

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 1

AADL Inspector 1.9

User

Manual

Strengthened

by LAMP

page 2 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

Pierre Dissaux

Ellidiss Technologies

http://www.ellidiss.com/

aadl@ellidiss.com

http://www.ellidiss.com/

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 3

Contents

1 Introduction ... 5
2 Before starting ... 7

2.1 Installation .. 7
2.2 Distribution content .. 7

2.2.1. Bin subdirectories .. 7
2.2.2. Config subdirectory ... 9
2.2.2.1. plugins ... 9
2.2.2.1.1. AADL off-line Static Analysis: .. 9
2.2.2.1.2. AADL on-line Static Analysis (LAMP Lab): ... 10
2.2.2.1.3. AADL Timing Analysis: ... 10
2.2.2.1.4. Other Processing Tools: .. 10
2.2.2.1.5. AADL Model Templates: ... 11
2.2.2.1.6. Miscellaneous: .. 11
2.2.2.2. images .. 11
2.2.3. Examples subdirectory .. 11
2.2.3.1. AADL Inspector examples overwiew ... 11
2.2.3.2. Native AADL examples .. 12
2.2.3.3. Converted AADL examples .. 16
2.2.4. Environment subdirectory ... 17
2.2.4.1. Ellidiss Property Sets ... 18
2.2.4.2. Ellidiss AADL Libraries .. 18
2.2.4.3. LAMP Lib ... 18
2.2.5. Include subdirectory .. 19
2.2.6. Doc subdirectory ... 19
2.2.7. Command line options ... 19

2.3 License ... 21
2.3.1. Node locked licenses ... 21
2.3.2. Floating licenses .. 21
2.3.3. License errors .. 22

3 Graphical User Interface .. 23
3.1 Main menu and button bar ... 23

3.1.1. File menu ... 23
3.1.1.1. Utilities sub-menu ... 25
3.1.1.2. Templates sub-menu .. 25
3.1.1.3. Import sub-menu ... 26
3.1.1.4. Export sub-menu ... 28
3.1.2. Edit menu .. 29
3.1.2.1. Auto format ... 29
3.1.2.2. Search .. 31
3.1.2.3. Search reset.. 31
3.1.2.4. Select root .. 31
3.1.2.5. Simulation Control Panel .. 33
3.1.2.5.1. General Simulation Control Panel... 34
3.1.2.5.2. Marzhin Simulation Control Panel .. 34
3.1.2.5.3. Cheddar Simulation Control Panel .. 35
3.1.2.5.4. Simulation Control Panel Help ... 36
3.1.2.6. Edit thread properties .. 36
3.1.2.7. Edit thread priorities .. 37
3.1.2.8. Edit thread placement .. 38
3.1.2.9. Preferences .. 39
3.1.3. Tools menu .. 40
3.1.3.1. Static Analysis ... 40
3.1.3.2. LAMP Lab ... 41
3.1.3.3. Timing Analysis .. 43
3.1.3.4. Safety & Security Analysis ... 43
3.1.3.5. Code Generation .. 44

page 4 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

3.1.4. Help menu ... 45
3.1.5. Button bar .. 45

3.2 Project browser... 46
3.2.1. Project browser overview .. 46
3.2.2. Project file contextual menu .. 47
3.2.3. AADL file contextual menu .. 48
3.2.4. Scenario file contextual menu ... 48
3.2.5. Description file contextual menu ... 49
3.2.6. Image file contextual menu ... 49

3.3 Source files area ... 49
3.3.1. Source files area overview ... 49
3.3.2. Editing AADL files ... 51
3.3.3. Editing Simulator Scenario files .. 52

3.4 Processing tools area .. 53
3.4.1. Processing tools area overview .. 53
3.4.2. Static Analysis ... 54
3.4.3. LAMP Lab ... 54
3.4.3.1. LAMP Lab overview ... 54
3.4.3.2. Flow latency analysis .. 60
3.4.3.3. Security analysis .. 60
3.4.3.4. SysML to AADL ... 61
3.4.3.5. FACE to AADL ... 62
3.4.3.6. CAPELLA to AADL ... 62
3.4.4. Timing Analysis .. 63
3.4.4.1. Processor load and Thread response time .. 63
3.4.4.2. Cheddar simulation timelines .. 63
3.4.4.3. Scheduling Theoretical Tests... 64
3.4.4.4. Scheduling Simulation Tests ... 64
3.4.4.5. Scheduling Aware Flows Latency Analysis (SAFLA) with LAMP .. 64
3.4.5. Safety & Security Analysis ... 65
3.4.6. Code Generation .. 66
3.4.7. Doc Generation .. 67

3.5 Simulation area... 68
3.5.1. Simulation area overview .. 68
3.5.2. Simulator action buttons .. 68
3.5.3. External I/O ... 69
3.5.4. Thread activity ... 69
3.5.5. Port probe .. 69
3.5.6. Simulation timelines .. 70
3.5.7. Navigation to the AADL source code ... 70

3.6 Status bar and Error Report .. 71
4 Used Key Words and Acronyms ... 72

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 5

1 Introduction

AADL Inspector is a model analysis framework for critical and software-intensive systems. It

focuses on design verification activities of the development life cycle and addresses a variety

of topics including static rules checking, timing, safety, and security analysis, as well as

combination of these in customizable assurance cases. Verification tools are either built-in or

user defined thanks to the powerful LMP (Logic Model Processing) technology and the AADL

LAMP annex. The tool operates at architecture model level and does not require the final

source code to be available. AADL Inspector can process the following kinds of architectures

with appropriate abstractions:

- Multi-threaded software (running on a RTOS: Real-Time Operating System).

- Multi-partition software (TSP: Time and Space Partitioning).

- Multi-processor distributed software with network communication.

- Multi-core architectures with static tasks allocation.

In order to be able to perform advanced model processing in a homogeneous way and to reduce

the effort of developing new analysis plug-ins, AADL Inspector operates on a common

language that can be either the original input or the intermediate result of a prior foreign model

transformation. The common language that has been chosen is the Architecture Analysis and

Design Language (AADL) declarative model. The formal definition of the AADL language

can be found in the SAE AS-5506 document that is made available on the official site

https://www.sae.org/standards/content/as5506d. More information about this language is

available on the Ellidiss wiki page: https://www.ellidiss.fr/public/wiki/AADL, and the

OpenAADL web site www.openaadl.org.

AADL Inspector is packaged into a standalone distribution that minimizes installation and

maintenance effort to ease the everyday use of the product on standard personal computers or

network servers. The product is available for both Windows and Linux platforms.

The goal of AADL Inspector is to encompass a variety of specialized tools to process a

complete AADL specification composed of a set of text files. These files can be created within

AADL Inspector itself, loaded from pre-existing local or remote libraries or automatically

generated by an import wizard. AADL files can also be organized into hierarchical projects to

facilitate the management of large models and the reuse of libraries of components. The

processing tools can be used to analyse various facets of the architecture or to offer code

generation and documentation capabilities. These processing tools are organized in a modular

and extendable way so that they can be customized, and additional ones can be easily included.

Although AADL is a textual language, a graphical representation is also available. The Stood

software architecture design tool can be used in association with AADL Inspector in several

ways.

- Create well-structured AADL projects using a top-down graphical decomposition of the

system to design, automatically generate the corresponding AADL text, and analyse it

with AADL Inspector.

- Automatically create a graphical representation in Stood for an existing AADL textual

model in AADL Inspector.

- Combine the two preceding features to perform round-trip engineering.

https://www.sae.org/standards/content/as5506d
https://www.ellidiss.fr/public/wiki/AADL
http://www.openaadl.org/

page 6 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

The standard installation of AADL Inspector 1.9 implements the following model processing

tools:

 Static Analysis of AADL models, using two different frameworks: LMP and Ocarina.

This covers parsing of AADL declarative models, verification of standard AADL semantic

rules (Legality, Consistency and Naming rules) and building the deployed instance model that

is required for most purposes. Customized static rules can be added to fit corporate or project

specific usage.

 LAMP Lab. LAMP (Logical AADL Model Processing) is a powerful and flexible

solution to incorporate online assurance cases within AADL specifications. It takes the form of

AADL Annex subclauses whose sublanguage is standard Prolog. The LAMP verification

engine checks all the user specified verification goals, supports the definition of reusable

libraries of rules and can process analysis results of the Timing Analysis plugin, such as

computed response times and simulation events.

 Timing Analysis of deployed AADL instance models using three complementary

approaches: Scheduling theoretical tests and static simulation over the hyper-period with the

Cheddar analysis kernel, and dynamic simulation with the event based Marzhin simulator.

Moreover, response time statistics are provided in a table and Scheduling Aware Flow Latency

Analysis (SAFLA) is also proposed there.

 Safety & Security Analysis. This plugin proposes transformations from AADL

architectures enriched with Error Model annexes into various input models for existing safety

analysis tools. Currently, proposed bridger uses the OpenPSA language to connect with the

Arbre Analyste Fault Tree Analysis (FTA) tool.

 Code Generation using the Ocarina tool and the PolyORB-HI-Ada or PolyORB-HI-

C middlewares.

 Documentation generation to keep track of timing analysis results.

The current AADL workspace on which the processing tools apply, can managed thanks to a

set of advanced functions such as:

 Creating hierarchical projects to facilitate teamwork and reuse of libraries.

 Using predefined AADL model templates.

 Importing foreign models (SysML, Capella, FACE1) into AADL.

 Loading AADL models from remote git repositories.

 Specifying simulation scenarios.

 Identifying the current root of the system instance hierarchy.

 Defining the thread priorities according to predefined ordering algorithms.

 Binding threads to available processors with predefined allocation algorithms.

 Modifying the main thread real-time properties in a spreadsheet.

 Editing textual AADL files and applying text formatting rules (autoformat).

 Writing your own online model processing tools with the LAMP environment

The current version of AADL Inspector supports the following standard definitions. Note that

some processing tools may only comply with a subset of the standard.

 AADL Core v2.3 (AS 5506D)

 AADL Behaviour Annex v2.0 (AS 55606/3)

 AADL Error Model Annex v2.0 (AS 5506/1A)

 AADL Data Model Annex (AS 5506/2)

 AADL ARINC 653 Annex v2.0 (AS 5506/1A)

 AADL Annex for the FACE Technical Standard Edition 3.0 (AS 5506/4)

1 FACE is a trademark of The Open Group

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 7

2 Before starting

2.1 Installation

Installation of the product only requires the following easy actions:

 Get a copy of the installation package for the desired platform (Windows, or Linux)

from the Ellidiss website: http://www.ellidiss.com/

 Run the installation program on Windows or uncompress and expand the archive file

on Linux.

 Launch the AADLInspector executable file located in the bin subdirectory of the

installation directory, or the corresponding desktop shortcut on Windows.

Downloaded packages usually come with a temporary trial license that can be used free of

charge. If you purchased the product or this temporary license has expired, please contact

Ellidiss customer support service to get the appropriate license information and installation

procedure that fits your situation. A standard installation requires less than 50 Mbytes of free

disk space.

2.2 Distribution content

Once installed on the computer, the AADL Inspector installation directory contains the

following subdirectories:

- bin subdirectory

- config subdirectory

- examples subdirectory

- environment subdirectory

- include subdirectory

- doc subdirectory

Note that after a first launch of the tool, a directory is created to store temporary files and to be

used as a default storage area for generated documentation and code. The actual location of this

temporary directory can be customized by the tmpDirectory parameter in the

config/AIConfig.ini file, or the –l command line option. The default location of the

temporary directory is within the user’s home directory.

2.2.1. Bin subdirectories

These directories contain the executable files for the current platform and Java archive files

that are shared by all platforms. The only external requirement is the availability of a proper

Java 1.8 (or higher) Run-time Environment (JRE) to run the simulator. These files are:

- AADLInspector main executable file

- AIMonitor remote process monitoring executable file

- aadlrev executable file (AADL syntactic analyser)

- xmlrev executable file (XML syntactic analyser)

- sbprolog executable file (Prolog engine)

http://www.ellidiss.com/

page 8 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

- cheddarkernel executable file (Cheddar schedulability analyser)

- ocarina executable file (AADL compiler and code generator)

- aadl-utils executable file (AADL file splitter)

- Marzhin, VAgent and VCore Java archive files for the Marzhin simulator

aadlrev 2.17 is a standalone AADL syntactic analyser that is used by the LMP (Logic

Model Process) plug-ins to convert AADL specifications into a list of Prolog predicates. This

utility tool can analyse textual AADL files that comply with AADL 2.3 (SAE AS-5506D), the

AADL Error Model v2 (SAE AS-5506/1A Annex E), the AADL Behaviour Annex (SAE AS-

5506/2 Annex D), and the AADL ARINC 653 Annex (SAE AS-5506/1A Annex A). In addition,

the previous version of the AADL Error Model (future SAE AS-5506/1 Annex E) is also

supported by aadlrev. Most of the AADL 1.0 (SAE AS-5506), 2.0 (SAE AS-5506A), 2.1

(SAE AS-5506B) and 2.2 (SAE AS-5506C) syntax is also recognized and can be automatically

converted into the newest 2.3 format.

xmlrev 1.3 is a standalone XML syntactic analyser that is used by the LMP (Logic Model

Process) plug-ins to convert XML or XMI serialized models into a list of Prolog predicates.

This utility is used by the import wizards to load files having extensions such as .uml, .xml,

.xmi, .ecore, .sysml, .capella, and to convert them into a list of Prolog predicates for

further processing.

cheddarkernel 3.3.2 is a command-line version of the Cheddar v3.3 schedulability

analysis tool. Cheddar models (.xmlv3) are generated from the AADL specification thanks

to a dedicated LMP model transformation. Cheddar outputs (feasibility test reports and static

timelines) are displayed by the AADL Inspector graphical interface. Cheddar is an open-

source project managed by the University of Brest: http://beru.univ-brest.fr/cheddar

sbprolog 3.1 is an open-source Prolog engine that is used by the LMP (Logic Model

Processing) technology. AADL Inspector uses LMP to implement the various AADL rules

checkers and model transformations. SB-Prolog was developed by State University of New

York at Stony Brook and the University of Arizona.

marzhin 2.2 is a multi-agent simulator implementing the AADL run-time. It consists of

three Java archive files and requires a Java 1.8 Run-time Environment (JRE) to operate. No

JRE is provided with the AADL Inspector distribution. Marzhin v2 models (.xml) are

generated from the AADL specification thanks to a dedicated LMP model transformation.

Marzhin outputs (dynamic timelines) are displayed in the AADL Inspector graphical

interface. Marzhin is developed in collaboration by Virtualys and Ellidiss Technologies.

ocarina 2.0 is an open source AADL syntactic and semantic analyser. It embeds various

back-ends including Ada and C code generators using the polyORB-HI middleware. Ocarina

was initially developed by Telecom ParisTech and is now maintained by ISAE with support

of ESA: http://www.openaadl.org/ocarina.html

aadl-utils 1.0 is another standalone AADL processing tool. It is used here with

command line option -s to convert an AADL file containing several Packages or Property

Sets into a directory of the same name containing on separate file per Package or Property Set.

This may be required to interoperate with OSATE who enforces this restriction.

http://beru.univ-brest.fr/cheddar
http://www.openaadl.org/ocarina.html

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 9

2.2.2. Config subdirectory

This directory contains initialization, configuration and license files that are used by the

executable files. The files having a .sbp extension contain a binary form of the LMP (Logic

Model Processing) rules that are used to perform each model processing action. Checkers

provide a direct textual output into the AADL Inspector window, whereas bridgers perform

dedicated model transformations to interface with ancillary tools such as Cheddar, Marzhin

or Arbre Analyst. Activation of these processing rules is performed from within a dedicated

service declared in an AADL Inspector plugin (see below).

The files having a .ais extension contain a description of each AADL Inspector plugin.

Each plugin defines one or several services that will be available via menu options, buttons or

the command line. Each service is described by a sequence of elementary instructions.

The AIConfig.ini file contains the declaration of several groups of user variables: config,

projectExplorer, plugins, gantt, accelerators and userConstants. These options are not

supposed to be changed by the end user without assistance from technical support or explicit

recommendation provided in user documentation.

The License file contains the validation keys that enable the use of the fully featured

configuration of the tool in compliance with the terms of end user license. Please refer to

chapter 2.3 for more detailed information on that topic.

In the standard distribution, the config directory contains the following additional sub-

directories and files:

2.2.2.1. plugins

These plugins can be removed and customized. New plugins can also be added there. They are

not platform dependent and are located in the plugins subdirectory. This section only lists

the files that correspond to hardwired features (i.e., that cannot be edited by the user). These

features are provided in their binary form (.sbp files).

Note that many other features are provided with their source code in the write protected

Environment/Ellidiss/LAMPLib subdirectory (cf. 2.2.4.3). User customizable

features can also be added by including LAMP annex subclauses inside the AADL models.

User features can fully reference all the predefined features, either in standalone binary form

(LMP), or in source code form and embedded in an AADL package (LAMP).

2.2.2.1.1. AADL off-line Static Analysis:

This first group of features contains a set of predefined analysis rules that apply to selected

AADL model. Some of the rules are defined in Prolog and use the AADL LMP parser and

libraries, others are checked thanks to specific Ocarina services are embedded within its

executable file. These rules cannot be modified by the modified by the user for now.

- 1_StaticAnalysis.ais: plugin description file.

- metrics.sbp: AADL parse and instantiate with LMP.

- naming.sbp: AADL naming rules checker.

- legality.sbp: AADL legality rules checker.

- consistency.sbp: AADL consistency rules checker.

page 10 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

- arinc653.sbp: ARINC 653 rules checker.

2.2.2.1.2. AADL on-line Static Analysis (LAMP Lab):

The second group of features use the same LMP technology as above, but the Prolog rules can

be directly included inside the AADL model within dedicated LAMP annex subclauses.

Features listed in this section are used to execute LAMP code or to create additional

specialised fact bases or rules to ease the implementation of advanced features. This user

interactive way of using the model processing technology is called LAMP Lab(oratory) and

makes use of the LAMP Lib(raries). See 2.2.4.3 for further details about LAMP Lib.

- 2_LAMP.ais: LAMP Lab plugin description file.

- Import.ais: LAMP model import plugin description file.

- Export.ais: LAMP model export plugin description file.

- lampchecker.sbp: run checking rules defined in LAMP annexes.

- lampexec.sbp: execute a LAMP query.

- lampimport.sbp: run SysML, FACE, or Capella to AADL model transformations

implemented in LAMP.

- instances.sbp: display AADL instance model predicates.

- omgumlparser.sbp: create a UML 2.5.1 facts base using the OMG metamodel.

- omgsysmlparser.sbp: create a SysML 1.5 facts base using the OMG metamodel.

- mdsysmlparser.sbp: create a SysML facts base with Magic Draw ™ extensions.

- faceparser.sbp: create a FACE 3.0 facts base.

- ecore.sbp: create a LMP parser from a metamodel expressed in Ecore.

- emof.sbp: create a LMP parser from a metamodel expressed in EMOF.

- uml.sbp: create a LMP parser from a metamodel expressed in UML.

2.2.2.1.3. AADL Timing Analysis:

The third group of features provides ancillary files for the integration of the Cheddar

scheduling analysis tool and the Marzhin run-time simulator within AADL Inspector.

- 3_TimingAnalysis.ais: plugin description file.

- schedulability.sbp: AADL to Cheddar 3.2 model transformation.

- marzhinv2.sbp: AADL transformation rules for Marzhin.

- chronogram.sbp: timelines configuration rules.

- scenario.sbp: simulator scenario template generator.

- Marzhin.xml, MarzhinLogs.xml: simulation configuration files.

2.2.2.1.4. Other Processing Tools:

The next group includes a variety of other model processing tools using either internal LMP

and LAMP features or external tools.

- 4_SafetySecurityAnalysis.ais: plugin description file.

- 5_CodeGenerator.ais: Ocarina interface plugin description.

- 6_DocGenerator.ais: document generator plugin description file.

- openpsa.sbp: generate a fault tree from AADL EMV2 into an OpenPSA file.

- marte.sbp: UML/MARTE to AADL model transformation (obsolete)

- capella.sbp: Capella to AADL model transformation (replaced by a LAMP

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 11

feature)

2.2.2.1.5. AADL Model Templates:

This group includes a set of rules to generate AADL model templates for demonstration

purpose or training purposes.

- Templates.ais: plugin description file.

- rts.sbp: template of a multi-thread model.

- tsp.sbp: template of a multi-partition model.

- amp.sbp: template of a multi-processor model.

- bmp.sbp: template of a multi-core model.

- lamptemplate.sbp: template of a lamp model.

2.2.2.1.6. Miscellaneous:

The last group contains a list of general-purpose features that can be used by the other groups

or are associated with dedicated AADL Inspector user interface functions.

- Others.ais: plugin description file for inline features.

- Utilities.ais: plugin description file for helpers and external tools.

- aadlgen.sbp: AADL printer (unparser).

- aadlgen2.sbp: light version of the AADL printer (i.e., without Prolog libraries).

- aadlgen3.sbp: fat version of the AADL printer (with all Prolog libraries).

- readRTProperties.sbp: AADL real-time properties reader.

- writeRTProperties.sbp: AADL real-time properties writer.

- rootselector.sbp: AADL instance model root inference.

2.2.2.2. images

This directory may contain images that can be referenced in the plugin definition files. It is

especially useful to specify a specific icon to launch a customized service or to change the

company logo that is included in the generated documentation.

2.2.3. Examples subdirectory

2.2.3.1. AADL Inspector examples overwiew

This directory contains a set of AADL examples to practice the use of AADL Inspector. Five

types of files are accepted:

- .aic: AADL Inspector project files containing a list of individual file pathnames or

URLs, or of sub-project references.

- .aadl: individual AADL source files. Each file may contain several Packages and

Property Sets.

- .asc: AADL Inspector simulation scenarios files.

- .txt: textual description files.

- image files of various formats.

It is recommended that a project file is loaded rather than individual AADL files to ensure all

the required AADL Packages and Property Sets that are required to activate the analysis tools

are opened.

page 12 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

Each proposed example uses a subset of the AADL standard or AADL Inspector features. The

following table provides a list of these features with an identification character. Each project

description contains the list of characters corresponding to the used features.

A denotes use of AADL ARINC 653 Annex 2.0 (SAE AS-5506/1A)

B denotes use of AADL Behavior Annex 2.0 (SAE AS-5506/3)

C denotes use of AADL Core Language 2.3 (SAE AS-5506D)

D denotes use of AADL Data Model Annex (SAE AS-5506/2)

E denotes use of AADL Error Model Annex 2.0 (SAE AS-5506/1A)

F denotes use of AADL Annex for FACE 3.0 (SAE AS-5506/4)

G denotes use of AADL Properties for Stood diagram layout

L denotes use of AADL LAMP Annex (model processing language)

S denotes use of simulation scenario (.asc files)

2.2.3.2. Native AADL examples

This is the list of native AADL examples that are provided in the distribution of AADL

Inspector. Note that the AADL specification is provided in source text form. Shown diagrams

are for illustration purpose only and require the use of the Stood tool to be edited (cf. 3.1.1.4).

- patterns.aic:

This group contains seven sub-projects listed below.

They illustrate the main communication and scheduling protocols that are supported by

AADL and can be analysed with AADL Inspector.

o dataflow.aic: [BCGS]

Dataflow communication between threads.

It can be used to observe the effect of Sampled, Immediate and Delayed data port

connections.

o messages.aic: [BCGS]

Message based communication between threads using queued events.

It can be used to observe input queue overflow.

o shared_data.aic: [BCG]

Shared data communication between threads with critical sections.

It can be used to observe the effect of the Priority_Ceiling_Protocol to avoid a

deadlock.

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 13

o client_server.aic: [BCG]

Subprogram call communication between threads.

It can be used to observe the effect of the client-server synchronisation protocols.

o arinc653.aic: [ABCG]

Two-layer hierarchical scheduling.

It can be used to investigate time and space partitioned systems with the AADL

ARINC653 Annex.

o scheduling.aic: [C]

Illustration of the supported scheduling protocols:

▪ Rate Monotonic (RM),

▪ Deadline Monotonic (DM),

▪ High Priority First (HPF),

▪ Round Robin (RR) and

▪ Earliest Deadline First (EDF).

o dispatching.aic: [CS]

Various thread dispatching protocols.

It can be used to compare the behaviour of Periodic, Sporadic, Aperiodic, Hybrid,

Timed and Background threads.

- calculator.aic: [BCS]

Integer arithmetics with the AADL Behaviour Annex.

It can be used to show the math library capabilities and the interaction between the user and

the simulator.

- canbus.aic: [CG]

Bus communication between processors.

It can be used to observe interactions between threads scheduling and bus messages

page 14 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

scheduling.

- coffee.aic: [BCGS]

A coffee machine control system.

It can be used to show conditional computation with the AADL Behaviour Annex.

- display_system.aic: [C]

A large model (5 processors, 13 processes and 123 threads).

It can be used to check the scalability of the tools. Note that due to its size, full analysis of

this model can take several minutes.

- flight_deck_door.aic: [BCGS]

Access control to a flight deck door.

This model was developed to interact with a 3D virtual reality simulation (not provided).

- mars_pathfinder.aic: [CG]

Several threads with different priority and sharing common data.

It can be used to observe the priority inversion problem. It is dapted from:

https://github.com/OpenAADL/AADLib/tree/master/examples/pathfinder_system

- multicore.aic: [BCG]

Partitioned scheduling on a dual-core processor.

Threads running on different cores are sharing data resource. It can be used to practice the

automatic thread placement wizard.

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 15

- pacemaker.aic: [BCGS]

Ventricular pacemaker simulator.

- redundancy.aic: [BCGS]

A simplistic Fault Detection Isolation and Recovery system.

It uses the AADL Behavior Annex to detect erroneous values and isolate the corresponding

devices.

- regulator.aic: [BCGS]

A temperature regulation system.

It can be used to illustrate the design and analysis of a discrete control system with the

AADL Behaviour Annex.

- satellite.aic: [CG]

A model defined in the AADLib github repository.

It can be used to experiment remote model loading via the internet.

- code_generation.aic: [C]

Basic test case for Ada and C code generation with Ocarina.

Take care to only select one of the two files at a time.

- end_to_end_flow.aic: [CL]

A dataflow across a network.

Can be used for SAFLA (Scheduling Aware Flow Latency Analysis). Thread response

times are computed by the Marzhin simulator.

page 16 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

- lamp_examples.aic: [BCL]

Two separate models to learn about LAMP annex capabilities.

LAMP allows you to perform inline AADL model processing by adding Prolog rules

within dedicated annex subclauses and libraries. The first example shows how to explore

AADL model and annexes elements. The second example uses output of the real-time

simulation to check timing assurance cases.

- wheel_braking_system.aic: [CE]

A model copied as is from the OSATE examples base to experiment Fault Tree Analysis

with Arbre Analyste. The diagram shown below was generated by this tool.

- safety_security.aic: [BCEGLS]

A generic sensor-processing-actuator control system to highlight combined timing analysis

(flow latency), safety analysis (fault tree) and security analysis (custom security rules).

This example was used to a illustrate paper presented during ERTS 2020 conference.

https://hal.univ-brest.fr/hal-02433963/document

2.2.3.3. Converted AADL examples

These examples require a dedicated model transformation to build the AADL model.

This can be achieved with the provided import features. Examples for trying import features

are located into folder examples/Foreign_Models.

- SYSML_example.sysml: [CL]

SysML v1 example derived from a Magic Draw one.

Transformation rules are defined in LAMP annex clauses. They can be edited in

environment/Ellidiss/LAMPLib/SysML2AADL.aadl.

Use menu File/Import.../Import SysML model (.sysml, .xmi, .model) or the related button.

- FACE_example.face: [CLF]

Homemade FACE example based on information provided by the AADL annex for

FACE. Imported AADL model can be analysed and executed with the Marzhin simulator.

Transformation rules are defined in LAMP annex clauses. They can be edited in
environment/Ellidiss/LAMPLib/FACE2AADL/*.

Use menu File/Import.../Import FACE model (.face) or the related button.

- FACE_FlightControl.face: [CLF]

Other FACE demonstration example. Imported AADL model can be analysed and

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 17

executed with the Marzhin simulator. Transformation rules are defined in LAMP annex

clauses. They can be edited in: environment/Ellidiss/LAMPLib/FACE2AADL/*

Use menu File/Import.../Import FACE model (.face) or the related button.

- CAPELLA_FlightEntertainment.capella: [CL]

The demonstration example that comes with release 5.1.0 of Capella.

The Capella Physical Architecture to AADL transformation rules are defined in LAMP

annex clauses. They can be edited in:

environment/Ellidiss/LAMPLib/CapellaPA2AADL.aadl.

Use menu File/Import.../Import CAPELLA PA model (.capella) or the related button.

- AADL_TextFacts_example: [BC]

An example to show how to create AADL models from LMP Prolog predicates.

The full list of predicates that can be used to build the AADL model is at:

https://www.ellidiss.fr/public/wiki/aadlDeclarativeModel

Imported AADL model can be analysed and executed with the Marzhin simulator.

Use menu File/Import.../Import Textual facts (.pro) or the related button.

- AADL_TableFacts_example: [BCL]

An example to show how to create AADL models from a CSV table with semi-colon

separators. Each table row represents a Prolog fact with the fact name in the first column,

and its parameters in the following columns. The full list of predicates that can be used to

build the AADL model is at:

https://www.ellidiss.fr/public/wiki/aadlDeclarativeModel

Imported AADL model can be analysed and executed with the Marzhin simulator.

Use menu "File/Import.../Import Table facts (.csv)" or the related button.

Note that only those AADL files that are explicitly selected will be considered by the various

processing tools. When a file is selected, a green tick is shown on its icon. To select or unselect

a file, simply click on the corresponding icon or the one of the parent projects.

2.2.4. Environment subdirectory

The environment subdirectory contains the common AADL Property Sets and Packages

that are required to properly use the processing tools. They are organized into several projects

to isolate the scope of each group of predefined entities and avoid potential conflicts due to

assumptions made by some of the processing tools. The proper environment configuration is

automatically set by each processing plugin.

- AIEnvironment.aic: lists all the environment subprojects to be loaded at launch

time. It references the four following ones:

- Standard.aic: lists the Property Sets and packages that are explicitly defined in the

AADL standard and its published annexes.

- Ocarina.aic: lists the additional Property Sets that are required by the services

offered by Ocarina.

- Cheddar.aic: lists the additional Property Sets that are required by the services

offered by Cheddar.

- Ellidiss.aic: lists the additional common Property Sets and Packages that are

used by the examples. The LAMP libraries (LAMP Lib) are stored there too.

Note that the AADL files that are part of the environment cannot be modified directly within

the AADL Inspector editor. Changes must be done either offline with a remote text editor, or

 !

 !

page 18 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

after prior move of the files to a writable workspace.

2.2.4.1. Ellidiss Property Sets

The following AADL Inspector specific Property Sets are provided to complement the

standard ones:

- ai.aadl: list of specific Properties used by AADL Inspector.

- stood.aadl: list of specific Properties used by Stood for AADL.

- lmp.aadl: list of specific Properties used by LMP features.

- lamp.aadl: list of specific Properties used by LAMP features.

2.2.4.2. Ellidiss AADL Libraries

The following AADL Packages contain the definition of a set of Components that are

frequently reused in the examples for the interface with the Marzhin simulator.

- math.aadl: list of Data and Subprogram Components implementing simple

arithmetic functions useful while writing AADL Behavior Annex expressions.

- gui.aadl: list of Device Components useful to emulate the User Interface with the

Marzhin simulator.

2.2.4.3. LAMP Lib

LAMP Lib offers a list of AADL Packages containing LAMP Annex subclauses composed of

Prolog rules. These rules provide an extensive API to the selected AADL declarative and

instance models as well as advanced processing features that are used by the pre-configured

analysis plugins and may also be reused by any other user defined analysis tool.

- LAMPDeclarative.aadl: accessors to the AADL declarative model.

- LAMPInstance.aadl: accessors to the AADL instance model.

- LAMPBehavior.aadl: accessors to AADL Behavior Model 2.0.

- LAMPError.aadl: accessors to AADL Error Model 2.0.

- LAMPSimulation.aadl: accessors to the Marzhin simulation events.

- LAMPFlows.aadl: end to end flow exploration rules.

- LAMPLexical.aadl: AADL 2.3 reserved words and lexical rules.

- LAMPUtilities.aadl: library of general-purpose Prolog rules.

- LAMPPrinting.aadl: library of general-purpose Prolog printing rules.

- LAMPResponseTime.aadl: Scheduling Aware Flow Latency Analysis (SAFLA).

- LAMPSecurity.aadl: example of security analysis rules.

- CVS2LAMP.aadl: CSV parser generating Prolog facts.

- SysML2AADL.aadl: SysML v1 parser generating Prolog facts.

- CapellaPA2AADL.aadl: Capella Physical Arch. parser generating Prolog facts.

- FACE2AADL.aic: FACE parser generating Prolog facts:

o FACE2AADL.aadl: main FACE processing rules.

o FACE2AADLcdm.aadl: FACE Conceptual Data Model processing rules.

o FACE2AADLldm.aadl: FACE Logical Data Model processing rules.

o FACE2AADLpdm.aadl: FACE Physical Data Model processing rules.

o FACE2AADLuop.aadl: FACE Unit of Portability Model processing rules.

o FACE2AADLint.aadl: FACE Integration Model processing rules.

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 19

o FACE2AADLsim.aadl: FACE Integration Model for Marzhin simulations.

- AADL2Stood.aic: AADL reverse engineering for the Stood design tool:

o AADL2Stood.aadl: Stood tool interface rules.

o AADLSIFGen.aadl: SIF file generation rules (input file for HOOD tools).

o AADL2HOOD.aadl: AADL to HOOD mapping rules.

- AADLPrinter.aic: AADL specification generator (unparser)

o LAMPAADLGen.aadl: main API to the AADL printer.

o LAMPBAGen.aadl: AADL Behavior Annex printer.

o LAMPEMV2Gen.aadl: AADL Error Model Annex printer.

o LAMPPRValueGen.aadl: AADL Property value printer.

o X2AADL.aadl: AADL printer API for model transformations.

2.2.5. Include subdirectory

The include subdirectory contains libraries that are required by some of the ancillary tools

embedded in AADL Inspector. Currently, it is only needed for generating code with Ocarina.

2.2.6. Doc subdirectory

This directory contains this manual that can be opened from the ?/Help main menu. Other

documentation volumes provide more details on the use of the processing tools. Note that some

of these specialized documentation volumes have not been updated recently, however, most of

the provided information still remains valid.

2.2.7. Command line options

AADL Inspector can be launched from a command line. The following optional parameters

are available:

- --help

show the list of command line options.

- -a file1.aic,file2.aadl,file3.asc, …

open the specified AADL Inspector files at startup.

- -r dir1, dir2,…

open all the AADL Inspector files contained in the specified directories.

- -l tmpdirname

use the specified location to create the temporary files. If used, this information

overrides the one specified by the tmpDirectory parameter in the AIConfig.ini file.

- --selectroot id

set the root of the AADL instance hierarchy to the specified model element id.

- --config configdirname

use the specified location to set the pathname to the config directory.

- --plugin tool.service

start a service of a tool as defined in a .ais file of the config directory.

- --result file
--result stdout

store the plugin result file in the specified file or in the console (Unix only).

to be used with option --plugin

- --pluginVar variable=value

set the value of a variable for further use in a plugin (@variable)

to be used with option --plugin

- --show false

launch AADL Inspector without showing the graphical interface (batch mode)

page 20 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

default is true (GUI is displayed).
- --marzhinAddress address

set the IP address of a remote Marzhin simulator to connect to.
- --marzhinCmdPort integer

set the command socket port number to connect to a remote Marzhin simulator.

can also be used to specify the command port number of the embedded simulator.

- --marzhinDataPort integer

set the data socket port number to connect to a remote Marzhin simulator.

can also be used to specify the data port number of the embedded simulator.
- --marzhinAcknowledgePort integer

set the acknowledge socket port number to connect to a remote Marzhin simulator.

- can also be used to specify the acknowledge port number of the embedded simulator.

- --marzhinScenario ascfilename
 --marzhinScenario ascfilename,scenario1,scenario2

apply specified scenario file (.asc) and optionally select individual scenarios while

starting the Marzhin simulator.

- --tickMax value

define the default duration for Cheddar and Marzhin simulations.

when value is an integer, use it as the maximum execution and display time (in ticks).

when value is the word hyperperiod, ask Cheddar to compute the tasks set hyperperiod

and use it as the maximum execution and display time (in ticks).
- --debug integer

 if set to 1 or 2, display debug information to the console.

 if set to 2, display information about the Marzhin simulator.

 if set to 0, no console is shown (default).

- --server true

launch AADL Inspector in server mode (on Linux only).

when running in server mode, AADL Inspector accepts the following commands on its

standard input:
o loadFile filename

o launchTool tool.service

An example of use of the command line activation of AADL Inspector is to run Cheddar on a

set of specified AADL files and get the results in a specified output file:

bin/AADLInspector

–a examples/dataflow.aic

--plugin Schedulability.cheddarTheoTest

--result dataflow.xml

--show false

Such a command will create a file containing the result below (fragment). The detailed

description of the Cheddar output is provided in a separate annex document.

<results>

 <feasibilityTest name="processor utilization factor" …>

 <computation name="base period" reference="all" value="300" …/>

 <computation name="processor utilization factor with deadline"

 reference="all" value="0.78333" …/>

 <computation name="processor utilization factor with period"

 reference="all" value="0.78333" …/>

 …

 </feasibilityTest>

 <feasibilityTest name="worst case task response time" …>

 <computation name="response time"

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 21

 reference="root.my_platform.CPU.my_process.T1" value="15" …/>

 <computation name="response time"

 reference="root.my_platform.CPU.my_process.T2" value="10" …/>

 <computation name="response time"

 reference="root.my_platform.CPU.my_process.T3" value="5" …/>

 …

 </feasibilityTest>

</results>

2.3 License

A valid license is required to use AADL Inspector. Various kind of licences are available,

including free of charge evaluation and education licenses. Payment of a license fee is required

for commercial or industrial usage of AADL Inspector. Please contact your Ellidiss sales

representative for more details (sales@ellidiss.com).

Since version 1.7, license information is stored in a separate License file that must be

located inside the config directory. Licenses can be attached to a particular computer and

limited in time or managed by a license tokens server over the network.

2.3.1. Node locked licenses

When the license is attached to a specific computer, or for temporary evaluation licenses, the

information that must be stored inside the License file is provided looks as follows:

Main License

owner <licensee identification>

mac <computer identification>

date <expiration date>

tool AADL Inspector

version 1.8

key <encryption key>

licenseKey <license key>

End License

Note that the complete contents of the License file must be provided by Ellidiss. None of

these fields can be modified by the end user; otherwise, the license key will become invalid.

2.3.2. Floating licenses

When the licenses are managed by a floating license server over the network (ETFL), the local

License file must contain the following data:

Main License

owner <licensee identification>

licenseServer <server IP address>

licenseServerPort <server port address>

End License

Note these fields must be compliant with the license server installation. Please contact the

license server administrator to fill in the local license data.

 !

 !

mailto:sales@ellidiss.com

page 22 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

2.3.3. License errors

In case of a mismatch between the license information and the computer identification or the

current date, an error message box is displayed.

An error number is provided to help identify the license problem. Here are the most usual

issues that may occur while installing the license key:

- 0010: this license has expired

- 0020: this license date is invalid

- 0030: this license is attached to another computer

- 0040: this license is linked to a Stood license

- 0050: this license is not valid for this version of the product

- 0067: this license is not valid for specified license server path

- 0069: this license is not valid for this tool

This list of error codes is not exhaustive. Please provide the precise error code when you

contact the tool support team (support@ellidiss.com) to solve the issue.

mailto:support@ellidiss.com

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 23

3 Graphical User Interface

AADL Inspector opens a single window that encompasses a main menu bar, a button bar, a

project browser, a source files area, a processing tools area, a simulation area and a status bar,

as shown below:

3.1 Main menu and button bar

The Main Menu Bar contains the following pull-down menus: File, Edit, Tools and ? (Help).

The button bar provides shortcuts for frequently used menu options.

3.1.1. File menu

The File menu controls all file actions that have a global scope. When a model is loaded,

imported or created from this menu, it will appear at the top level in the project browser (i.e.

one level below the Projects folder). Other file actions with a more restrictive scope are

provided by the contextual menus associated with the items of the project browser. The tool

can process several files that together define a complete AADL specification. The

recommended way to manage multiple files is to link them with an AADL Inspector project

file (.aic). There is no particular restriction for the naming and contents of the AADL files.

In particular, files containing several AADL Packages and Property Sets are allowed.

After having been loaded, AADL files must be selected to define the boundaries of the model

to be processed. A file can be selected on unselected by clicking on its icon in the project

browser tree. Files may be selected individually or collectively if the encompassing project is

selected. When a file is selected, a small green tick is shown on the corresponding icon.

Main Menu and Button Bar

Source Files

Area

Processing Tools

Area

Simulation Area

Status Bar

Project Browser

page 24 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

For most processing actions, all the selected files are concatenated together before being

processed by the analysis tools. Please note that load ordering may have an impact on obtained

result, especially if the root of the AADL instance hierarchy has not been explicitly defined.

This ordering may be modified by moving the file items up or down in the project browser tree

with the mouse.

- New Aadl: create a new AADL file in memory.

- New Project: create a new AADL Inspector project file in memory.

- Load: load the contents of the specified AADL files or projects into memory.

- Load from Github: load files from remote AADL libraries (requires internet access).

- Reload All: cancel all the non saved changes in the project browser.

- Save All: save to the relevant files all the changes in the project browser.

- Utilities: customizable file utilities (cf. 3.1.1.1)

- Templates: creates a new AADL model applying a predefined template (cf. 3.1.1.2).

- Import: convert a foreign model into AADL and load it (cf. 3.1.1.3).

- Export: convert currently selected AADL model into a foreign model

- Print: build an analysis snapshot of the current project and create a PDF file. This

feature is specified in the DocGenerator.ais plugin definition.

- Quit: quit AADL Inspector

Note that if a file cannot be found – for instance while fetching it from github and that there is

no internet connection – a message is shown in a dialog box:

 !

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 25

3.1.1.1. Utilities sub-menu

The Utilities sub-menus offer two useful features.

- Load all the AADL Inspector examples: shortcut to open all the examples in a single

project hierarchy. Same as load examples/all_examples.aic.

- Split AADL packages for OSATE: modify the current AADL file structure of the

selected project to ensure that each file contains a single Package or Property Set and

copy them to the chosen directory to comply with this OSATE restriction.

Note that the contents of this sub-menu can be customized by editing the Utilities.ais

plugin definition file.

3.1.1.2. Templates sub-menu

The Templates sub-menus can be used to quickly create an AADL model of a predefined kind

with user parameterization. While selecting one of these sub-menu options, a dialog box is

opened to enter the parameters value.

- Multi thread: create an AADL model of the given name with the given number of

page 26 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

threads. This template can be the starting point for new real-time software (RTS)

architectures. Threads are located on a single process and run on a single processor.

- Multi partition: create an AADL model of the given name with the given number of

partitions. This template can be the starting point for new time and space partitioned

(TSP) software architectures. Threads are distributed on several processes and run

during statically defined time slots on a single processor.

- Multi processor: create an AADL model of the given name with the given number of

processors. This template can be the starting point for new asymmetric multi processor

(AMP) software architectures. Threads are distributed on several processes and run on

different processors connected together by a bus.

- Multi core: create an AADL model of the given name with the given number of cores.

This template can be the starting point for new bound multi processor (BMP) software

architectures. Threads are located on a single process and run on different cores to

which they are statically bound.

- LAMP model processing: create an AADL model of the given name with pre-set

LAMP annex place holders.

3.1.1.3. Import sub-menu

The Import sub-menus can be used to create a new AADL model from “foreign” modelling

languages. Proposed foreign models are SysML, FACE, CAPELLA and AADL models

expressed as table, textual or binary facts bases as specified by the LMP process.

SysML, FACE and CAPELLA model import features are implemented with LAMP, and the

corresponding transformation rules are provided in the LAMPLib repository (cf. 2.2.4.3). They

can thus be customized as needed.

LMP (Logic Model Processing) was developed by Ellidiss Technologies to support advanced

model processing tools. Dedicated LMP features have been packaged to support the AADL

language. In particular, AADL models can be fully represented by a LMP Prolog facts base

that can itself be serialized in a table, textual or binary format.

- Import SysML: create a new AADL model from a foreign model expressed in SysML

1.5 with Magic Draw ™ extensions. The file navigator asks for a .sysml, .xmi

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 27

or .model file.

- Import FACE: create a new AADL model from a foreign model expressed in FACE

3.0. The file navigator asks for a .face file.

- Import Capella model: create a new AADL model from a foreign model representing a

CAPELLA Physical Architecture. The file navigator asks for a .capella file.

- Import Table facts: create a new AADL model from a LMP Prolog textual facts base

generated by parsing a CSV file. The file navigator asks for a .csv file. Each row of

the table represents a fact, first column must contain the fact name and the other

columns are used for the fact parameters. Default separator character is a semicolon.

- Import Textual facts: create a new AADL model from a LMP Prolog textual facts base.

The file navigator asks for a .pro file.

- Import Binary facts: create a new AADL model from a LMP Prolog binary facts base.

The file navigator asks for a .sbp file.

The Import Textual facts feature provides a very convenient way to create an AADL model

without taking care of the statements ordering and syntax. LMP predicates can be used to

automatically generate the AADL specification. These predicates can be included into a .pro

file with any text editor or generated by a tool. An example of such a list of predicates is shown

below:

begin.

isComponentType('text_import_pkg','PUBLIC','text_import','SYSTEM','NIL').

isComponentType('text_import_pkg','PUBLIC','struct','DATA','NIL').

isFeature('PORT','text_import_pkg','text_import','input','IN','DATA','struct','NIL','NIL').

isFeature('PORT','text_import_pkg','text_import','output','OUT','DATA','struct','NIL','NIL').

isPackage('text_import_pkg','PUBLIC').

End.

The exhaustive list of LMP predicates is described in the Ellidiss technical support website:

https://www.ellidiss.fr/public/wiki/aadlDeclarativeModel.

Note that the LMP predicates may have their last parameter (line number) or not, and that

either the first predicate is isVersion/4 or two dummy predicates begin. and end. are

inserted at the beginning and at the end of the file.

Then, the use of the Import Textual facts menu to load this file will automatically create the

corresponding AADL specification:

A similar result can be obtained while loading the binary form of the Prolog predicates (.sbp

files) or with a CSV representation of the Prolog facts. Corresponding .csv file content for

the example shown above would be:

 !

https://www.ellidiss.fr/public/wiki/aadlDeclarativeModel

page 28 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

isComponentType;text_import_pkg;PUBLIC;text_import;SYSTEM;NIL

isComponentType;text_import_pkg;PUBLIC;struct;DATA;NIL;

isFeature;PORT;text_import_pkg;text_import;input;IN;DATA;struct;NIL;NIL

isFeature;PORT;text_import_pkg;text_import;output;OUT;DATA;struct;NIL;NIL

isPackage;text_import_pkg;PUBLIC

However, using native textual Prolog facts should be preferred as the CSV format requires an

additional parsing step.

3.1.1.4. Export sub-menu

The Export sub-menu provides AADL reverse engineering features. It gives the ability to

create a new Stood Design or update an existing one. One of the possible reasons to perform

such an operation is to create a graphical representation of the instance hierarchy of the

currently selected AADL model. Another reason is to update a previously generated AADL

model from a pre-existing Stood Design. Finally, this feature can also be used to perform

round-trip engineering cycles between the Stood for AADL graphical design tool and the

AADL Inspector analysis framework.

- New AADL instance diagram: perform a model transformation from the current AADL

instance model to a SIF input file for the Stood tool, then launch Stood and

automatically create the corresponding editable Design.

- Update AADL instance diagram: perform a model transformation from the current

AADL instance model to a SIF input file for the Stood tool, then launch Stood and

automatically update the corresponding editable Design if it was previously created.

- Generate SIF file: perform a model transformation from the current AADL instance

model to a SIF input file for the Stood tool. Such a SIF file can then be manually

loaded in a separate Stood session to create a new Design or update an existing one.

Note that the Stood product must be installed prior to using these features. Stood can be

downloaded from the main Ellidiss website. The default demonstration license is sufficient to

experiment the AADL round-trip engineering process.

Note also that AADL Inspector must be properly configured prior to using these features. This

consists in checking the default value of the following environment variables in the

config/AIConfig.ini file:

 !

 !

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 29

- The StoodToolPath variable must contain the actual location of the main Stood

executable file after the installation of the product on the computer.

- The StoodWorkDir variable must contain the path of a directory where the user has

full access rights and wants to store the created Stood designs.

- The StoodProjectName variable must contain the name of the Stood Project file

that will be created to group the created Stood designs. It will be located in

StoodWorkDir.

- The StoodScriptName variable must contain the name of the temporary Stood

script file that will be created during the reverse engineering process. This file will also

be located in StoodWorkDir.

Default value for these variables is:

StoodToolPath ../Stood-5.5/bin.w32/stood.exe

StoodWorkDir ./stood_workspace/

StoodProjectName AADLProject

StoodScriptName SIFimport

3.1.2. Edit menu

The Edit menu provides advanced functions used to perform changes on the input AADL

specification. When possible, the original source text is not modified, and the changes are

applied to an extension of the main system implementation of the project instead.

3.1.2.1. Auto format

This wizard re-writes the current AADL file into a normalized form. It impacts the case of

identifiers and keywords, the indentation, and the number of blank lines. This feature can also

be used to convert older AADL files into AADL 2.3 syntax, except for some values of v1.0

Property Associations.

page 30 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

The Auto format wizard runs the AADL parser on the original AADL specification as shown

on the left-hand side of the picture above, performs an « identity » model transformation and

then applies the AADL unparser to get a formatted AADL specification as shown on the right

hand side.

Note that it is possible to customize the format produced by the Auto format wizard thanks to

dedicated AADL properties. These properties can be applied to any AADL entity, but we

recommend inserting them at the Package level. The currently supported AADL unparser

properties control the case of identifiers and keywords, as well as the automatic insertion of a

header. This Property Set is defined in the AADL Inspector environment folder (cf.

2.2.4.1) and is automatically loaded when needed.

PROPERTY SET lmp IS

 unparser_id_case : ENUMERATION (AsIs,Upper,Lower) => Lower

 APPLIES TO (ALL);

 unparser_kw_case : ENUMERATION (AsIs,Upper,Lower) => Upper

 APPLIES TO (ALL);

 unparser_insert_header : ENUMERATION (Yes,No) => No

APPLIES TO (ALL);

 unparser_output_filename: AADLSTRING

 APPLIES TO (ALL);

 debug_mode : AADLINTEGER

 APPLIES TO (ALL);

END lmp;

The next picture shows an example of use of these formatting properties.

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 31

3.1.2.2. Search

The Search tool can be used to look for all occurrences of the specified text. The scope of the

search can be the currently displayed file or the complete set of loaded files. Clicking on the +

button opens the list of all the text occurrences that have been found. Select a line in this list to

navigate to the corresponding source text editor.

3.1.2.3. Search reset

Clean up the Search information in the dialog box and the source text editors.

3.1.2.4. Select root

The Select root wizard shows the AADL System Implementation component that has been

automatically identified by AADL Inspector to be the root of the instance hierarchy and

allows the user to change it if needed.

page 32 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

Note that it is also possible to quickly identify the current root System Implementation by

clicking on the Show root button located on top of the Projects browser:

Most of the analysis and processing tools require the AADL declarative model to be

instantiated and deployed first. AADL Inspector does not require this instantiation to be done

statically, and the AADL instance model is not stored to avoid the risk of processing an

outdated model. In practice, the instance model is built on the fly together with the proper

model transformation that is required for each processing tool.

However, several instance models can be inferred from a given declarative model. It is thus

mandatory to define which System Implementation represents the root of the instance hierarchy

(System Instance). The Select root wizard provides the list of candidate System

Implementations and selects the one to be the root of the AADL instance hierarchy.

The root system that will be considered by the analysis tools will be (in decreasing priority

order):

- the first found System Implementation containing an AI::Root_System Property

association with the value “SELECTED”;

- the first found System Implementation containing an AI::Root_System Property

association with any other value;

- the first found System Implementation containing an

Actual_Connection_Binding Property association;

 !

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 33

- the first found System Implementation containing an

Actual_Processor_Binding Property association.

- the first found System Implementation containing an

Allowed_Processor_Binding Property association.

- the first found System Implementation that is not instantiated as a Subcomponent in the

scope of the current Project.

If another root is selected in the Select Root System dialog box, two options are possible: either

create an extended root system to avoid altering the existing files or directly modify the current

model. These options are controlled by the tick box Extend current model in the dialog box.

When the Extend current model box is ticked, a new system component is created in memory

only and is located in a new proxy package. The newly created system extends the one in the

existing model and contains an AI::Root_System => “SELECTED” property

association so that it becomes the new current root system.

When the Extend current model box is not ticked (default), an AI::Root_System =>

“SELECTED” property association is directly added to the chosen system component in the

original model. Note that the formatting of the original file (characters case, line returns and

indentation) may be modified in that case.

3.1.2.5. Simulation Control Panel

The Simulation Control Panel is used to edit the various simulation parameters that can be

controlled by the user. This dialog box can be opened from the main menu or button bar and is

also automatically opened when the Marzhin simulator is started. It is composed of four tabs

that can be used to control the display and behaviour of the time simulators.

The timing analysis tools are using a virtual time scale whose unit is a tick. Correspondence

with the actual time units that are used in the AADL model is given by the reference time unit.

The reference time unit is the smallest time unit found in all the Period property associations.

The value of the reference time unit for the model being processed can be given by the Static

Analysis tool:

page 34 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

3.1.2.5.1. General Simulation Control Panel

The General tab controls the appearance of the timelines frame. The horizontal axis (time) can

be squeezed of extended with the Zoom factor. Note that the zoom factors can be customized in

the AIConfig.ini configuration file. The vertical axis (model entities) can be selectively

deployed thanks to the display Filters. The effect of these filters is described below:

- Minimize: only displays the Processors and the Buses.

- Show processes: adds a time line for each Process.

- Show threads/data: adds a time line for each Thread and shared Data subcomponent.

- Show features: adds a time line for each port, data access and subprogram access

feature.

- Custom filter: this option is selected when the display filters are directly controlled

from within the simulation display area.

When the Synchronization box is ticked, the selected filter applies to both Cheddar schedule

table and Marzhin simulation traces, and custom filters can be applied separately on each

simulation trace.

When no other information is available, the time axis is displayed between 0 and the value

given by the Initial Display Range box. Its default value can be specified by the

stDisplayPeriod constant in the AIConfig.ini file.

3.1.2.5.2. Marzhin Simulation Control Panel

The Marzhin tab is used to interact with the Marzhin simulator. It contains a remote-control

panel for the simulator main commands (start/pause/resume, stop, refresh, go to last tick and

optimize) that are described in section 3.5.1, a save as VCD… command to store the current

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 35

simulation trace in a file, and a Speed factor selector and a display area where messages

generated by the simulator are shown.

Note the value associated with each speed factor can be specified in the gantt section of the

main configuration file config/AIConfig.ini. The first value indicates the one that will

be selected by default.

"speedFactors" "5 1 2 10 20" \

When scheduling discrepancies occur during the simulation, error messages are logged in the

text box located at the bottom of the control panel.

3.1.2.5.3. Cheddar Simulation Control Panel

The Cheddar tab can be used to define the time window for computing the Cheddar static

simulation (Cheddar Schedule Table). Minimizing the Max Computation Time can

significantly reduce the analysis time on large models. Its default value can be specified by the

stMaxSchedPeriod constant in the config/AIConfig.ini file or set to the hyper

period in case of a periodic system. This hyper period is computed by Cheddar (when possible)

if the selection box is ticked. This tab also contains a save as VCD… command to store the

current simulation trace in a file.

page 36 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

3.1.2.5.4. Simulation Control Panel Help

The Help tab provides a caption for the colour code that is associated with the various states of

the modelling entities that are observed during the simulation. The default values are explained

in section 3.4.2. Note that this colour code can be customized in the

config/AIConfig.ini configuration file.

3.1.2.6. Edit thread properties

This wizard opens a spreadsheet to edit usual real-time Properties and apply them to the current

model. The current Property values that are found in the selected AADL files are shown.

When these values have been modified, the corresponding AADL Property associations are

either directly changed inside the current model or declared as contained Properties of an

extension of the current root System Implementation. The extended root System is created in

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 37

memory only and is located in a new proxy Package. The newly created System contains an

AI::Root_System Property association so that it becomes the new current root System to

ensure that the new Property values are used.

The Extend current model tick box is used to control whether the current model is modified

(default case) or an extended root System is created. Note that the formatting of the original file

(characters case, line returns and indentation) may be modified in the former case.

3.1.2.7. Edit thread priorities

This wizard opens a spreadsheet to manually specify or automatically compute the Threads

priority according to rate monotonic (RM) or deadline monotonic (DM) algorithms.

When priorities have been modified, the corresponding AADL Property associations are either

directly changed inside the current model or declared as contained Properties of an extension of

the current root System Implementation. The extended root System is created in memory only

and is located in a new proxy Package. The newly created System contains an

AI::Root_System Property association so that it becomes the new current root System to

ensure that the new Property values are used.

page 38 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

The Extend current model tick box is used to control whether the current model is modified

(default case) or an extended root System is created. Note that the formatting of the original file

(characters case, line returns and indentation) may be modified in the former case.

3.1.2.8. Edit thread placement

This wizard opens a spreadsheet to automatically compute the Threads placement onto the

available Processors according to various placement algorithms. Typical use of this tool is to

statically allocate Threads on a multi-core architecture.

Note that global schedulers implying dynamic Thread migration between Processors (cores) are

not supported yet.

As shown above, the original model must contain a set of Threads located in a global Process

that is bound to a group of Processors with Allowed_Processor_Binding Property

associations. This initial situation is reflected in the Processor Placement wizard. As follows:

Then, it is possible either to allocate an actual processor to each thread manually, or to apply

one of the placement algorithms that are proposed by Cheddar: first fit (FF); best fit (BF);

next fit (NF); small task (ST) or general task (GT).

 !

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 39

When the proposed placement is accepted (Apply button), the wizard generates corresponding

AADL Actual_Processor_Binding Property associations. These Properties are either

directly inserted inside the current model, or declared as contained Properties of an extension

of the current root System Implementation. The extended root System is created in memory

only and is located in a new proxy Package. The newly created System contains an

AI::Root_System Property association so that it becomes the new current root System to

ensure that the new Property values are used.

The Extend current model tick box is used to control whether the current model is modified

(default case) or an extended root System is created. Note that the formatting of the original file

(characters case, line returns and indentation) may be modified in the former case.

Note that the current wizard does not check that the actual binding matches the allowed

bindings list.

3.1.2.9. Preferences

The Preferences menu opens a dialog box to change the fonts used by the application. Two

fonts are used by the tool. The UI Font applies to all menu items, tab names and the project

explorer elements. The Viewer Font is used to display text in the editing area as well as in the

 !

page 40 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

analysis report areas. The latter one is intended to be a monospaced font.

Note that the default values are defined in the AIConfig.ini file. It is possible to update

these values using the Update config file button.

3.1.3. Tools menu

The Tools menu provides access to the processing tools and services that are defined in the

.ais files located in the config directory. Five tools are available with the standard

distribution: Static Analysis, LAMP Lab, Timing Analysis, Safety &Security Analysis, and Code

Generation. Each menu item opens a submenu that gives access to the services offered by the

corresponding tool.

Each item of the Tools menu corresponds to a tab in the Processing tools area in the left-hand

side part of the main window, and each submenu is associated with a button of the

corresponding tab (cf. 3.4).

3.1.3.1. Static Analysis

The static analysis services make use of two different and complementary technologies. One is

based on the Logic Model Processing (LMP) toolbox and the other one is provided by calls to

the Ocarina tool.

- Parse and Instantiate (LMP): parse the selected AADL files, instantiate the model from

the root System instance (cf. 3.1.2.4), perform quick consistency analysis and provide

statistics about both the instance and the declarative AADL models.

- Parse (Ocarina): parse the selected AADL files and check the consistency, legality and

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 41

naming rules defined by the standard, with a call to Ocarina –p.

- Instantiate (Ocarina): instantiate the AADL model with a call to Ocarina –i.

- Check Consistency Rules (LMP): verify the consistency rules defined by the standard.

- Check Legality Rules (LMP): verify the legality rules defined by the standard.

- Check Naming Rules (LMP): verify the naming rules defined by the standard.

- Check ARINC 653 Rules (LMP): verify rules for partitioned systems.

3.1.3.2. LAMP Lab

LAMP stands for Logic AADL Model Processing. It is an online processing language that can

be directly included within AADL Packages and Components as Annex sub-clauses. This

language is the same as the one that is used for the definition of the off-line predefined plug-ins

and wizards (LMP). LMP consists of a set of parsers, a Prolog engine and libraries to access

and process model elements. These features are available to create customized assurance cases

functions that can be modified interactively. The LAMP services are organized in three groups

as shown below:

The first group of services control the execution of the LAMP engine:

- Run LAMP: load the contents of all the LAMP annexes that are found in the selected

AADL user files and environment libraries and run the included queries (goals).

- LAMP query: same as above but ignore the goals that are included inside the LAMP

annexes and ask for a query in a dialog box instead.

page 42 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

The second group of services provides a way to load additional facts bases or rules to the one

derived from the selected AADL model and the predefined LAMP annexes. All these

additions are inclusive, so take care that they do not conflict. This is especially useful to

experiment cross-model processing. Note that only one file of each type can be loaded at a

time.

- Add raw XML/XMI facts: parse specified XML file and load corresponding Prolog

facts before next execution of the LAMP queries.

- Add SysML facts: parse specified XMI file, interpret it according to the UML and

SysML metamodels and load corresponding Prolog facts before next execution of the

LAMP queries.

- Add FACE facts: parse specified XML file, interpret it according to the FACE

metamodel and load corresponding Prolog facts before next execution of the LAMP

queries.

- Add CAPELLA facts: parse specified XMI file, interpret it according to the CAPELLA

metamodel and load corresponding Prolog facts before next execution of the LAMP

queries.

- Add simulation events facts: run Marzhin simulator and load corresponding Prolog

facts before next execution of the LAMP queries.

- Add response time facts: run the AADL Threads response time computation wizard and

load corresponding Prolog facts before next execution of the LAMP queries.

- Add native prolog code: load selected Prolog code (facts, rules or both) before next

execution of the LAMP queries.

- Add CSV facts: parse specified CSV file and load corresponding Prolog facts before

next execution of the LAMP queries.

- Clean up all add-ons: remove all previously added Prolog extensions before next

execution of the LAMP queries.

Note that the Add CSV facts feature included in LAMP Lab differs from the Import Table

facts of the import sub-menu (cf. 3.1.1.3). The latter creates an AADL model from Prolog

predicates represented as a CSV table, whereas the former can load an agnostic CSV table

and create predicates named isCSVPredicate with one parameter per column and the

row number for the last parameter.

The third group of services show the various available sources of information in the display

area. Only one source of information is shown at a time.

- Show LAMP console: display output produced by the last execution of LAMP.

- Show AADL declarative model facts: show the list of Prolog predicates that represent

the current AADL declarative model.

- Show AADL instance model facts: show the list of Prolog predicates that represent the

current AADL instance model.

- Show imported XML/XMI facts: show the list of Prolog predicates generated from

previously added raw XML or XMI file.

- Show imported SysML facts: show the list of Prolog predicates generated from

previously added SysML file.

- Show imported FACE facts: show the list of Prolog predicates generated from

previously added FACE file.

- Show imported CAPELLA facts: show the list of Prolog predicates generated from

previously added CAPELLA file.

- Show simulation events facts: show the list of Prolog predicates that represent the

 !

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 43

logged Marzhin simulation events.

- Show response time facts: show the list of Prolog predicates that represent the

computed Thread response time by Cheddar and Marzhin.

- Show imported prolog facts or rules: show the list of Prolog predicates that were

previously added.

- Show imported csv facts: show the list of Prolog predicates that were previously added.

3.1.3.3. Timing Analysis

The timing analysis services make use of two different and complementary tools. One is based

on the Cheddar scheduling analysis tool and the other one is provided by the Marzhin

simulator. These services make use of standard AADL real-time Properties as well as a subset

of the AADL Behavior Annex.

- Processor Load & Thread Response Time Analysis: compute statistics for processor

load and thread response time from the various outputs given by Cheddar and

Marzhin, and show them in a spreadsheet for comparison.

- Simulation Timelines (Cheddar): static simulation computed by Cheddar.

- Theroritical Tests (Cheddar): set of feasibility tests checked by Cheddar.

- Simulation Tests (Cheddar): set of tests based on the static simulation computed by

Cheddar.

- Scheduling Aware Flows Latency Analysis (SAFLA) with LAMP: associate response

time computation done by Cheddar and Marzhin with AADL Flows analysis done by

LAMP to provide an estimate of End-to-End Flows latency.

3.1.3.4. Safety & Security Analysis

This plugin groups both safety and security analysis services.

The safety analysis services aim at interfacing external tools that support model driven safety

analysis. These model transformations make use of the AADL Error Model Annex (EMV2)

and are currently focusing on Fault Tree Analysis (FTA).

page 44 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

- Open PSA export file: generate a file complying with the Open PSA model exchange

format to export fault trees from EMV2 declarations.

- Fault Tree Analysis (Arbre Analyst): generate an Open PSA file as above and launch

the Arbre Analyst tool to display a graphical fault tree. Note that the Arbre Analyst

tool is not included into the AADL Inspector distribution. This tool can be found at the

following address: https://www.arbre-analyste.fr/en.html

Note that once installed onto your computer and checked the terms of the license, you need to

update the corresponding file pathname in the AIConfig.ini file before being able to use

this service, for instance:

variable userConstants { \

 "FTAToolPath" "{C:/Projets/AADLInspector/Safety/arbre_analyste-

2.3.2-win32/Arbre Analyst.exe}" \

The security analysis service makes use of customizable LAMP rules:

- Check security rules with LAMP: execute the LAMP query checkSecurityRules

that is defined in LAMPLib. It is based on a simplistic user defined security model with

a single AADL Property defining the security level associated with a Data classifier.

Note that these security model and rules can be customized to fit specific security policies. As

the rules defined in LAMPLib are read-only, it is necessary to either move the file

LAMPSecurity to a writable workspace before editing it. An alternate solution is to edit it

with another text editor, however AADL Inspector will need to be restarted to take changes

into account in that case.

3.1.3.5. Code Generation

The code generation services are provided by Ocarina back-ends. Please refer to the Ocarina

documentation for detailed explanations about the use of these features.

- PolyORB HI Ada: generate Ada source code files for the PolyORB-HI-Ada

middleware. A dialog box asks about the location of the generated code. A default

location is proposed in the AADL Inspector temporary directory.

- PolyORB HI C: static generate C source code files for the PolyORB-HI-C middleware.

A dialog box asks about the location of the generated code. A default location is

proposed in the AADL Inspector temporary directory.

- Other Ocarina backends: gives access to the other available Ocarina back-ends. The

actual back-end to use can be selected in a dialog box.

 !

 !

https://www.arbre-analyste.fr/en.html

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 45

Note that Ocarina generates the source code architecture and glue code with the Operating

System. However, it requires the applicative functional code to be made available for a

complete build of the software. Access to the functional code can be specified by

Source_Text AADL Properties.

3.1.4. Help menu

The ? menu provides information about AADL Inspector.

- Help: open the help files. Note that the name of the help file directory and the

application that is used to open it can be customized in the AIConfig.ini file. By

default, this application will be the default one for .pdf files on Windows and xpdf

on Linux.

- About: display the version of the software.

- License info: provide information about the license.

- Open install dir: open the installation directory.

- Open config dir: open the configuration directory.

- Open tmp dir: open the temporary directory.

- Open log file: open the messages log file.

- Open doc dir: open the default documentation directory.

- Open code dir: open the default code generation directory.

3.1.5. Button bar

The Main Button Bar provides another entry point for menu actions.

The effect of these actions is described in the corresponding menu section. Button association

with menu bar items is given below from left to right:

- File/New Aadl

- File/New Project

- File/Load

- File/Load from Github

- File/Reload

- File/Save All

- File/Utilities/Load all the AADL Inspector examples

- File/Utilities/Split AADL packages for OSATE

 !

page 46 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

- File/Import/Import SysML model (.sysml, .xmi, .model)

- File/Import/Import FACE model (.face)

- File/Import/Import CAPELLA PA model (.capella)

- File/Import/Import Table facts (.csv)

- File/Import/Import Textual facts (.pro)

- File/Import/Import Binary facts (.sbp)

- File/Export/New AADL instance diagram

- File/Export/Update AADL instance diagram

- File/Export/Generate SIF file

- Edit/Auto format

- Edit/Select root

- Edit/Simulation Control Panel

- Edit/Edit thread properties

- Edit/Edit thread priorities

- Edit/Edit thread placement

- Edit preferences

- File/Quit

3.2 Project browser

The Project Browser offers advanced structuring and navigation features to manage AADL

projects. AADL Inspector projects are organized hierarchically and can contain several kinds

of files. AADL Inspector projects contents are defined in .aic files.

3.2.1. Project browser overview

The Project Browser has two main sections: Projects, where user defined AADL Packages and

Property Sets can be loaded or created, and Environment, where standard or tool dependent

AADL Packages and Property Sets are stored. Contents of the latter cannot be modified from

the AADL Inspector user interface.

Terminal items in the AADL Inspector project hierarchy can be:

- AADL files: containing standard textual AADL declarations (.aadl).

- Scenarios files: defining inputs values and time for the simulator (.asc).

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 47

- Description files: allowing for a textual documentation of the project (.txt).

- Image files: read-only illustration associated with the project

 (.jpg;.jpeg:.xbm;.bmp;.png;.gif).

Note that a single textual description file and a single image file can be inserted within a given

project.

The items of the Project Browser may be in different non-exclusive states that are indicated by

a change of the corresponding icon or colour of the text label:

- loaded project file (icon)

- selected project file (icon)

- loaded AADL file (icon)

- read-only AADL file loaded from a remote git repository (icon)

- selected AADL file (icon)

- loaded scenarios file (icon)

- selected scenarios file (icon)

- default file state (label)

- currently displayed file (label)

- modified file (label)

Note that the scenarios files are not really terminal nodes in the browser tree. Indeed, individual

scenarios are shown as sub-items in the hierarchy although they are all included in the same

file. They can be selected individually if needed.

A contextual menu is associated with each kind of item and is updated according to its states to

only offer the valid actions in each case.

3.2.2. Project file contextual menu

When a project file is selected in the browser, the following contextual menu options are

available, depending whether the file has been loaded (on the left) or has just been created (on

the right).

- New Project: create a new sub-project slot in memory.

- New Aadl: create a new AADL model slot in memory.

- New Scenario: create a new scenario template in memory. Note that scenarios can be

created on instance models only. If not done yet, select the project (green tick) and use

the Show root button on top of the Project Browser.

 !

 !

page 48 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

- New Description: create a new textual description in memory.

- New Image: create a new image slot in memory.

- Load: open a file navigator to load any of the accepted file types.

- Load from Github: open a dialog to load an AADL file from a registered server.

- Reload: reload the project.

- Rename: rename the project file that has just been created.

- Save: save the project file and its contents.

- Save layout: save the selected and opened status of each file contained in the project.

- Unload: remove the loaded project and its contents from the project.

- Remove: remove the (virtual) project that has just been created and its contents.

3.2.3. AADL file contextual menu

When an AADL file is selected in the browser, the following contextual menu options are

available depending on the status of the file. From left to right: a loaded file that is not

displayed, a loaded file that is displayed, a file that has just been created and is not displayed

and a file that has just been created and is displayed.

- Reload: reload the AADL file.

- Rename: rename the AADL file that has just been created.

- Save: save the AADL file.

- Duplicate: create a copy of the AADL file.

- Show/Hide: open or close a corresponding editor in the Source File Area.

- Unload: remove the loaded AADL file from the project.

- Remove: remove the (virtual) file that has just been created.

3.2.4. Scenario file contextual menu

When a scenario is selected in the browser, the following contextual menu options are available

depending whether the file content is not displayed (on the left) or is displayed (on the right).

- Reload: reload the scenario file.

- Update Scenario List: update the scenario contents after editing in the Source File Area.

- Save: save the scenario file.

- Duplicate: create a copy of the scenario file.

- Show/Hide: open or close a corresponding editor in the Source File Area.

- Unload: remove the loaded scenario file from the project.

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 49

3.2.5. Description file contextual menu

When a textual description file is selected in the browser, the following contextual menu

options are available depending whether the file content is not displayed (on the left) or is

displayed (on the right).

- Load description: open a file navigator to load a .txt file.

- Save: save the description file.

- Show/Hide: open or close a corresponding editor in the Source File Area.

- Unload: remove the description file from the project.

3.2.6. Image file contextual menu

When an image file is selected in the browser, the following contextual menu options are

available depending whether the file content is not displayed (on the left) or is displayed (on

the right).

- Load image: open a file navigator to load a .jpg .jpeg .xbm .bmp .png or

.gif file.

- Show/Hide: open or close a corresponding viewer in the Source File Area.

- Unload: remove the image file from the project.

3.3 Source files area

After having been loaded in the Project browser, the files can be opened in the Source file

area. Closing an editor in the Source file area does not unload the corresponding file from the

browser.

3.3.1. Source files area overview

The Source file area is composed of:

- a set of file selector tabs

- a file editing area

- a line number area

page 50 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

To load a file in the editing area a drag and drop action is possible instead of using the

File/Load menu: open the appropriate directory, select the desired file, depress, and hold the

left mouse button then drag the mouse until the AADL Inspector window is reached.

To find all the occurrences of a word in the displayed text, select the desired word and press the

Ctrl-F key to open the search dialog box. Note that the Next button must be pressed to start

the search.

A contextual menu (right mouse button click) is associated with the current file selector tab.

- Hide: closes the currently selected tab.

File editing area

Combined files line number area

File selector tabs

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 51

- Hide All: closes all the opened tabs.

- Hide Others: closes all the opened tabs but the current one.

- Reload: reload last saved version of the corresponding file.

- Save: update the file with current content of the editor.

When a file has been modified, an icon appears on the tab to indicate that the changes have not

been saved. Clicking on the save icon of the tab will save the file in a similar way as the

contextual menus.

Note that clicking on the grey cross at the right-hand side of a tab closes the tab, and has thus

the same effect as the Hide contextual menu item.

Files that can be displayed in the Source files area are:

- textual AADL files: .aadl.

- simulator scenario files: .asc.

- textual description files: .txt.

- image files (read-only):.jpg .jpeg .xbm .bmp .png or .gif

Note that only text files can be modified in the Source files area. No editing functions are

proposed for image files that can only be loaded and displayed.

3.3.2. Editing AADL files

The textual contents of a file editor associated with an AADL file must comply with the syntax

defined by the standard. No verification is done on text input before an analysis tool is

launched.

AADL Inspector accepts AADL files that encompass several packages and property sets.

However, the user must be aware that other AADL tools may have a more restrictive policy,

such as enforcing the single package or property set per file rule.

When an AADL model is edited, line numbering is activated. Line numbers correspond to

those of a virtual file that would be the concatenation of all the actual AADL files that are

selected in the Project browser.

Note that a cross-reference contextual menu opens the search dialog box on the identifier

pointed by the mouse. This is especially useful when editing Prolog code inside LAMP

AADL annex subclauses:

 !

page 52 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

3.3.3. Editing Simulator Scenario files

The textual contents of a file editor associated with a scenario file must comply with a specific

XML syntax. No verification is done on text input before the scenario is saved.

The structure of a scenario file is as follows:

<scenarii>

 <interface>

 <feature type="data" id="input"

 aadlID="my_platform.cpu.my_process.t1.input"/>

 <feature type="data" id="output"

 aadlID="my_platform.cpu.my_process.t1.output"/>

 …

 </interface>

 <scenario name="s1" description="">

 <probes>

 <probe ref="output"/>

 …

 </probes>

 <tick value="0" next=”tick+10”>

 <action ref="input" value="1"/>

 …

 </tick>

 …

 </scenario>

</scenarii>

When a new scenario file is created from the Project browser (project contextual menu), its

contents is initialized with the list of ports that can be triggered within the scenarios. This list is

provided in the <interface> section and corresponds to all the input ports of the threads

that are found in the current set of selected AADL files. A short name is given for each port so

that it can be easily reused in the scenario specification.

A list of independent scenarios can then be added. Each scenario can be selected individually

in the Project Browser. A scenario is defined by an optional <probes> section and a list of

<tick> sections.

The <probes> section can be used to open a visualisation probe on the specified port when

the scenario starts. Probes can also be opened at any time while the simulation is running.

Probes may be attached to input or output ports.

The <ticks> sections indicated what value that is inserted automatically into an input port

variable at the instant denoted by the tick value. In case of an input event port, no value is

needed. It is also possible to specify a sequence of ticks thanks to the next attribute which

may contain an arithmetic formula to define the value of the next tick. For instance, a periodic

activation of an event port will be obtained by the following statement:

<tick value="0" next=”tick+10”>

 <action ref="input"/>

</tick>

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 53

3.4 Processing tools area

The Processing Tools Area allows for selecting the processing tool to be applied to the set of

AADL files that are selected in the Project Browser and display the corresponding execution

result.

3.4.1. Processing tools area overview

The Processing tools area is composed of:

- a set of tool selector tabs

- one or several service control buttons

- a read-only result display area

- Tools selector tabs can be configured by adding or removing tool description files

(.ais files) in the config subdirectories of the installation directory

If one of the analysed files is modified, the background colour of the result display area

becomes gray to indicate that the information is potentially out of date.

When the selected analysis tool cannot be executed normally for the current AADL

specification or if the AADL syntax is not correct, the corresponding error message will appear

in an additional temporary Report tab.

When line numbers are shown in the generated report, clicking on them will highlight the

corresponding lines in the Source Files Area.

Note that while working on large AADL projects, processing actions may take a significant

time (up to a few minutes). Depending on the processing tool that is running, other user actions

may not be allowed, and the display may not be refreshed during that time.

Tools selector tabs

Result display area

Services control buttons

 !

Navigate to instance in code

Navigate to classifier in code

page 54 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

3.4.2. Static Analysis

The Static Analysis tool encompasses a set of independent rules checkers that verify various

facets of the semantic correctness of the source AADL specification. Each rules checker is

implemented as a service of the static analysis tool and can be activated by pressing the

correspondent button:

- call the AADL parse and instantiate LMP service.

- call the AADL parse and verify Ocarina service.

- call the AADL instantiate Ocarina service.

- call the AADL Consistency rules LMP checker.

- call the AADL Legality rules LMP checker.

- call the AADL Naming rules LMP checker.

- call the ARINC 653 rules LMP checker.

When an error, warning or information message is displayed by a processing tool, the line

number of the corresponding AADL code is shown in the Processing Tools Area. Clicking on

a line number updates the display of the Source Files Area to make the relevant line visible.

More detailed explanations about the scope of each of these checkers can be found in separate

documentation.

3.4.3. LAMP Lab

The LAMP Lab(oratory) tool can be used to experiment the use of the LAMP language to

implement advanced create customized assurance cases that may be modified interactively by

the bend-user. LAMP Lab can process heterogenous inputs including AADL, SysML, FACE,

CAPELLA, any XML based domain-specific models, as well as Prolog fact bases that can be

loaded in several forms.

3.4.3.1. LAMP Lab overview

LAMP stands for Logic AADL Model Processing. It is an online processing language that can

be directly included within AADL Packages and Components as Annex sub-clauses. This

language is the same as the one that is used for the definition of the predefined plug-ins and

wizards (LMP). LMP consists of a set of parsers, a Prolog engine and libraries to access and

process model elements.

LAMP Lab provides a full access to the pre-existing Prolog parsers and libraries of the LMP

framework, as well as to the LAMP Lib(rary) that are included in AADL Inspector standard

distribution.

A LAMP annex sub-clause contains standard Prolog source code that will be interpreted

dynamically after the Run LAMP or LAMP query button is pressed. A template of a

LAMP annex sub-clause can be used to start a new LAMP project:

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 55

This creates a new AADL file that can be customized by the designer to create his own LAMP

analysis rules. Note that navigation across Prolog code is made easier thanks to a contextual

search menu looking for references to a given Prolog rule or for its definition (rule :-).

As shown by the picture below, LAMP Lab merges end-user facts and rules on top of a Prolog

engine and pre-defined libraries. Facts come from syntactic transformation from a variety of

data sources into Prolog text or bytecode. Rules come from LAMP annexes embedded inside

applicative AADL specifications and predefined Prolog, LMP and LAMP libraries.

page 56 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

The LAMP Lab services are organized as follows:

- : load the contents of all the LAMP annexes that are found in the selected AADL

user files and environment libraries and run the corresponding queries (goals).

- : do the same as above but ignore the goal definitions found in the LAMP annexes

and ask for a query in a dialog box instead.

- : parse specified XML file and load corresponding Prolog facts for next executions

of the LAMP queries.

- : parse specified XMI file, interpret it according to the UML and SysML

metamodels and load corresponding Prolog facts for next executions of the LAMP

queries.

- parse specified XML file, interpret it according to the FACE metamodel and load

corresponding Prolog facts for next executions of the LAMP queries.

- parse specified XMI file, interpret it according to the CAPELLA metamodel and

load the corresponding Prolog facts for next executions of the LAMP queries.

- run Marzhin simulator and load corresponding Prolog facts for next executions of

the LAMP queries.

- run the AADL Threads response time computation wizard and load corresponding

Prolog facts for next executions of the LAMP queries.

- load selected Prolog code file for next executions of the LAMP queries.

- load selected CSV file, convert each row into a Prolog fact and load corresponding

Prolog code for next executions of the LAMP queries.

- remove all previously added Prolog extensions for next executions of the LAMP

queries.

- display output produced by the last execution of LAMP.

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 57

- show the list of Prolog predicates that represent the current AADL declarative

model. The definition of these predicates can be found on the Ellidiss wiki:

https://www.ellidiss.fr/public/wiki/aadlDeclarativeModel

- show the list of Prolog predicates that represent the current AADL instance model.

- show the list of Prolog predicates generated from previously added raw XML or

XMI file.

- show the list of Prolog predicates generated from previously added SysML file.

- show the list of Prolog predicates generated from previously added FACE file.

- show the list of Prolog predicates generated from previously added CAPELLA file.

- show the list of Prolog predicates that represent the logged Marzhin simulation

events.

- show the list of Prolog predicates that represent the computed Thread response time

by Cheddar and Marzhin.

- show the list of Prolog predicates that were previously added.

- show the list of Prolog predicates converted from previously added CSV file.

LAMP annex sub-clauses that are defined at an AADL Package level specify end-user

processing rules libraries. Predefined LAMP libraries (LAMP Lib) are provided in the

Environment section of the Project Browser. Predefined libraries provide a complete access to

all the AADL modelling elements (declarative and instance model, Behavior annex and Error

Model V2 annex), as well as various utility and processing rules (AADL generator, security

and flow analysis, SysML to AADL, FACE to AADL and CAPELLA to AADL model

transformations, AADL reverse engineering, and so on). User defined LAMP libraries can be

added inside standard AADL files belonging to the project. Predefined libraries are always

implicitly selected whereas user defined libraries must be explicitly selected to be usable.

https://www.ellidiss.fr/public/wiki/aadlDeclarativeModel

page 58 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

LAMP annex sub-clauses that are inserted at an AADL Component level specify goals that

control the execution of the LAMP processing engine. All the goals found within the selected

set of AADL files will be executed in sequence, except if the LAMP query is explicitly

defined in a predefined menu or a dialog box.

Both rules and goals use the same standard Prolog language syntax and semantics with a few

SB-Prolog specific features and behaviors. However, other restrictions apply while being used

inside a LAMP annex:

- If it exists, a LAMP annex within an AADL Component (goal) cannot be empty and

must not end with a dot.

- The size of a LAMP annex subclause cannot exceed 65536 characters. However, it is

possible to add several annexes within the same Component or Package.

LAMP predefined libraries

Flow latency analysis

Security analysis

SysML to AADL transformation

FACE to AADL transformation

AADL text generator

 !

AADL reverse engineering

CSV parser

Capella to AADL transformation

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 59

An example of use of a user-defined LAMP program using pre-defined LAMPLib rules is

shown below:

LAMP goal definition in an AADL Component

LAMP rule definition in an AADL Package

Calling LAMP rules defined in LAMP libraries.

Result of LAMP execution

page 60 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

The following sub-sections provide more details about some of the proposed processing rules

in LAMPLib. Note that corresponding source code is read-only when accessed from within the

AADL Inspector text editor. To customize these rules, apply one of the three possible

solutions:

- Create a copy of the relevant LAMPLib files into a writable workspace and take care to

rename all the declared rules not to interfere with LAMPLib ones. There is no need to

restart AADL Inspector to execute the modified rules. This is the recommended

solution.

- Move the relevant LAMPLib files to a writable workspace, restart AADL Inspector,

do your changes, test them interactively and then replace the modified files in the

LAMPLib area.

- Edit the relevant LAMPLib files with a separate text editor and restart AADL

Inspector each time you need to execute the modified rules.

3.4.3.2. Flow latency analysis

The getFlowsLatency query performs Scheduling Aware Flow Latency Analysis

(SAFLA). This rule finds all the End-to-End flows in the current root system, compute their

maximum latency using Marzhin simulation, and prints the result in the LAMP console. The

source code is available in file:

Environment/Ellidiss/LAMPLib/LAMPResponseTime.aadl.

There are three ways to activate this analysis tool. The first one consists in adding a LAMP

goal within the AADL specification to be processed and then to press the Run LAMP button of

the LAMP Lab button bar. This solution is used in the examples end_to_end_flow.aic

and safety_security.aic.

abstract lamp_goal

annex lamp {** getFlowsLatency **};

end lamp_goal;

The second way to launch this service is to use the LAMP query button:

The last one fully hides the LAMP machinery and is available via a dedicated button in the

Timing Analysis tab:

3.4.3.3. Security analysis

The checkSecurityRules query performs security analysis. As the AADL Security

Annex has not been published yet at the time this feature was developed, it uses a simplistic

user defined security model with a single property defining the security level associated with

 !

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 61

Data classifiers and a few examples of possible corresponding verifications. The source code is

available in file:

Environment/Ellidiss/LAMPLib/LAMPSecurity.aadl.

There are three ways to activate this analysis tool. The first one consists in adding a LAMP

goal within the AADL specification to be processed and then to press the Run LAMP button of

the LAMP Lab button bar. This solution is used in the example safety_security.aic.

abstract lamp_goal

annex lamp {** checkSecurityRules **};

end lamp_goal;

The second way to launch this service is to use the LAMP query button:

The last one fully hides the LAMP machinery and is available via a dedicated button in the

Safety & Security Analysis tab:

3.4.3.4. SysML to AADL

The sysml2aadl query performs a model transformation between an input SysML Prolog

fact base and an output AADL Prolog facts base. The input facts must be imported at first. The

output facts must be post-processed with the runAADLgen LAMP query to generate a proper

AADL file. The source code of the mapping rules between the two languages is available in

file:

Environment/Ellidiss/LAMPLib/SysML2AADL.aadl

There are two ways to activate this transformation tool. The first one consists in adding a

LAMP goal within an AADL specification, manually load the SysML model thanks to the

Add SysML facts button of the LAMP Lab button bar and then to press the Run LAMP button of

the same LAMP Lab button bar.

abstract lamp_goal

annex lamp {** sysml2aadl, runAADLGen **};

end lamp_goal;

The second way fully hides the LAMP machinery and is available via a dedicated button in the

File/Import/Import SysML model (.sysml, .xmi, .model) menu, or corresponding button of the

main button bar:

page 62 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

3.4.3.5. FACE to AADL

The face2aadl query performs a model transformation between an input FACE Prolog fact

base and an output AADL Prolog facts base. The input facts must be imported at first. The

output facts must be post-processed with the runAADLgen LAMP query to generate a proper

AADL file. The source code of the mapping rules between the two languages is available in

directory:

Environment/Ellidiss/LAMPLib/FACE2AADL/

There are two ways to activate this transformation tool. The first one consists in adding a

LAMP goal within an AADL specification, manually load the FACE model thanks to the Add

FACE facts button of the LAMP Lab button bar and then to press the Run LAMP button of the

same LAMP Lab button bar.

abstract lamp_goal

annex lamp {** face2aadl, runAADLGen **};

end lamp_goal;

The second way fully hides the LAMP machinery and is available via a dedicated button in the

File/Import/Import FACE model (.face) menu, or corresponding button of the main button bar:

3.4.3.6. CAPELLA to AADL

The face2aadl query performs a model transformation between an input FACE Prolog fact

base and an output AADL Prolog facts base. The input facts must be imported at first. The

output facts must be post-processed with the runAADLgen LAMP query to generate a proper

AADL file. The source code of the mapping rules between the two languages is available in

file:

Environment/Ellidiss/LAMPLib/CapellaPA2AADL.aadl

There are two ways to activate this transformation tool. The first one consists in adding a

LAMP goal within an AADL specification, manually load the CAPELLA model thanks to the

Add CAPELLA facts button of the LAMP Lab button bar and then to press the Run LAMP

button of the same LAMP Lab button bar.

abstract lamp_goal

annex lamp {** capellapa2aadl, runAADLGen **};

end lamp_goal;

The second way fully hides the LAMP machinery and is available via a dedicated button in the

File/Import/Import CAPELLA model (.capella) menu, or corresponding button of the main

button bar:

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 63

3.4.4. Timing Analysis

When the Timing Analysis tab is selected, five buttons are presented to activate timing analysis

services.

- compute statistics for processor load and thread response time from the various

outputs given by Cheddar and Marzhin, and show them in a spreadsheet for

comparison.

- static simulation computed by Cheddar.

- set of feasibility tests checked by Cheddar.

- set of tests based on the static simulation computed by Cheddar.

- Scheduling Aware Flows Latency Analysis (SAFLA): associate response time

computation done by Cheddar and Marzhin with AADL Flows analysis done by

LAMP to provide an estimate of End-to-End Flows latency.

These features are detailed in the next sub-sections:

3.4.4.1. Processor load and Thread response time

This service shows a summary of the Timing Analysis in a single table. For each Processor, the

maximum load rates that are computed by Cheddar, and estimated by the Marzhin simulator

are provided. For each Thread, the minimum, average and maximum response time computed

by Cheddar and estimated by the Marzhin simulator are also provided and can be compared

with the deadline.

Note that this table may contain empty cell if the corresponding tool or service has not been

launched or cannot provide relevant data. The table is dynamically updated when the Marzhin

simulator is running.

3.4.4.2. Cheddar simulation timelines

Cheddar can produce a graphical representation of the timing behaviour of the real-time

system being analysed. This graphical schedule table is a result of the static simulation and

may not be available on every kind of system.

 !

page 64 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

Timelines are displayed for each Processor, Process, Thread, shared Data and Bus

subcomponent in the current root System. The time scale and meaning of each used colour is

shared with the dynamic simulator which is described below.

3.4.4.3. Scheduling Theoretical Tests

Theoretical tests compute the processor utilization factor and threads response time when the

corresponding conditions are met. This service is provided by Cheddar.

3.4.4.4. Scheduling Simulation Tests

Simulation tests provide information about the number of pre-emption and context switches as

well as threads response time. This static simulation can only be run for periodic systems. This

service is provided by Cheddar.

More detailed explanations about the scope of each of these tests can be found in a separate

user document.

3.4.4.5. Scheduling Aware Flows Latency Analysis (SAFLA) with LAMP

Ask for the duration of the Marzhin simulation and run it, then apply the

getFlowsLatency LAMP query. The source code of this Prolog rule is available in file:

Environment/Ellidiss/LAMPLib/LAMPResponseTime.aadl.

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 65

3.4.5. Safety & Security Analysis

The Safety & Security Analysis tool aims at interfacing external programs that support model

driven safety analysis as well as checking security rules. The safety related model

transformation makes use of the AADL Error Model Annex (EMV2). The security related

model processing is based on LAMPLib.

The safety analysis tool that is currently supported is Arbre Analyst. This tool is not included

within the AADL Inspector distribution. It can be found at the following address:

https://www.arbre-analyste.fr/en.html

Note that once installed onto your computer and checked the terms of the license, you need to

update the corresponding file pathname in the AIConfig.ini file before being able to use

this service, for instance:

variable userConstants { \

 "FTAToolPath" "{C:/Projets/AADLInspector/Safety/arbre_analyste-

2.3.1-win32/Arbre Analyst.exe}" \

Arbre Analyste can load models that are expressed with the Open PSA format. The Safety &

Security Analysis tool thus provides the following services:

- generate a file complying with the Open PSA model exchange format.

- generate an Open PSA file as above and launch the Arbre Analyste tool to display

a graphical fault tree.

- apply the checkSecurityRules LAMP query. The source code of this Prolog

rule is available in file:

Environment/Ellidiss/LAMPLib/LAMPSecurity.aadl.

An example of use of the Safety & Security Analysis tool can be found in the

safety_security.aic example. Use of Arbre Analyste is presented below. It first

shows a fragment of the AADL model and then the graphical representation of the

corresponding Fault Tree that is generated by Arbre Analyste.

 !

https://www.arbre-analyste.fr/en.html

page 66 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

Similar connection to other safety analysis tools can be added to AADL Inspector if required.

Please contact the technical support if you wish to add another connector.

3.4.6. Code Generation

The code generation services are provided by Ocarina back-ends. Please refer to the Ocarina

documentation or the OpenAADL web site www.openaadl.org for detailed explanations about

the use of these features.

http://www.openaadl.org/

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 67

- : generate Ada source code files for the PolyORB-HI-Ada middleware. A dialog

box asks about the location of the generated code. A default location is proposed in the

AADL Inspector temporary directory.

- : generate C source code files for the PolyORB-HI-C middleware. A dialog box

asks about the location of the generated code. A default location is proposed in the

AADL Inspector temporary directory.

- : gives access to the other available Ocarina back-ends. The actual back-end to use

can be selected in a dialog box.

Note that Ocarina generates the source code architecture and glue code with the Operating

System. However, it requires the applicative functional code to be made available for a

complete build of the software. Access to the functional code can be specified by

Source_Text AADL Properties.

3.4.7. Doc Generation

A standard analysis report can be automatically generated thanks to the documentation

generator.

- : The documentation generator can also be activated from the File/Print menu and applies

to the current AADL system instance. It produces a pre-formatted report that contains the

following sections:

- The output of the Metrics static analysis tool that recalls the AADL scope of the report.

- The description of the scenarios that are selected.

- A snapshot of the simulation time lines from tick 0 to tick 100.

- The timing analysis summary table.

Note that the graphical sections that are inserted into the documentation depend on the actual

layout of the tool window on the screen. Take care to properly resize the window before

starting the documentation generator, so that the corresponding elements are sufficiently

visible.

To open the generated document, use the ?/Open doc dir menu and select the most recent

.pdf file that has been generated.

To customize the contents of the generated report, for instance to modify the size of the printed

time lines, it is necessary to edit the plugin configuration file: use the ?/Open config dir and

edit the file plugins/DocGeneration.ais.

 !

 !

page 68 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

3.5 Simulation area

The Simulation Area is dedicated to controlling and displaying the output of the Marzhin

dynamic simulator. This simulator complements the static simulator provided by Cheddar but

is event-driven and can analyse a wider variety of real-time systems. The counter part is that

the obtained timelines are not the result of mathematical computations and are thus less

dependable.

3.5.1. Simulation area overview

The simulation area is composed of:

- a set of control buttons (same as in the Simulation Control Panel).

- a time scale (shared with the Cheddar Schedule Table).

- a deployable tree showing the AADL instance hierarchy.

- an external I/O button on each Process that has connected ports.

- an activity button on each Thread to open a tachymeter.

- probes on input and output ports.

- a simulator output area showing timelines for each Processor, Process, Thread, shared

Data and Bus subcomponent in the current root System.

In addition, the Simulation Control Panel dialog can be used to set up the time scale and filter

the entities displayed for the simulation. This feature can be activated from the Edit menu or

the corresponding button in the Main buttons Bar. Refer to section 3.1.2.4 for more details.

3.5.2. Simulator action buttons

The simulator toolbar is composed of the following buttons:

start the simulator

 pause the simulator

stop the simulator

refresh the simulation input

 go to the current tick

Time scale Control buttons

Process I/O

button

Thread activity

button

Movable

time index

Remaining time

until deadline Port probe

Instance model tree

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 69

 toggle optimized mode (see below)

Since version 1.7, AADL Inspector includes an optimized mode for Marzhin. When this

mode is set (default case), the simulator automatically jumps to the next significant event. Note

that this mode is automatically unset when a scenario has been selected.

3.5.3. External I/O

When a Process has ports that are connected downstream in the instance hierarchy, they can be

displayed in a specific dialog box to allow the user to send in data and events and to show the

result of out data and events. This dialog box can be opened by pressing the I/O button

.Note that the value that is displayed for an out event port is the time of its last update.

3.5.4. Thread activity

A graphical tachymeter can be associated with each running Thread thanks to the activity

button in the instance tree. Each indicator shows the instant response time of the Thread and

is updated at each period.

3.5.5. Port probe

A probe can be attached to in and out ports to show the current value that is stored in the port

variable. For event and event data ports, a table shows the contents of the port FIFO, according

to the specified Queue_Size property (default value is 1).

A probe can be opened by clicking on a port while the simulator is running or preset in a

scenario file.

page 70 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

<scenarii>

 <interface>

<feature type="eventdata" id="buffer"

 aadlID="my_platform.cpu.my_process.receiver.receive"/>

<feature type="data" id="output"

 aadlID="my_platform.cpu.my_process.receiver.output"/>

 </interface>

 <scenario name="default" description="">

 <probes>

 <probe ref="buffer"/>

 <probe ref="output"/>

 </probes>

 </scenario>

</scenarii>

3.5.6. Simulation timelines

A separate timeline is shown for each Processor, each partition (Process), each Thread, each

shared Data component, as well as for each Bus, each Bus channel and each Bus message. The

colour code that is used for the timelines can be configured in the AIConfig.ini file and

displayed in the help tab of the Simulation control panel. Timelines can be saved in VCD

format (cf. 3.1.2.5).

Note that the same representation is used for respectively Processors and Buses, Processes and

Bus channels and Threads and Bus messages.

Default time lines colour mapping is as follows:

3.5.7. Navigation to the AADL source code

There is a contextual menu (right mouse button) associated with the entities of the instance

model tree. It allows direct access to the corresponding classifier and instance declarations in

the AADL source text.

 !

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 71

3.6 Status bar and Error Report

The status bar located in the lower part of the window shows various informational or error

messages generated by AADL Inspector:

When relevant, detailed error messages are displayed in the Report tab.

page 72 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

4 Used Key Words and Acronyms

AADL Architecture Analysis and Design Language: SAE AS-5506 (more)

AADL Inspector An AADL centric model analysis framework (more)

AADLib Repository of AADL resources (more)

AMP Asymmetric Multi Processor

ARINC 653 Avionics application software standard interface (more)

Ada A programming language (more)

Arbre Analyst A Fault Tree Analysis tool (more)

BMP Bound Multi Processor

C A programming Language (more)

Capella A Model Based System Engineering tool (more)

Cheddar A timing analysis tool (more)

CSV Comma Separated Value

DM Deadline Monotonic

EMOF Essential Meta-Object Facility (more)

EMV2 Error Modeling AADL annex v2 (more)

ETFL Ellidiss Technologies Floating License

Ecore Eclipse Modeling Framework metamodel language (more)

Ellidiss Technologies A company editing AADL and HOOD tools (more) (again more)

ESA European Space Agency (more)

FACE™ Future Airborne Capability Environment (more)

FIFO First In First Out

FTA Fault Tree Analysis

HOOD Hierarchical Object Oriented Design (more)

ISAE Institut supérieur de l'aéronautique et de l'espace (more)

JRE Java Runtime Environment

Java A programming language (more)

LAMP Logical AADL Model Processing (more)

LMP Logic Model Processing (more)

Linux An Operating System

MARTE Modeling and Analysis of Real-Time Embedded systems (more)

Magic Draw A SysML modeling tool (more)

Marzhin An AADL runtime simulator

OMG Object Management Group (more)

OSATE Open Source AADL Tool Environment (more)

Ocarina A stand-alone AADL model processor (more)

OpenAADL AADL resourses web site (more)

OpenPSA Open initiative for Probabilistic Safety Assessment (more)

PDF Portable Document Format (more)

PolyORB-HI-Ada High-integrity middleware for Ocarina Ada code generator (more)

PolyORB-HI-C High-integrity middleware for Ocarina C code generator (more)

Prolog A programming language (more)

RM Rate Monotonic

RTOS Real Time Operating System

RTS Real Time System

SAE AS-5506 A SAE International standard: AADL (more)

SAFLA Scheduling Aware Flow Latency Analysis

https://www.sae.org/standards/content/as5506c/
https://www.ellidiss.fr/public/wiki/inspector
https://github.com/OpenAADL/AADLib
https://www.aviation-ia.com/sae-search/content/ARINC%20653
https://www.iso.org/standard/61507.html
https://www.arbre-analyste.fr/en.html
https://www.iso.org/standard/74528.html
https://www.eclipse.org/capella/
http://beru.univ-brest.fr/cheddar/
https://www.omg.org/spec/MOF/2.4.1/PDF
https://www.sae.org/standards/content/as5506/1a/
http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html#details
https://www.ellidiss.com/
https://www.ellidiss.fr/
https://www.esa.int/
https://www.opengroup.org/face
https://www.ellidiss.fr/public/wiki/hood
https://www.isae-supaero.fr/en/
https://www.oracle.com/java/
https://www.ellidiss.fr/public/wiki/lamp
https://www.ellidiss.fr/public/wiki/LMP
https://www.omg.org/spec/MARTE/
https://www.nomagic.com/product-addons/magicdraw-addons/sysml-plugin
https://www.omg.org/
https://osate.org/
http://www.openaadl.org/ocarina.html
http://www.openaadl.org/
http://www.open-psa.org/
https://www.iso.org/standard/75839.html
https://github.com/OpenAADL/polyorb-hi-ada
https://github.com/OpenAADL/polyorb-hi-c
https://www.iso.org/standard/21413.html
https://www.sae.org/standards/content/as5506c/

AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023 – page 73

SB-Prolog A prolog engine (more)

SIF Standard Interchange Format between HOOD tools

Stood A HOOD and AADL software design tool (more)

SysML Systems Modeling Language (more)

TSP Time and Space Partitioning

Telecom ParisTech An engineering school (more)

UML Unified Modeling Language (more)

VCD Value Change Dump format (more)

Virtualys An Ellidiss Technologies partner company (more)

Windows An Operating System (more)

XMI XML Metadata Interchange (more)

XML Extensible Markup Language (more)

https://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/lang/prolog/impl/prolog/sbprolog/0.html
https://www.ellidiss.fr/public/wiki/stood
https://www.omgsysml.org/
https://www.telecom-paris.fr/
https://www.omg.org/spec/UML/
https://web.archive.org/web/20120323132708/http:/www.beyondttl.com/vcd.php
https://www.virtualys.fr/
https://www.microsoft.com/en-us/windows/
https://www.omg.org/spec/XMI
https://www.w3.org/TR/xml/

page 74 - AADL Inspector 1.9 User Manual © Ellidiss Technologies – April 2023

Ellidiss Technologies

24 quai de la douane

29200 Brest

Brittany

France

http://www.ellidiss.com

aadl@ellidiss.com

+33 298 451 870

