
Model Verification:
Return of experience

P. Dissaux1, P. Farail2

1: Ellidiss Technologies, 24, quai de la douane, 29200 Brest, France
2: Airbus Operations SAS, 316 route de Bayonne, 31060 Toulouse, France

Abstract

This paper introduces an original, although not new,
technology that was initially developed to implement
Model Verification tools.

This technology, called LMP, has been integrated in
critical software design and analysis tools over the
last twenty years and used in particular for the
development of DO 178 certified embedded
applications at Airbus.

Use of LMP has now been extended to support the
various aspects of Model Processing, such as
performing model queries, model verifications and
model transformations. It is now used in particular for
the implementation of the AADL Inspector product.

Introduction

Model Driven Engineering is now recognized as
being a way to improve the development process of
industrial critical software. This concern is especially
strong for embedded and/or real-time software that
are designed for avionics, space, military, railways,
automotive and medical devices applications.

The goal of these technological changes is to
enhance at the same time the quality and the
productivity of the software development activities.
However, applying models in the context of the
development of critical systems implies that it is
possible to verify that these models are correct and
usable. These correctness and usability criteria are
not absolute but obviously depend on the actual role
of the model in the development process which
defines their level of abstraction and level of
completeness.

In the first section, the role of early verification to
reach this goal is highlighted. In the second section,
a specific model verification approach is presented.
In the third section, concrete industrial return of
experience in using this technology in a civilian

avionics certification context is described. Then,
generalized use of this verification technique for
various model processing functions that are
implemented in a commercial tool is also introduced.
Finally, a few elements about the assessment of the
LMP technology are provided in section five.

1. Model Verification

When Model Driven Engineering principles are
applied to the traditional V cycle that is still in use in
the context of large scale industrial projects, it mostly
consists in a better formalization of the architectural
design phases of the software development process.

Proper use of Models for these activities is well
recognized as beneficial by enforcing engineers to
well describe the architecture of the software before
entering actual programming activities. The role of a
Model is thus to offer a set of higher level
abstractions, associated with corresponding textual
or graphical notations that can improve many
aspects of the software life-cycle:

- Requirements traceability
- Reuse of subsystems and libraries
- Collaborative development and subcontracting
- Testability
- Maintainability

However, all these benefits are quite often
theoretical and depend on the actual integration of
the modelling solution and tools within the industrial
process and their adoption by the development
teams.

Nevertheless the most promising improvements
brought by Model Driven Engineering approaches is
the ability to perform early verifications of the
software application at a model level. Model
Verification can indeed bring a high value added to
the development process by increasing the
confidence in architectural design choices and
contribute to the certification process.

Page 1/10

Moreover, efficient Model Verification activities are
the first step to achieve before putting in place
automatic code generation techniques. They provide
a way to ensure the semantic compliance between
the representation of the applicative software at a
model level and its corresponding source code.

The semantic definition of a model is given by a set
of more or less formally expressed structural,
naming, legality and consistency rules, that can be
enriched by more specialized constraints such as,
for instance, those enforced by the scheduling theory
for real time systems.

Model Verification activities in the development
process thus consists in defining and implementing
these rules with an appropriate technology, and
applying them to the application being developed.
The quality of the implementation of the Model
Verification tools obviously becomes a key concern
by itself.

The ideal approach would consist in implementing
implicit Model Verification by using formal techniques
for the specification of the model. Unfortunately,
most current model implementation languages
restrict this verification “by construct” to a very
limited range of semantic rules. In addition some
categories of rules, such as completeness, cannot
be verified at any stage of the model construction. It
thus becomes necessary to add dedicated Model
Verification tools that work on an appropriate
representation of the model to produce a compliance
report for the complete set of semantic rules.

Another important characteristic of Model Verification
activities is its needs to be perfectly adapted to the
industrial development process. In order to avoid
rejection by development teams and improve the
benefit of the approach, the precise list of verification
rules to be applied may need to be tuned with
different levels of variability:

- Compliance rules with the core definition of the
modelling language.
- Compliance rules with specific analysis facets (i.e.
scheduling analysis, safety analysis, power
consumption, …).
- Compliance with corporate or project specific
methodological rules (quality insurance, certification
process, …).

All these constraints express Model Verification
requirements that are fully part of the critical
software development process definition. It is thus
mandatory that the corresponding Model Verification
implementation technology ensures proper
traceability towards these requirements.

Model Verification can also be ensured by creating a
dedicated model transformation to a input language
of an existing verification tool. The Model Verification
implementation technology must thus ideally not only
support constraints checking, but also be used to
perform other Model Processing actions such as
model queries and model transformations.

In the next section, an original approach to achieve
this goal is presented.

2. Logic Model Processing (LMP)

2.1. LMP Overview

With Model Driven Engineering, a model is an
instance of a meta-model. The meta-model
expresses a first set of structural rules that will be
verified “by construct”. Such a meta-model is very
often expressed with MOF [1] or Ecore [2] languages
for UML [3] based models. However, traditional BNF
[4] descriptions can play exactly the same role for
text based models. In the area of Model Verification,
several technologies such as OCL [5], ATL [6], QVT
[7], Kermeta [8], TOM [9], REAL [10] have been
developed to support model constraints checking or
model transformations. Other solutions like
EXPRESS [11] can encompass both the meta-model
specification and its exploitations.

In this paper, we focus on an alternate approach that
can be used to implement any model processing
feature, including constraints checking and model
transformations. This solution can also be used to
create consistent automatic code and documentation
generators.

This technology, known as LMP (Logic Model
Processing), is an extension of a solution that was
firstly developed twenty years ago to implement
Hierarchical Object Oriented Design (HOOD) [12]
rules checkers. Although the term “Model Driven
Engineering” had not been invented at that time yet,
HOOD is a graphical and textual language to
formalize software architectural and detailed design.
The HOOD Reference Manual also contains a list of
design rules with which a correct model must
comply. Initially promoted by the European Space
Agency, HOOD still plays a important role in the
software design activities of major European projects
such as the Eurofighter and the Airbus family.

This approach is based on the use of the prolog
language [13] to formally specify rules to be applied
to an appropriate representation of the applicative
model. This representation of the model is
composed of Prolog facts (rules that are always
true).

Page 2/10

Prolog (Programmation Logique) is a declarative
language that can be used to express rules applying
on predicates. Rules can then be combined using
Boolean Logic. Prolog syntax is very simple and
most programs can be specified using AND, OR and
NOT logical operators. Executing a Prolog program
consists in specifying a query on one of the rules
and letting the interpreter find all the solutions for
which this query is logically true.

In the context of Model Driven Engineering, these
principles are applied as follow:

- The meta-model classes generate prolog fact
definitions whose parameters names correspond to
classes attributes name.
- An instantiated model consists in a populated
prolog fact base, where facts parameters values
correspond to classes attributes values.
- The model processing program is expressed as a
set of prolog rules whose predicates are others rules
or facts.

The following very basic example shows an
illustration of LMP. Given the following meta-model
expressing that a Program is Composed of
Subprograms:

The corresponding LMP facts definition would be as
follow:

isProgram(Name).
isSubprogram(Name,Program).

A set of models, instances of this meta-model could
be represented by the following populated prolog
facts base:

isProgram('P1').
isProgram('P2').
isProgram('P3').
isSubprogram('S1','P1').
isSubprogram('S2','P2').
isSubprogram('S3','P2').

An example of a Model Verification rule applying on
such models could be:

R1: A Program must contain at least one
Subprogram.

The LMP implementation of such a rule would simply
be the query searching for all the cases that make

this rule fail. Note that a comma between two prolog
rules represents a logical AND operator:

ruleR1 :- isProgram(P),
 not(isSubprogram(_,P)).

Which would give us the following result:

P = 'P3'

This example is an illustration of the use of LMP for
the implementation of constraints checkers. A similar
approach can be followed to realize model
transformations, code and documentation
generators, and source code reverse engineering.

The most important drawback of this technology
comes from possible bad performance issues that
can however be minimized by using appropriate
prolog coding rules.

The main benefits brought by the LMP approach are:

- A clear separation between the model to be
processed (facts base) and the model processing
program (rules base).
- A strong traceability between model processing
requirements and their implementation (one rule per
requirement).
- The declarative and logical programming style
offered by the prolog language.
- The ability to define modular set of processing rules
and to link them together at run time.
- The ability to use a same implementation language
for all kinds of model processing, i.e. navigation
within the model language constructs (query
language), verification of model properties
(constraint language), model to model or model to
text transformations (transformation language).

These benefits are illustrated in sections 3 and 4
that describe industrial use of this technology, and
then analysed in more details in section 5.

2.2. LMP Implementation

The LMP toolbox is composed of a set of executable
files and libraries of predefined prolog rules. The
prolog environment that is currently used is sbprolog
[14]. With this environment, it is possible to operate
on prolog source code (.pro files) or on pre-compiled
byte code (.sbp files or data in memory) of the fact
base and the rules base.

The LMP methodology implies that all the model
processing rules are statically pre-compiled and
loaded at run-time when the corresponding operation
is required. One interesting property of the sbprolog
byte code files is that they can be concatenated
without needing any further compiling or linkage

Page 3/10

Program
+Name

Subprogram
+Name
+Program

action. It is thus easy to build libraries of modular
model processing functions that can be assembled
together in order to provide a composite behaviour.

As far the elaboration of the facts base is concern, it
relies on the modelling tool that can be a graphical
editor or a source text parser. In both cases, the
facts base must be generated dynamically to reflect
the actual contents of the model to be processed.
The facts base generator can either produce prolog
source code or sbprolog byte code. The latter option
significantly improves the performance of the
initialization phase of the model processing, as a
simple concatenation of the facts and rules bases
replace the dynamic complilation of the Prolog facts.

Another advantage of using the byte code format for
the facts base is that it is not necessary to embed
the sbprolog development environment into the end-
user model processing product.

3. Industrial use at Airbus

For 20 years Airbus, has been using the HOOD
method and the LMP technology, as part of the
Stood [15] tool, to support the detailed design activity
for all the embedded software developed for
A330/340, A380, A400M and now A350 programs.
The method and the technology is the same for all
dependable level software (in the sense of DO178B
[16]) : A, B, C or D.

Airbus processes all these design models with LMP
in order to automatise following actions:

Documentation generation with respect to design
documentation standard. This generated
documentation is used at the same level as the
model to control the design. This document becomes
the reference for the customer and for the design
activity. It contains all the Low level requirements
with respect to the DO178B recommendations. It is
an input of the overall traceability analysis made with
the Reqtify tool.

Code skeleton generation with respect to coding
standards. The LMP technology helps Airbus to
customise the HOOD code generation for Ada, C or
assembly languages. This automatic generation
insures the traceability between Code and design
which is required by the DO178B standard.

Source files generation used by source code
verification tools. For example, skeleton of unit test
file has been produced to initialise test procedures,
but also design flows files as input of source code
flow controller, and then function properties for
formal code verification activities.

Design metric generation to follow-up design activity
and design rules verification with respect to project
design standards. The flexibility of the LMP
technology helps Airbus to match the automatic
verification tools with the projects specific rules :
syntactic, semantic, consistency, completeness but
also on data and control flows. Due to the LMP
technology, the traceability between the rules and
the prolog implementation is easy to do.

In order to have the complete benefits of this
automation, some of the functionalities are qualified
in the sense of the DO178B standard. The goal of
this qualification is to avoid the manual verification of
all outputs every time they are generated by the tool.
So with respect to the DO178B standard and
because these outputs are involved in verification
activities, Airbus qualified such functions as
verification tools. This is the case for the design rules
checker for example.

4. AADL Model Processing

Another return of experience for LMP is its intensive
use for the implementation of the AADL Inspector
[17] commercial product. AADL Inspector is a
software program that aims at importing a set of files
containing textual AADL [18] models, and giving
access to a variety of Model Processing tools that
can be applied to such models.

AADL (Architectural Analysis and Design Language)
is an international standard of the SAE (AS-5506). It
defines a modelling language for the architectural
description of software intensive real-time systems.
The standard definition of AADL consists in a textual
Bakus-Naur Form (BNF) syntax and a set of
semantic rules expressed in natural language.

In the next sub-sections, we will show how the LMP
technology is used to implement various Model
Processing features in AADL Inspector.

4.1. Model Query Language

The first step for all these Model Processing
functions consists in transforming a textual AADL
specification obtained by files concatenation into a
binary representation of the corresponding prolog
facts base in memory. This result is obtained thanks
to a dedicated tool (aadlrev) that parses AADL
specifications to generate a list of facts representing
the AADL model:

isComponentType(...).
isComponentImplementation(...).
...

Page 4/10

This initial phase can be seen as a purely syntactic
transformation. Its goal is to make all the model
elements reachable as prolog terminal predicates.

These predicates play two roles. The first one is to
provide an appropriate organization of all the model
entities (facts base) and the second one consists in
offering an easy way to perform queries on the
model.

The work-flow is very simple here: an AADL source
text is transformed into sbprolog byte code thanks to
the aadlrev tool represented by the orange circle.
Note that aadlrev can also generate a textual prolog
facts base.

As an example of use, let us consider the following
fragment of a fact base produced after parsing an
AADL textual model:

isComponentType('Pkg','PUBLIC','S','SYS
TEM','NIL','4').
isComponentType('Pkg','PUBLIC','X','PRO
CESSOR','NIL','51').
isComponentType('Pkg','PUBLIC','P','PRO
CESS','NIL','240').
isComponentType('Pkg','PUBLIC','T1','TH
READ','NIL','365').
isComponentType('Pkg','PUBLIC','T2','TH
READ','NIL','410').

the following statement is a query to get all the
AADL components of the specified “Thread”
category, and gives a value to each unbound
parameter denoted by an upper case character.
Note that the '_' character means that the
corresponding parameter may take any value.

isComponentType(P,_,C,'THREAD',_,_)

According to the facts base described above, the
result of this query will be as follows:

P='Pkg', T='T1'.
P='Pkg', T='T2'.

Such queries can be specified for each terminal
predicates that describe the entire model. Moreover,
a similar approach is also applied for the various
sub-languages defined by some of the AADL
Annexes, such as the Behaviour Annex and the
Error Model Annex.

4.2. Model Constraints Language

Constraint rules on the model can then be defined by
specifying logical combination of queries on the

model. This approach enables easy implementations
of semantic rules checkers, as illustrated below
when applied to the AADL language.

The AADL standard defines a number of semantic
rules that have to be verified in order to check the
compliance of the model. These rules are organized
in three categories: naming rules, legality rules and
consistency rules.

The work-flow is now enriched with a second
processing segment where the pink circle represents
the sbprolog engine that takes the byte code facts
base and the byte code rules base as input and
produces a textual report.

For example, the implementation one of the naming
rules that are defined in chapter 4.3 of the SAE AS-
5506B document (current version of the AADL
standard) is specified as follows:

(N1) The defining identifier for a component type
must be unique in the namespace of the package
within which it is declared.

A basic implementation of this rule in Prolog would
be:

isComponentType(P,_,C1,_,_,L1),
isComponentType(P,_,C2,_,_,L2),
L1 \= L2, C1 = C2,
write('Error N1').

The first parameter (P) indicates that we only
consider the components that are in a same
package. The third one (C1 and C2) contains the
name of the components which identity would be
erroneous. The last parameter (L1 and L2)
represents the unique identifier of the two
components that would be different in case of an
error.

This implementation can thus be interpreted as
follows: Find all the pairs of components in package
P and whose identifiers differ and whose names are
the same.

This approach is well appropriate to implement static
rules checkers aiming at verifying the structural
semantic properties of a modelling language.
However, for more sophisticated analysis such as
real-time scheduling analysis, simulation or safety
analysis, it is required to use specialized tools. The
next paragraph shows how the LMP technology can

Page 5/10

.aadl .sbp.aadl .sbp .aadl .sbp .txt

.sbp

.aadl .sbp .txt

.sbp

also be used for interfacing with existing model
analysis tools.

4.3. Interfacing with remote verification tools

Cheddar [19] is a real-time performance analysis tool
that is developed by the University of Brest (UBO).
Cheddar embeds its own internal language
(Cheddar-ADL) that specifies the various entities and
relationships that are required for applying the
scheduling theory. In order to be able to perform
scheduling analysis on an AADL model with
Cheddar, it is thus necessary to implement a model
transformation to generate an instance of its internal
meta-model. The Cheddar ADL uses an XML format.

The work-flow is again enriched by a third tool
(Cheddar) that is represented by the blue circle.

The initial and mandatory step in the implementation
of such model transformations is the definition of the
semantic mapping between the two sets of modelling
entities.

A view of the mapping between AADL and the
Cheddar ADL is shown in the table below:

Cheddar ADL AADL
Processor Processor subcomponent

Address Space Process subcomponent

Task Thread subcomponent

Resource Data subcomponent

Buffer Event Data port

Dependency Data port

The following simplified implementation of the model
transformation with LMP can be split in two parts. A
first set of rules consists in producing the XML tags
that describe the Cheddar entities:

insertProcessors :-
 openTag(1,'processors'),
 getProcessor(N),
 insertProcessor(N),
 closeTag(1,'processors').

And a second set of rules actually implement the
mapping between the two sets of modelling entities:

getProcessor(Name) :-
 isComponentType(_,_,Name,'PROCESSOR
 ',_,_).

The terminal rules must be predicates belonging to
the facts base produced by the AADL parser.

A similar transformation has been developed to build
an interface with the Marzhin [20] real-time simulator
and several others are under development like the
interfaces to the Fiacre [21] verification tool-chain, to
the Compass [22] safety analysis tools and
Polychrony [23].

4.4. Homogeneous transformations

A particular case of model transformation is when
the source and target models are both instances of
the same meta-model. Such homogeneous
transformations can be realized with any language,
but they are especially easy to implement with LMP.

Such transformations are composed of the following
elements that must be plugged together:
- The AADL parser producing the facts base
(aadlrev)
- AADL to AADL mapping rules.
- The AADL unparser generating textual AADL again
from this facts base.

The simplest AADL to AADL mapping is the “identity”
relation where the output predicate is identical to the
input one that is produced by the AADL parser.

isComponentType(Package,Scope,Name,Cate
gory,Ancestor) :-
 isComponentType(Package,Scope,Name,
 Category,Ancestor,_).

Note that these two sets of predicates can be
distinguished by their number of parameters. The
unparser is a code generator whose output syntax
complies with the AADL BNF:

insertComponentType(P,S) :-
 isComponentType(P,S,Name,Category,_),
 write(Category), sp, write(Name), nl,
 ...
 write('END'), sp, write(Name), sc, nl

The AADL to AADL transformation rules and the
AADL unparser rules can then be concatenated
together to provide a single rules base file.

The work-flow associated with such homogeneous
transformations is as shown above, where the
orange circle represents the aadlrev parser and the
pink circle the sbprolog engine.

Page 6/10

.aadl .sbp .xml

.sbp

.aadl .sbp .xml

.sbp

.aadl .sbp .aadl

.sbp

.aadl .sbp .aadl

.sbp

The result is a similar AADL textual specification that
differs from the source one by a few text formatting
styles. It can thus be used to implement a “pretty
printer”.

A most interesting application consists injecting
additional prolog facts to locally amend the original
model. An example of use of this technique is given
by the real-time properties editor of AADL Inspector.

The AADL to AADL mapping rules are then lightly
modified in order to take into accounts a new set of
facts that enrich the original fact base. The effect is
the same as the “identity” transformation except for
the few changed properties:

isProperty(...) :-
 isProperty(...,_);
 isUpdatedProperty(...).

Note that a semicolon between two prolog rules
represents a logical OR operator.

4.5. Heterogeneous transformations

The general case for model transformations is of
course when the input and output meta-models
differ. If we consider for instance a transformation
from AADL to its equivalent representation in UML
MARTE [24], the implementation process that is
presented in section 4.3 can be applied.

The work-flow consists in parsing the textual AADL
specification with aadlrev (orange circle), then to
apply the resulting facts base and the transformation
rules base to the sbprolog engine (pink circle). The
transformation rules must include in that case the
AADL – MARTE mapping as well as an XML
generator complying with the UML meta-model.

The AADL - MARTE mapping is specified in the
OMG standard itself (annex A2). For illustration
purpose, a small fragment of this mapping is shown
in the table below:

UML MARTE AADL
Package Package

Block (SysML) System

memoryPartition Process

swSchedulableResource Thread

hwProcessor Processor

HwMemory Memory

The mapping implementation in prolog can then look
like as follows:

insertMemoryPartition(P) :-
 isComponentType(P,_,N,'PROCESS',_),
 write(Category), sp, write(Name), nl,
 ...
 write('END'), sp, write(Name), sc, nl

Interestingly, it is also possible to apply the reverse
mapping, i.e. to build a UML MARTE to AADL
transformation, using a similar implementation.

The work-flow now consists in parsing the XML file
representing the UML MARTE model. This parsing is
achieved by xmlrev, another tool from the LMP
toolbox that works in a similar way as aadlrev
excepts that it produces a fact base describing the
structure of an input XML file:

isXMLTag(...).
isXMLAttribute(...).

It is then necessary to implement the reverse
mapping and merge it with the AADL unparser that
has been introduced in section 4.4.

isComponentType(Pkg,'PUBLIC',Name,'PROC
ESS','NIL') :-
 isXMLTag(X,'xmi:XMI','NIL',_),
 isXMLTag(M,'uml:Model',X,_),
 isXMLTag(P,'packagedElement',M,_),
 isXMLAttribute(P,'packagedElement',
 'xmi:type','uml:Package',_),
 isXMLAttribute(P,'packagedElement',
 'name',Pkg,_),
 isXMLTag(S,'packagedElement',P,_),
 isXMLAttribute(S,'packagedElement',
 'xmi:type','uml:Component',_),
 isXMLAttribute(S,'packagedElement',
 'name',Name,_),
 isXMLAttribute(S,'packagedElement',
 'xmi:id',I,_),
 isXMLAttribute(_,
 'SW_Concurrency:MemoryPartition',
 'base_Classifier',I,_).

Page 7/10

.uml .sbp .aadl

.sbp

.uml .sbp .aadl

.sbp

.aadl .sbp .uml

.sbp

.aadl .sbp .uml

.sbp

5. LMP assessment

In this section, we attempt to provide a few elements
about the assessment of the LMP technology. We
firstly give a more exhaustive overview of the various
model processing rules sets that have been realized
using the LMP technology, an then we provide a few
evaluation criteria for each ISO 9126 standard
quality assurance characteristic, which are:

- Functionality
- Reliability
- Usability
- Efficiency
- Maintainability
- Portability

5.1. Overview of the main LMP realizations

We presented in sections 3 and 4 various kinds of
model processing transformations that have already
been developed using the LMP technology. This
approach has also been followed for the purpose of
other products, such as Adele [25] and TASTE [26].

The table below gives a non exhaustive overview of
the current contents of the LMP model processing
rules library that has been developed by Ellidiss and
the name of the product they are embedded in.

Rules Product
AADL Consistency AADL Inspector
AADL Legality AADL Inspector
AADL Naming AADL Inspector
MARTE to AADL AADL Inspector
AADL Metrics AADL Inspector,Taste
AADL to Cheddar AADL Inspector,Taste
AADL to Marzhin AADL Inspector,Taste
AADL to AADL AADL Inspector,Taste
AADL to TasteIV Taste
AADL to TasteDV Taste
TasteIV to SMP2 Taste
SMP2 to TasteIV Taste
AADL to HOOD Stood
Ada to HOOD Stood
C to HOOD Stood
HOOD to AADL Stood
HOOD to Ada Stood
HOOD to C Stood
HOOD to C++ Stood
HOOD Checker Stood
AADL to Adele Adele
AADL to Compass Under development
AADL to Fiacre Under development
AADL to Signal Under development

This list should be extended by the specific sets of
rules that have been developed by the end users of
these products, like Airbus.

5.2 Functionality

One of the base principle of the LMP approach is
“one rule per requirement”. This principle cannot
always be achieved but together with the declarative
style of the prolog language, it enforces a good
traceability between the implementation and the
desired functionalities.

Although the main products that are encompassing
the LMP technology are not distributed under an
Open Source license, the prolog source code of the
model processing rules can be made available to the
end user, so that he can actively contribute to their
realization, which increases the relevance of the
developments.

5.3. Reliability

The clear and rigorous separation between the facts
and rules bases ensures that the execution of the
program will not impact the input model.

Moreover, the exclusive use of Boolean logic for the
implementation of the model processing rules
increases the ability to verify its correctness.

5.4. Usability

As far the end user is concerned, the LMP based
features are fully hidden by the Graphical User
Interface of the product in which they are integrated
(e.g. Stood, Adele, TASTE, AADL Inspector).

For the tool administrator, configuration of LMP
based features is made easy thanks to the
modularity of the implementation.

The job is harder for the LMP features development
teams. Although the prolog language is a standard,
the realization of relevant and efficient sets of rules
require a very good expertise in this technology.

5.5. Efficiency

Prolog programs are often criticized for their
supposed bad performances. It is true that minor
changes in a prolog program may have a major
impact on its efficiency. However, with an
appropriate skill, it is most of the times possible to
solve these issues.

The memory footprint of the LMP programs is very
low when compared to their equivalent realizations in
the Eclipse/Java world. The size of a complete rules
base is rarely more than 250 kilo bytes to which
must be added the size of the facts base. The size of
the facts base is about the same as the size of the
serialized form of the model to be processed. This

Page 8/10

sum represents the memory size that is required for
the program area. An equivalent memory allocation
is required for the stack area. At the end, most of the
times, a few mega bytes of memory are sufficient.

Timing efficiency is more difficult to control, but the
potential problems can be solved during the
development phase with proper program profiling
analysis. The pure declarative programming style
sometimes imply that some time consuming rules
are called several times. This can be avoided for
instance by dynamically asserting new predicates
that store intermediate results. An improvement of
the timing performance has also been obtained by
the direct generation of prolog byte code which
reduces the duration of the initialization phase.

For instance, building an basic instance hierarchy of
5 processors, 22 processes and 123 threads from a
12 000 lines AADL source file takes around 20
seconds on a two year old low cost laptop.

5.6. Maintainability

The first realizations based on a preliminary version
of the LMP technology have been elaborated in the
mid nineties for the implementation of HOOD rules
checker and code generators in the Stood product.

These features have been maintained continuously
during nearly twenty years, and used by many large
scale industrial projects.

For the most recent LMP realizations, Ellidiss has
set up an integrated development environment that
facilitates the graphical design of new rules bases
and the reuse of modular libraries. This environment
also includes a sbprolog byte code generator and
design documentation facilities.

5.7 Portability

The use of a standard programming language
minimizes the effort to ensure the portability of the
model processing functions to another run-time
environment.

In our case, we currently use the sbprolog run-time
environment, whose C source code is available to
ensure its portability to a non already supported
platform, if required. Currently, LMP is supported by
Ellidiss for Windows, Linux, Solaris and MacOs
environments.

Finally, the sbprolog byte code has specifically been
specified to ensure a complete portability of the facts
and rules bases across the various supported
platforms.

Conclusion

This paper highlights the importance of Model
Verification activities in industrial critical software
development processes.

It also introduces an original technology developed
by Ellidiss and called LMP, for the implementation of
such Model Verifications that has been extended to
cover the more general need of Model Processing.

This paper finally provides feedback on practical use
of this approach in major industrial avionics
programs and in the realization of a commercialized
software tool. Presented return of experience mostly
concerns HOOD and AADL modelling languages
and the LMP technology is implemented by a
lightweight standalone toolbox. LMP can however be
applied to any kind of meta-model and adapted to
any modelling framework.

References

[1] MOF: Meta Object Facility
http://www.omg.org/mof/
[2] Ecore: Eclise Modeling Framework Core
http://www.eclipse.org/modeling/emf/
[3] UML: Unified Modeling Language
http://uml.org/
[4] BNF: Backus Naur Form
[5]OCL: Object Constraint language
http://www.omg.org/spec/OCL/
[6] ATL: Atlas Transformation Language
http://www.eclipse.org/atl/
[7] QVT: Query View Transformation
http://www.omg.org/spec/QVT/1.0/
[8] Kermeta:
http://www.kermeta.org/
[9] TOM:
http://tom.loria.fr/wiki/index.php5/Main_Page
[10] REAL:
http://www.openaadl.org/ocarina.html
[11] EXPRESS: ISO 10303-11. STEP Part 11 :
EXPRESS Language Reference Manual, 1994.
[12] HOOD: Hierarchical Object Oriented Design
http://www.esa.int/TEC/Software_engineering_and_s
tandardisation/TECKLAUXBQE_0.html
[13] prolog: ISO/IEC 13211-1, 1995
[14] sbprolog: Stony Brook Prolog
http://www.cs.cmu.edu/afs/cs/project/ai-
repository/ai/lang/prolog/impl/prolog/sbprolog/0.html
[15] Stood:
http://www.ellidiss.com/products/stood/
[16] DO178:
http://www.rtca.org/
[17] AADL Inspector
http://www.ellidiss.com/products/aadl-inspector/
[18] AADL: Architecture Analysis and Design
language

Page 9/10

http://www.omg.org/mof/
http://www.ellidiss.com/products/aadl-inspector/
http://www.rtca.org/
http://www.ellidiss.com/products/stood/
http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/lang/prolog/impl/prolog/sbprolog/0.html
http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/lang/prolog/impl/prolog/sbprolog/0.html
http://www.esa.int/TEC/Software_engineering_and_standardisation/TECKLAUXBQE_0.html
http://www.esa.int/TEC/Software_engineering_and_standardisation/TECKLAUXBQE_0.html
http://www.openaadl.org/ocarina.html
http://tom.loria.fr/wiki/index.php5/Main_Page
http://www.kermeta.org/
http://www.omg.org/spec/QVT/1.0/
http://www.eclipse.org/atl/
http://www.omg.org/spec/OCL/
http://uml.org/
http://www.eclipse.org/modeling/emf/

http://www.aadl.info/
[19] Cheddar:
http://beru.univ-brest.fr/~singhoff/cheddar/
[20] Marzhin
http://www.ellidiss.fr/public/wiki/wiki/inspector
[21] Fiacre:
http://projects.laas.fr/fiacre/home.php
[22] Compass:
http://compass.informatik.rwth-aachen.de/
[23] Polychrony:
http://www.irisa.fr/espresso/Polychrony/
[24] MARTE:
http://omgmarte.org/
[25] Adele:
http://gforge.enseeiht.fr/projects/adele/
[26] TASTE:
http://taste.tuxfamily.org/

Page 10/10

http://taste.tuxfamily.org/
http://gforge.enseeiht.fr/projects/adele/
http://omgmarte.org/
http://www.irisa.fr/espresso/Polychrony/
http://compass.informatik.rwth-aachen.de/
http://projects.laas.fr/fiacre/home.php
http://www.ellidiss.fr/public/wiki/wiki/inspector
http://beru.univ-brest.fr/~singhoff/cheddar/
http://www.aadl.info/

