadl, runAADLGen **};
end lamp goal;

The second way fully hides the LAMP machinery and is available via a dedicated button in the
File/Import/Import FACE model (.face) menu, or corresponding button of the main button bar:

File Edit Tools

E‘li—\@@@ ﬁicsﬁ@[g

3.4.3.6. CAPELLA to AADL

The face2aadl query performs a model transformation between an input FACE Prolog fact
base and an output AADL Prolog facts base. The input facts must be imported at first. The
output facts must be post-processed with the runAADLgen LAMP query to generate a proper
AADL file. The source code of the mapping rules between the two languages is available in
file:

Environment/Ellidiss/LAMPLib/CapellaPA2AADL.aadl

There are two ways to activate this transformation tool. The first one consists in adding a
LAMP goal within an AADL specification, manually load the CAPELLA model thanks to the
Add CAPELLA facts button of the LAMP Lab button bar and then to press the Run LAMP
button of the same LAMP Lab button bar.

abstract lamp goal
annex lamp {** capellapaZaadl, runAADLGen **};
end lamp goal;

The second way fully hides the LAMP machinery and is available via a dedicated button in the
File/Import/Import CAPELLA model (.capella) menu, or corresponding button of the main
button bar:

File Edit Tools

pcgmE s iuQeimeas s

page 62 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

3.4.4. Timing Analysis

When the Timing Analysis tab is selected, five buttons are presented to activate timing analysis
services.

Static Analysis LAMP Lab Timing Analysis Safety & Security Analysis Code Generation Doc Generation

D THE 3IH ﬁ

[compute statistics for processor load and thread response time from the various
outputs given by Cheddar and Marzhin, and show them in a spreadsheet for
comparison.

- static simulation computed by Cheddar.

- me set of feasibility tests checked by Cheddar.

- sin set of tests based on the static simulation computed by Cheddar.

- & Scheduling Aware Flows Latency Analysis (SAFLA): associate response time

computation done by Cheddar and Marzhin with AADL Flows analysis done by
LAMP to provide an estimate of End-to-End Flows latency.

These features are detailed in the next sub-sections:

3.4.4.1. Processor load and Thread response time

This service shows a summary of the Timing Analysis in a single table. For each Processor, the
maximum load rates that are computed by Cheddar, and estimated by the Marzhin simulator
are provided. For each Thread, the minimum, average and maximum response time computed
by Cheddar and estimated by the Marzhin simulator are also provided and can be compared
with the deadline.

Static Analysis LAMP Lapb Timing Analysis Safety & Security Analysis Code Generation Doc Generation

EI THE 5IH ﬁ

Deadline Computed Max Cheddar Max Marzhin Avg Cheddar Avg Marzhin Min Cheddar Min Marzhin

= [my_platform.cpu 65.00 % 66.05 %

= [jmy_process
S 20 12.00000 12 12 11.00 11.05
S 4 20 9.00000 9 9 .00 7.95
e 20 5.00000 8 6 400 405
i 15 3.00000 3 3 3.00 3.00

oL @
W W ow

Note that this table may contain empty cell if the corresponding tool or service has not been
launched or cannot provide relevant data. The table is dynamically updated when the Marzhin
simulator is running.

3.4.4.2. Cheddar simulation timelines

Cheddar can produce a graphical representation of the timing behaviour of the real-time
system being analysed. This graphical schedule table is a result of the static simulation and
may not be available on every kind of system.

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 63

Static Analysis LAMP Lab Timing Analysis Safety & Security Analysis Code Generation Doc Generation

D THE 3IH ﬁ

B || my_platform

B my_proce

Al - = -, - - I
L [[[I | [[| B !
A - - - [- -

Timelines are displayed for each Processor, Process, Thread, shared Data and Bus
subcomponent in the current root System. The time scale and meaning of each used colour is
shared with the dynamic simulator which is described below.

3.4.43. Scheduling Theoretical Tests

Theoretical tests compute the processor utilization factor and threads response time when the
corresponding conditions are met. This service is provided by Cheddar.

Static Analysis LAMP Lab Timing Analysis Safety & Security Analysis Code Generation Doc Generation

D THE S$IH ﬁ
test entity result
= @ processor utilization factor my_platform.cpu the task set is schedulable because the processor utilization factor 0.65000 is egual or less than 0.75683
base period root.my_platform.cpu §0.00000
processor utilization factor with ¢ root.my_platform.cpu 0.85000
processor utilization factor with f root.my_platform.cpu 0.85000
=] @ worst case task rezponze time my_platform.cpu Alltagk deadlines will be met : the task set i= schedulable.
response time root.my_platform.cpu.my_process.t4 3.00000
response time root.my_platform.cpu.my_process.t3 §.00000
response time root.my_platform.cpu.my_process.t2 §.00000
response time root.my_platform.cpu.my_process.t1 12.00000

3.4.4.4. Scheduling Simulation Tests

Simulation tests provide information about the number of pre-emption and context switches as
well as threads response time. This static simulation can only be run for periodic systems. This
service is provided by Cheddar.

Static Analysis LAMP Lab Timing Analysis Safety & Security Analysis Code Generation Doc Generation

D THE SIH ﬁ
test entity result
= @ Task rezponse time computed from simulatic my_platform.cpu No deadline missed in the computed scheduling : the task set is schedulable if you computed the scheduli
Number of preemptions root.my_platform.cpu 1
Number of context switches root.my_platform.cpu 13
response time root.my_platform.cpu.my_process.: worst = 12.0000 best = 9.0000,average = 11.0000
response time root.my_platform.cpu.my_process. waorst = 9.0000 best = 6.0000, average = 8.0000
response time root.my_platform.cpu.my_process. worst = §.0000 best = 3.0000,average = 4.0000
response time root.my_platform.cpu.my_process. waorst = 3.0000 best = 3.0000 average = 3.0000

More detailed explanations about the scope of each of these tests can be found in a separate
user document.

3.4.45. Scheduling Aware Flows Latency Analysis (SAFLA) with LAMP

Ask for the duration of the Marzhin simulation and run it, then apply the
getFlowsLatency LAMP query. The source code of this Prolog rule is available in file:

Environment/Ellidiss/LAMPLib/LAMPResponseTime.aadl.

page 64 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

3.4.5. Safety & Security Analysis

The Safety & Security Analysis tool aims at interfacing external programs that support model
driven safety analysis as well as checking security rules. The safety related model
transformation makes use of the AADL Error Model Annex (EMV?2). The security related
model processing is based on LAMPLib.

The safety analysis tool that is currently supported is Arbre Analyst. This tool is not included
within the AADL Inspector distribution. It can be found at the following address:
https://www.arbre-analyste.fr/en.html

Note that once installed onto your computer and checked the terms of the license, you need to
update the corresponding file pathname in the ATConfig.ini file before being able to use
this service, for instance:

variable userConstants { \
"FTAToolPath" "{C:/Projets/AADLInspector/Safety/arbre analyste-
2.3.1-win32/Arbre Analyst.exe}" \

Arbre Analyste can load models that are expressed with the Open PSA format. The Safety &
Security Analysis tool thus provides the following services:

Static Analysis LAMP Lab Timing Analysis Safety & Security Analysis Code Generation Doc Generation

4 &

-8 generate a file complying with the Open PSA model exchange format.

- i generate an Open PSA file as above and launch the Arbre Analyste tool to display
a graphical fault tree.

- & apply the checkSecurityRules LAMP query. The source code of this Prolog
rule is available in file:

Environment/Ellidiss/LAMPLib/LAMPSecurity.aadl.
An example of use of the Safety & Security Analysis tool can be found in the
safety security.aic example. Use of Arbre Analyste is presented below. It first

shows a fragment of the AADL model and then the graphical representation of the
corresponding Fault Tree that is generated by Arbre Analyste.

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 65

https://www.arbre-analyste.fr/en.html

21620 (annex EMVZE {*%

21621 use types error library:

21622 use behavior error library::wks;
21823 composite error behawvior

21le24 states
216825 [becu.Failed
2le2e and accumulator.Failed
21827 and annmunciation.Failed]-> AnnunciatedBrakingLoss:
21628 [bPlue pump.Failed
21629 and green pump.Failed
21630 and accumulator.Failed
21631 and annmunciation.Failed]-> AnmunciatedBrakingLoss:;
21632 [becu.Failed
21633 and accumulator.Failed
21634 and annmunciation.Failed]-> UnanmunciatedBrakinglLoss;
21635 [bPlue pump.Failed
21636 and green pump.Failed
21637 and accumulator.Failed
21638 and annmunciation.Failed]-> UnanmunciatedBrakinglLoss;
216359 end composite;
21640 (%%} ;
AnnunciatedBrakinglLogs
a gate
I % |
55 s7
a gate a gate
53 annunciation.Failed 55 annunciation.Failed
a gate a bagic event a gate a basic event

L] [J
y=Maone =Mone
5

bzcu.Failed accumulator. Failed 3 accumulator Failed
a basic event a basic event a gate a baszic event
L J

[J L]
y=hMans y=Mone y=Mone

blue_pump.Failed green_pump.Failed

a basic event a basic event

y=Nons y=Mons

Similar connection to other safety analysis tools can be added to AADL Inspector if required.
Please contact the technical support if you wish to add another connector.

3.4.6. Code Generation

The code generation services are provided by Ocarina back-ends. Please refer to the Ocarina
documentation or the OpenAADL web site www.openaadl.org for detailed explanations about
the use of these features.

page 66 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

http://www.openaadl.org/

Static Analysis LAMP Lab Timing Analysis Safety & Security Analysis Code Generation Doc Generation

faa C

- M- generate Ada source code files for the PolyORB-HI-Ada middleware. A dialog
box asks about the location of the generated code. A default location is proposed in the
AADL Inspector temporary directory.

- & generate C source code files for the PolyORB-HI-C middleware. A dialog box
asks about the location of the generated code. A default location is proposed in the
AADL Inspector temporary directory.

- ™ gives access to the other available Ocarina back-ends. The actual back-end to use
can be selected in a dialog box.

Note that Ocarina generates the source code architecture and glue code with the Operating
System. However, it requires the applicative functional code to be made available for a
complete build of the software. Access to the functional code can be specified by
Source Text AADL Properties.

3.4.7. Doc Generation

A standard analysis report can be automatically generated thanks to the documentation
generator.

Static Analysis LAMP Analysis Timing Analysis Safety Analysis Code Generation Doc Generation Scripts

=i

- (=1 The documentation generator can also be activated from the File/Print menu and applies
to the current AADL system instance. It produces a pre-formatted report that contains the
following sections:

- The output of the Metrics static analysis tool that recalls the AADL scope of the report.
- The description of the scenarios that are selected.

- A snapshot of the simulation time lines from tick 0 to tick 100.

- The timing analysis summary table.

Note that the graphical sections that are inserted into the documentation depend on the actual
layout of the tool window on the screen. Take care to properly resize the window before
starting the documentation generator, so that the corresponding elements are sufficiently
visible.

To open the generated document, use the ?/Open doc dir menu and select the most recent
.pdf file that has been generated.

To customize the contents of the generated report, for instance to modify the size of the printed

time lines, it is necessary to edit the plugin configuration file: use the ?/Open config dir and
edit the file plugins/DocGeneration.ais.

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 67

3.5 Simulation area

The Simulation Area is dedicated to controlling and displaying the output of the Marzhin
dynamic simulator. This simulator complements the static simulator provided by Cheddar but
is event-driven and can analyse a wider variety of real-time systems. The counter part is that
the obtained timelines are not the result of mathematical computations and are thus less
dependable.

3.5.1. Simulation area overview

The simulation area is composed of:

- aset of control buttons (same as in the Simulation Control Panel).

- atime scale (shared with the Cheddar Schedule Table).

- adeployable tree showing the AADL instance hierarchy.

- [#/ an external 1/0 button on each Process that has connected ports.

- %/an activity button on each Thread to open a tachymeter.

- probes on input and output ports.

- a simulator output area showing timelines for each Processor, Process, Thread, shared
Data and Bus subcomponent in the current root System.

L =
Control buttons —7—————— 89— [Timescale)

Instance model tree 465336 63536 63836
— . | B - -
16 16 16 16
Process 1/0 B [[|
button
! 256 256 256
— Thread activity - L -
button
: 65536 65536 65536
65536 - J - - - -
o input
® cutput } — - .
Movable Remaining time
Port probe time index until deadline

33

In addition, the Simulation Control Panel dialog can be used to set up the time scale and filter
the entities displayed for the simulation. This feature can be activated from the Edit menu or
the corresponding button in the Main buttons Bar. Refer to section 3.1.2.4 for more details.

3.5.2. Simulator action buttons

The simulator toolbar is composed of the following buttons:

start the simulator

pause the simulator

stop the simulator

refresh the simulation input

@ aos v

go to the current tick

page 68 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

Er toggle optimized mode (see below)

Since version 1.7, AADL Inspector includes an optimized mode for Marzhin. When this
mode is set (default case), the simulator automatically jumps to the next significant event. Note
that this mode is automatically unset when a scenario has been selected.

3.5.3. External I/O

When a Process has ports that are connected downstream in the instance hierarchy, they can be
displayed in a specific dialog box to allow the user to send in data and events and to show the
result of out data and events. This dialog box can be opened by pressing the 1/0 button 2/
.Note that the value that is displayed for an out event port is the time of its last update.

489 PROCESS my process

490 |FEATURES

491 input : IN DATA PCRT int;
482 output : CUT DATARE PCRT int;
453 END my process;

root.my_platform.cpu.my_process infout ports X

In data port: Out data port:
input|4{ | 0utput|65536

[ok || sendan |

3.5.4. Thread activity

A graphical tachymeter can be associated with each running Thread thanks to the activity
button = in the instance tree. Each indicator shows the instant response time of the Thread and
is updated at each period.

Hinmy_processon m.. X

SIS | | 3
10 10 10
5 15 \ 15 5/., 15
0 20 0 2 0 2
3 3l & o)

]]

3.5.5. Port probe

A probe can be attached to in and out ports to show the current value that is stored in the port
variable. For event and event data ports, a table shows the contents of the port FIFO, according
to the specified Queue_Size property (default value is 1).

94 | 85 |
10
94
71
29

A probe can be opened by clicking on a port while the simulator is running or preset in a
scenario file.

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 69

<scenarii>
<interface>
<feature type="eventdata" id="buffer"
aadlID="my platform.cpu.my process.receiver.receive"/>
<feature type="data" id="output"
aadlID="my platform.cpu.my process.receiver.output"/>
</interface>
<scenario name="default" description="">
<probes>
<probe ref="buffer"/>
<probe ref="output"/>
</probes>
</scenario>
</scenarii>

3.5.6. Simulation timelines

A separate timeline is shown for each Processor, each partition (Process), each Thread, each
shared Data component, as well as for each Bus, each Bus channel and each Bus message. The
colour code that is used for the timelines can be configured in the AIConfig.ini file and
displayed in the help tab of the Simulation control panel. Timelines can be saved in VCD
format (cf. 3.1.2.5).

Note that the same representation is used for respectively Processors and Buses, Processes and
Bus channels and Threads and Bus messages.

Default time lines colour mapping is as follows:

Processors: Partitions: Threads: Data
Occupied Suspended Unknown state Occupied
Available Running State ready Available

— State suspended

B State running
Awaiting resource

I Awaiting return
Dispatch jitter

| Get resource

Release rescurce
Send event
Call
Current deadline
Period

3.5.7. Navigation to the AADL source code

There is a contextual menu (right mouse button) associated with the entities of the instance
model tree. It allows direct access to the corresponding classifier and instance declarations in
the AADL source text.

page 70 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

64
B8 THREAD a thread
66 |FEATTIRES

&7 input : IN DATA PORT int; ey my_platforl
62 output : OUOT DATA PORT int: -

63|LNNEX Behavior Specification {** Ehrief my_proce h
70| STATES = : INITIAL COMPLETE FINAL STATE;: Hit] = _
71| TRANSITIONS t : = —[ON DISEATCH]-> = ,-;,-:tz
T2 { szquare! (input, output) }: ' |:| (o to instance
T3|%%}:

T4|END a thread;

31|PRCCESS IMPLEMENTATICH my process.others
32|5UBCCHPCHENTS
33 T1 : THREAD a thread

S/E my_proce B —

o 1] [-

. { Dispatch Protocol =»> PeriodiTs Mt& Go to classifier |
35 Compute Execution Time => 3 ms .. 3 ms; --J..

36 Period => 20 m=; - I
37 Deadline =» 20 ms;: };: o A | e

3.6 Status bar and Error Report

The status bar located in the lower part of the window shows various informational or error
messages generated by AADL Inspector:

See report Details

When relevant, detailed error messages are displayed in the Report tab.

|Simula1:or =topped by third party.

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 71

4 Used Key Words and Acronyms

AADL Architecture Analysis and Design Language: SAE AS-5506 (more)
AADL Inspector An AADL centric model analysis framework (more)
AADL.Ib Repository of AADL resources (more)

AMP Asymmetric Multi Processor

ARINC 653 Avionics application software standard interface (more)
Ada A programming language (more)

Arbre Analyst A Fault Tree Analysis tool (more)

BMP Bound Multi Processor

C A programming Language (more)

Capella A Model Based System Engineering tool (more)
Cheddar A timing analysis tool (more)

CSv Comma Separated Value

DM Deadline Monotonic

EMOF Essential Meta-Object Facility (more)

EMV2 Error Modeling AADL annex v2 (more)

ETFL Ellidiss Technologies Floating License

Ecore Eclipse Modeling Framework metamodel language (more)

Ellidiss Technologies

A company editing AADL and HOOD tools (more) (again more)

ESA

European Space Agency (more)

FACE™ Future Airborne Capability Environment (more)

FIFO First In First Out

FTA Fault Tree Analysis

HOOD Hierarchical Object Oriented Design (more)

ISAE Institut supérieur de I'aéronautique et de I'espace (more)

JRE Java Runtime Environment

Java A programming language (more)

LAMP Logical AADL Model Processing (more)

LMP Logic Model Processing (more)

Linux An Operating System

MARTE Modeling and Analysis of Real-Time Embedded systems (more)
Magic Draw A SysML modeling tool (more)

Marzhin An AADL runtime simulator

OMG Object Management Group (more)

OSATE Open Source AADL Tool Environment (more)

Ocarina A stand-alone AADL model processor (more)

OpenAADL AADL resourses web site (more)

OpenPSA Open initiative for Probabilistic Safety Assessment (more)
PDF Portable Document Format (more)

PolyORB-HI-Ada High-integrity middleware for Ocarina Ada code generator (more)
PolyORB-HI-C High-integrity middleware for Ocarina C code generator (more)
Prolog A programming language (more)

RM Rate Monotonic

RTOS Real Time Operating System

RTS Real Time System

SAE AS-5506 A SAE International standard: AADL (more)

SAFLA Scheduling Aware Flow Latency Analysis

page 72 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

https://www.sae.org/standards/content/as5506c/
https://www.ellidiss.fr/public/wiki/inspector
https://github.com/OpenAADL/AADLib
https://www.aviation-ia.com/sae-search/content/ARINC%20653
https://www.iso.org/standard/61507.html
https://www.arbre-analyste.fr/en.html
https://www.iso.org/standard/74528.html
https://www.eclipse.org/capella/
http://beru.univ-brest.fr/cheddar/
https://www.omg.org/spec/MOF/2.4.1/PDF
https://www.sae.org/standards/content/as5506/1a/
http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html#details
https://www.ellidiss.com/
https://www.ellidiss.fr/
https://www.esa.int/
https://www.opengroup.org/face
https://www.ellidiss.fr/public/wiki/hood
https://www.isae-supaero.fr/en/
https://www.oracle.com/java/
https://www.ellidiss.fr/public/wiki/lamp
https://www.ellidiss.fr/public/wiki/LMP
https://www.omg.org/spec/MARTE/
https://www.nomagic.com/product-addons/magicdraw-addons/sysml-plugin
https://www.omg.org/
https://osate.org/
http://www.openaadl.org/ocarina.html
http://www.openaadl.org/
http://www.open-psa.org/
https://www.iso.org/standard/75839.html
https://github.com/OpenAADL/polyorb-hi-ada
https://github.com/OpenAADL/polyorb-hi-c
https://www.iso.org/standard/21413.html
https://www.sae.org/standards/content/as5506c/

SB-Prolog A prolog engine (more)

SIF Standard Interchange Format between HOOD tools
Stood A HOOD and AADL software design tool (more)
SysML Systems Modeling Language (more)

TSP Time and Space Partitioning

Telecom ParisTech An engineering school (more)

UML Unified Modeling Language (more)

VCD Value Change Dump format (more)

Virtualys An Ellidiss Technologies partner company (more)
Windows An Operating System (more)

XMI XML Metadata Interchange (more)

XML Extensible Markup Language (more)

AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023 — page 73

https://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/lang/prolog/impl/prolog/sbprolog/0.html
https://www.ellidiss.fr/public/wiki/stood
https://www.omgsysml.org/
https://www.telecom-paris.fr/
https://www.omg.org/spec/UML/
https://web.archive.org/web/20120323132708/http:/www.beyondttl.com/vcd.php
https://www.virtualys.fr/
https://www.microsoft.com/en-us/windows/
https://www.omg.org/spec/XMI
https://www.w3.org/TR/xml/

Y Ellidiss

Ellidiss Technologies
24 quai de la douane
29200 Brest
Brittany
France

http://www.ellidiss.com

aadl@ellidiss.com
+33 298 451 870

page 74 - AADL Inspector 1.9 User Manual © Ellidiss Technologies — April 2023

