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Abstract

This paper introduces an original, although not new, 
technology that was initially developed to implement 
Model Verification tools. 

This technology, called LMP, has been integrated in 
critical software design and analysis tools over the 
last   twenty  years  and  used  in  particular  for  the 
development  of  DO  178  certified  embedded 
applications at Airbus.

Use of LMP has now been extended to support the 
various  aspects  of  Model  Processing,  such  as 
performing  model  queries,  model  verifications  and 
model transformations. It is now used in particular for 
the implementation of the AADL Inspector product.

Introduction

Model  Driven  Engineering  is  now  recognized  as 
being a way to improve the development process of 
industrial critical software. This concern is especially 
strong for embedded and/or real-time software that 
are designed for avionics, space, military, railways, 
automotive and medical devices applications.

The  goal  of  these  technological  changes  is  to 
enhance  at  the  same  time  the  quality  and  the 
productivity  of  the  software  development  activities. 
However,  applying  models  in  the  context  of  the 
development  of  critical  systems  implies  that  it  is 
possible to verify that these models are correct and 
usable. These correctness and usability criteria are 
not absolute but obviously depend on the actual role 
of  the  model  in  the  development  process  which 
defines  their  level  of  abstraction  and  level  of 
completeness.

In  the first  section,  the role  of  early  verification to 
reach this goal is highlighted. In the second section, 
a specific model verification approach is presented. 
In  the  third  section,  concrete  industrial  return  of 
experience  in  using  this  technology  in  a  civilian 

avionics  certification  context  is  described.  Then, 
generalized  use  of  this  verification  technique  for 
various  model  processing  functions  that  are 
implemented in a commercial tool is also introduced. 
Finally, a few elements about the assessment of the 
LMP technology are provided in section five.

1. Model Verification

When  Model  Driven  Engineering  principles  are 
applied to the traditional V cycle that is still in use in 
the context of large scale industrial projects, it mostly 
consists in a better formalization of the architectural 
design phases of the software development process.

Proper  use  of  Models  for  these  activities  is  well 
recognized as beneficial  by enforcing engineers to 
well describe the architecture of the software before 
entering actual programming activities. The role of a 
Model  is  thus  to  offer  a  set  of  higher  level 
abstractions,  associated with  corresponding textual 
or  graphical  notations  that  can  improve  many 
aspects of the software life-cycle:

- Requirements traceability
- Reuse of subsystems and libraries
- Collaborative development and subcontracting
- Testability
- Maintainability

However,  all  these  benefits  are  quite  often 
theoretical and depend on the actual integration of 
the modelling solution and tools within the industrial 
process  and  their  adoption  by  the  development 
teams.

Nevertheless  the  most  promising  improvements 
brought by Model Driven Engineering approaches is 
the  ability  to  perform  early  verifications  of  the 
software  application  at  a  model  level.  Model 
Verification can indeed bring a high value added to 
the  development  process  by  increasing  the 
confidence  in  architectural  design  choices  and 
contribute to the certification process.
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Moreover,  efficient  Model  Verification  activities  are 
the  first  step  to  achieve  before  putting  in  place 
automatic code generation techniques. They provide 
a way to ensure the semantic compliance between 
the representation of  the  applicative  software  at  a 
model level and its corresponding source code.

The semantic definition of a model is given by a set 
of  more  or  less  formally  expressed  structural, 
naming, legality and consistency rules, that can be 
enriched  by more  specialized  constraints  such as, 
for instance, those enforced by the scheduling theory 
for real time systems.

Model  Verification  activities  in  the  development 
process thus consists in defining and implementing 
these  rules  with  an  appropriate  technology,  and 
applying  them to  the  application  being  developed. 
The  quality  of  the  implementation  of  the  Model 
Verification tools obviously becomes a key concern 
by itself.

The ideal  approach would  consist  in  implementing 
implicit Model Verification by using formal techniques 
for  the  specification  of  the  model.   Unfortunately, 
most  current  model  implementation  languages 
restrict  this  verification  “by  construct”  to  a  very 
limited  range  of  semantic  rules.  In  addition  some 
categories of  rules,  such as completeness,  cannot 
be verified at any stage of the model construction. It 
thus  becomes  necessary  to  add  dedicated  Model 
Verification  tools  that  work  on  an  appropriate 
representation of the model to produce a compliance 
report for the complete set of semantic rules.

Another important characteristic of Model Verification 
activities is its needs to be perfectly adapted to the 
industrial  development  process.  In  order  to  avoid 
rejection  by  development  teams  and  improve  the 
benefit of the approach, the precise list of verification 
rules  to  be  applied  may  need  to  be  tuned  with 
different levels of variability:

- Compliance  rules  with  the  core  definition  of  the 
modelling language.
- Compliance rules with specific analysis facets (i.e. 
scheduling  analysis,  safety  analysis,  power 
consumption, …).
- Compliance  with  corporate  or  project  specific 
methodological rules (quality insurance, certification 
process, …).

All  these  constraints  express  Model  Verification 
requirements  that  are  fully  part  of  the  critical 
software  development  process definition.  It  is  thus 
mandatory that the corresponding Model Verification 
implementation  technology  ensures  proper 
traceability towards these requirements.

Model Verification can also be ensured by creating a 
dedicated model transformation to a input language 
of an existing verification tool. The Model Verification 
implementation technology must thus ideally not only 
support  constraints  checking,  but  also  be  used  to 
perform  other  Model  Processing  actions  such  as 
model queries and  model transformations.

In the next section, an original approach to achieve 
this goal is presented.

2. Logic Model Processing (LMP)

2.1. LMP Overview

With  Model  Driven  Engineering,  a  model  is  an 
instance  of  a  meta-model.  The  meta-model 
expresses a first set of structural rules that will  be 
verified “by construct”.  Such a meta-model is  very 
often expressed with MOF [1] or Ecore [2] languages 
for UML [3] based models. However, traditional BNF 
[4]  descriptions can play exactly the same role for 
text based models. In the area of Model Verification, 
several technologies such as OCL [5], ATL [6], QVT 
[7],  Kermeta  [8],  TOM  [9],  REAL  [10]  have  been 
developed to support model constraints checking or 
model  transformations.  Other  solutions  like 
EXPRESS [11] can encompass both the meta-model 
specification and its exploitations.

In this paper, we focus on an alternate approach that 
can  be  used  to  implement  any  model  processing 
feature,  including  constraints  checking  and  model 
transformations.  This solution can also be used to 
create consistent automatic code and documentation 
generators.

This  technology,  known  as  LMP  (Logic  Model 
Processing), is an extension of a solution that was 
firstly  developed  twenty  years  ago  to  implement 
Hierarchical  Object  Oriented  Design  (HOOD)  [12] 
rules  checkers.  Although  the  term  “Model  Driven 
Engineering” had not been invented at that time yet, 
HOOD  is  a  graphical  and  textual  language  to 
formalize software architectural and detailed design. 
The HOOD Reference Manual also contains a list of 
design  rules  with  which  a  correct  model  must 
comply.  Initially  promoted  by  the  European Space 
Agency,  HOOD  still  plays  a  important  role  in  the 
software design activities of major European projects 
such as the Eurofighter and the Airbus family.

This  approach  is  based  on  the  use  of  the  prolog 
language [13] to formally specify rules to be applied 
to  an  appropriate  representation  of  the  applicative 
model.  This  representation  of  the  model  is 
composed  of  Prolog  facts  (rules  that  are  always 
true).
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Prolog  (Programmation  Logique)  is  a  declarative 
language that can be used to express rules applying 
on predicates.  Rules can then be combined using 
Boolean  Logic.  Prolog  syntax  is  very  simple  and 
most programs can be specified using AND, OR and 
NOT logical operators. Executing a Prolog program 
consists in specifying a query on one of  the rules 
and letting  the interpreter  find  all  the solutions for 
which this query is logically true.

In  the context  of  Model  Driven  Engineering,  these 
principles are applied as follow:

- The  meta-model  classes  generate  prolog  fact 
definitions whose parameters names correspond to 
classes attributes name.
- An  instantiated  model  consists  in  a  populated 
prolog  fact  base,  where  facts  parameters  values 
correspond to classes attributes values.
- The model processing program is expressed as a 
set of prolog rules whose predicates are others rules 
or facts.

The  following  very  basic  example  shows  an 
illustration of LMP. Given the following meta-model 
expressing  that  a  Program  is  Composed  of 
Subprograms:

The corresponding LMP facts definition would be as 
follow:

isProgram(Name).
isSubprogram(Name,Program).

A set of models, instances of this meta-model could 
be  represented  by  the  following  populated  prolog 
facts base:

isProgram('P1').
isProgram('P2').
isProgram('P3').
isSubprogram('S1','P1').
isSubprogram('S2','P2').
isSubprogram('S3','P2').

An example of a Model Verification rule applying on 
such models could be: 

R1:  A  Program  must  contain  at  least  one 
Subprogram.

The LMP implementation of such a rule would simply 
be the query searching for all the cases that make 

this rule fail. Note that a comma between two prolog 
rules represents a logical AND operator:

ruleR1 :- isProgram(P),
          not(isSubprogram(_,P)).

Which would give us the following result:

P = 'P3'

This example is an illustration of the use of LMP for 
the implementation of constraints checkers. A similar 
approach  can  be  followed  to  realize  model 
transformations,  code  and  documentation 
generators, and source code reverse engineering.

The  most  important  drawback  of  this  technology 
comes from possible  bad performance issues that 
can  however  be  minimized  by  using  appropriate 
prolog coding rules.

The main benefits brought by the LMP approach are:

- A  clear  separation  between  the  model  to  be 
processed  (facts  base)  and  the  model  processing 
program (rules base).
- A  strong  traceability  between  model  processing 
requirements and their implementation (one rule per 
requirement).
- The  declarative  and  logical  programming  style 
offered by the prolog language.
- The ability to define modular set of processing rules 
and to link them together at run time.
- The ability to use a same implementation language 
for  all  kinds  of  model  processing,  i.e.  navigation 
within  the  model  language  constructs  (query 
language),  verification  of  model  properties 
(constraint  language),  model to model or model to 
text transformations (transformation language).

These  benefits  are  illustrated  in  sections  3  and  4 
that describe industrial  use of this technology,  and 
then analysed in more details in section 5.

2.2. LMP Implementation

The LMP toolbox is composed of a set of executable 
files  and  libraries  of  predefined  prolog  rules.  The 
prolog environment that is currently used is sbprolog 
[14]. With this environment, it is possible to operate 
on prolog source code (.pro files) or on pre-compiled 
byte code (.sbp files or data in memory) of the fact 
base and the rules base.

The  LMP  methodology  implies  that  all  the  model 
processing  rules  are  statically  pre-compiled  and 
loaded at run-time when the corresponding operation 
is required. One interesting property of the sbprolog 
byte  code  files  is  that  they  can  be  concatenated 
without  needing  any  further  compiling  or  linkage 
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action.  It  is  thus easy to build libraries of  modular 
model processing functions that can be assembled 
together in order to provide a composite behaviour.

As far the elaboration of the facts base is concern, it 
relies on the modelling tool that can be a graphical 
editor  or  a  source  text  parser.  In  both  cases,  the 
facts base must be generated dynamically to reflect 
the actual  contents of  the model to be processed. 
The facts base generator can either produce prolog 
source code or sbprolog byte code. The latter option 
significantly  improves  the  performance  of  the 
initialization  phase  of  the  model  processing,  as  a 
simple  concatenation of  the facts  and rules bases 
replace the dynamic complilation of the Prolog facts.

Another advantage of using the byte code format for 
the facts base is that it is not necessary to embed 
the sbprolog development environment into the end-
user model processing product.

3. Industrial use at Airbus

For  20  years  Airbus,  has  been  using  the  HOOD 
method  and  the  LMP  technology,  as  part  of  the 
Stood [15] tool, to support the detailed design activity 
for  all  the  embedded  software  developed  for 
A330/340, A380, A400M and now A350 programs. 
The method and the technology is the same for all 
dependable level software (in the sense of DO178B 
[16]) : A, B, C or D.

Airbus processes all these design models with LMP 
in order to automatise following actions:

Documentation  generation  with  respect  to  design 
documentation  standard.  This  generated 
documentation  is  used  at  the  same  level  as  the 
model to control the design. This document becomes 
the reference for the customer and for  the design 
activity.  It  contains  all  the  Low level  requirements 
with respect to the DO178B recommendations. It is 
an input of the overall traceability analysis made with 
the Reqtify tool.

Code  skeleton  generation  with  respect  to  coding 
standards.  The  LMP  technology  helps  Airbus  to 
customise the HOOD code generation for Ada, C or 
assembly  languages.  This  automatic  generation 
insures  the  traceability  between  Code  and  design 
which is required by the DO178B standard.

Source  files  generation  used  by  source  code 
verification tools. For example, skeleton of unit test 
file has been produced to initialise test procedures, 
but also design flows files as input of source code 
flow  controller,  and  then  function  properties  for 
formal code verification activities.

Design metric generation to follow-up design activity 
and design rules verification with respect to project 
design  standards.  The  flexibility  of  the  LMP 
technology  helps  Airbus  to  match  the  automatic 
verification  tools  with  the  projects  specific  rules  : 
syntactic,  semantic,  consistency,  completeness but 
also  on  data  and  control  flows.  Due  to  the  LMP 
technology,  the  traceability  between the  rules  and 
the prolog implementation is easy to do.

In  order  to  have  the  complete  benefits  of  this 
automation, some of the functionalities are qualified 
in the sense of the DO178B standard. The goal of 
this qualification is to avoid the manual verification of 
all outputs every time they are generated by the tool. 
So  with  respect  to  the  DO178B  standard  and 
because  these  outputs  are  involved  in  verification 
activities,  Airbus  qualified  such  functions  as 
verification tools. This is the case for the design rules 
checker for example.

4. AADL Model Processing

Another return of experience for LMP is its intensive 
use  for  the implementation  of  the  AADL Inspector 
[17]  commercial  product.  AADL  Inspector  is  a 
software program that aims at importing a set of files 
containing  textual  AADL  [18]  models,  and  giving 
access to a variety of  Model Processing tools that 
can be applied to such models.

AADL (Architectural Analysis and Design Language) 
is an international standard of the SAE (AS-5506). It 
defines  a  modelling  language  for  the  architectural 
description of software intensive real-time systems. 
The standard definition of AADL consists in a textual 
Bakus-Naur  Form  (BNF)  syntax  and  a  set  of 
semantic rules expressed in natural language.

In the next sub-sections, we will show how the LMP 
technology  is  used  to  implement  various  Model 
Processing features in AADL Inspector. 

4.1. Model Query Language

The  first  step  for  all  these  Model  Processing 
functions  consists  in  transforming  a  textual  AADL 
specification obtained by files concatenation into a 
binary  representation  of  the  corresponding  prolog 
facts base in memory. This result is obtained thanks 
to  a  dedicated  tool  (aadlrev)  that  parses  AADL 
specifications to generate a list of facts representing 
the AADL model:

isComponentType(...).
isComponentImplementation(...).
...

Page 4/10



This initial phase can be seen as a purely syntactic 
transformation.  Its  goal  is  to  make  all  the  model 
elements reachable as prolog terminal predicates. 

These predicates play two roles. The first one is to 
provide an appropriate organization of all the model 
entities (facts base) and the second one consists in 
offering  an  easy  way  to  perform  queries  on  the 
model.

The work-flow is very simple here: an AADL source 
text is transformed into sbprolog byte code thanks to 
the  aadlrev  tool  represented  by  the  orange  circle. 
Note that aadlrev can also generate a textual prolog 
facts base.

As an example of use, let us consider the following 
fragment of a fact  base produced after parsing an 
AADL textual model:

isComponentType('Pkg','PUBLIC','S','SYS
TEM','NIL','4').
isComponentType('Pkg','PUBLIC','X','PRO
CESSOR','NIL','51').
isComponentType('Pkg','PUBLIC','P','PRO
CESS','NIL','240').
isComponentType('Pkg','PUBLIC','T1','TH
READ','NIL','365').
isComponentType('Pkg','PUBLIC','T2','TH
READ','NIL','410').

the  following  statement  is  a  query  to  get  all  the 
AADL  components  of  the  specified  “Thread” 
category,  and  gives  a  value  to  each  unbound 
parameter  denoted  by  an  upper  case  character. 
Note  that  the  '_'  character  means  that  the 
corresponding parameter may take any value.

isComponentType(P,_,C,'THREAD',_,_)

According  to  the  facts  base  described  above,  the 
result of this query will be as follows:

P='Pkg', T='T1'.
P='Pkg', T='T2'.

Such  queries  can  be  specified  for  each  terminal 
predicates that describe the entire model. Moreover, 
a  similar  approach  is  also  applied  for  the  various 
sub-languages  defined  by  some  of  the  AADL 
Annexes,  such  as  the  Behaviour  Annex  and  the 
Error Model Annex.

4.2. Model Constraints Language

Constraint rules on the model can then be defined by 
specifying  logical  combination  of  queries  on  the 

model. This approach enables easy implementations 
of  semantic  rules  checkers,  as  illustrated  below 
when applied to the AADL language.

The AADL standard defines a number of semantic 
rules that have to be verified in order to check the 
compliance of the model. These rules are organized 
in three categories: naming rules, legality rules and 
consistency rules.

The  work-flow  is  now  enriched  with  a  second 
processing segment where the pink circle represents 
the sbprolog engine that takes the byte code facts 
base  and  the  byte  code  rules  base  as  input  and 
produces a textual report.

For example, the implementation one of the naming 
rules that are defined in chapter 4.3 of the SAE AS-
5506B  document  (current  version  of  the  AADL 
standard) is specified as follows:

(N1)  The  defining  identifier  for  a  component  type  
must be unique in the namespace of the package  
within which it is declared.

A basic implementation of this rule in Prolog would 
be:

isComponentType(P,_,C1,_,_,L1), 
isComponentType(P,_,C2,_,_,L2), 
L1 \= L2, C1 = C2, 
write('Error N1').

The  first  parameter  (P)  indicates  that  we  only 
consider  the  components  that  are  in  a  same 
package.  The third  one (C1 and  C2)  contains  the 
name of  the  components  which  identity  would  be 
erroneous.  The  last  parameter  (L1  and  L2) 
represents  the  unique  identifier  of  the  two 
components  that  would  be  different  in  case  of  an 
error. 

This  implementation  can  thus  be  interpreted  as 
follows: Find all the pairs of components in package 
P and whose identifiers differ and whose names are 
the same.

This approach is well appropriate to implement static 
rules  checkers  aiming  at  verifying  the  structural 
semantic  properties  of  a  modelling  language. 
However,  for  more  sophisticated  analysis  such  as 
real-time  scheduling  analysis,  simulation  or  safety 
analysis, it is required to use specialized tools. The 
next paragraph shows how the LMP technology can 
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also  be  used  for  interfacing  with  existing  model 
analysis tools.

4.3. Interfacing with remote verification tools

Cheddar [19] is a real-time performance analysis tool 
that is developed by the University of Brest (UBO). 
Cheddar  embeds  its  own  internal  language 
(Cheddar-ADL) that specifies the various entities and 
relationships  that  are  required  for  applying  the 
scheduling  theory.  In  order  to  be  able  to  perform 
scheduling  analysis  on  an  AADL  model  with 
Cheddar, it is thus necessary to implement a model 
transformation to generate an instance of its internal 
meta-model. The Cheddar ADL uses an XML format.

The  work-flow  is  again  enriched  by  a  third  tool 
(Cheddar) that is represented by the blue circle.

The initial and mandatory step in the implementation 
of such model transformations is the definition of the 
semantic mapping between the two sets of modelling 
entities. 

A  view  of  the  mapping  between  AADL  and  the 
Cheddar ADL is shown in the table below:

Cheddar ADL AADL
Processor Processor subcomponent

Address Space Process subcomponent

Task Thread subcomponent

Resource Data subcomponent

Buffer Event Data port

Dependency Data port

The following simplified implementation of the model 
transformation with LMP can be split in two parts. A 
first set of rules consists in producing the XML tags 
that describe the Cheddar entities:

insertProcessors :- 
    openTag(1,'processors'), 
    getProcessor(N), 
    insertProcessor(N), 
    closeTag(1,'processors').

And a  second set  of  rules  actually  implement  the 
mapping between the two sets of modelling entities:

getProcessor(Name) :- 
    isComponentType(_,_,Name,'PROCESSOR
      ',_,_).

The terminal rules must be predicates belonging to 
the facts base produced by the AADL parser.

A similar transformation has been developed to build 
an interface with the Marzhin [20] real-time simulator 
and  several others are under development like the 
interfaces to the Fiacre [21] verification tool-chain, to 
the  Compass  [22]  safety  analysis  tools  and 
Polychrony [23].

4.4. Homogeneous transformations

A particular  case of  model  transformation is  when 
the source and target models are both instances of 
the  same  meta-model.  Such  homogeneous 
transformations can be realized with any language, 
but they are especially easy to implement with LMP.

Such transformations are composed of the following 
elements that must be plugged together:
- The  AADL  parser  producing  the  facts  base 
(aadlrev)
- AADL to AADL mapping rules.
- The AADL unparser generating textual AADL again 
from this facts base. 

The simplest AADL to AADL mapping is the “identity” 
relation where the output predicate is identical to the 
input one that is produced by the AADL parser.

isComponentType(Package,Scope,Name,Cate
gory,Ancestor) :- 
  isComponentType(Package,Scope,Name,
    Category,Ancestor,_).

Note  that  these  two  sets  of  predicates  can  be 
distinguished  by  their  number  of  parameters.  The 
unparser is a code generator whose output syntax 
complies with the AADL BNF:

insertComponentType(P,S) :- 
  isComponentType(P,S,Name,Category,_), 
  write(Category), sp, write(Name), nl, 
  ... 
  write('END'), sp, write(Name), sc, nl

The  AADL  to  AADL  transformation  rules  and  the 
AADL  unparser  rules  can  then  be  concatenated 
together to provide a single rules base file. 

The work-flow associated with  such homogeneous 
transformations  is  as  shown  above,  where  the 
orange circle represents the aadlrev parser and the 
pink circle the sbprolog engine.
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The result is a similar AADL textual specification that 
differs from the source one by a few text formatting 
styles.  It  can thus be used to implement a “pretty 
printer”.

A  most  interesting  application  consists  injecting 
additional prolog facts to locally amend the original 
model. An example of use of this technique is given 
by the real-time properties editor of AADL Inspector. 

The AADL to AADL mapping rules are then lightly 
modified in order to take into accounts a new set of 
facts that enrich the original fact base. The effect is 
the same as the “identity” transformation except for 
the few changed properties:

isProperty(...) :-
  isProperty(...,_);
  isUpdatedProperty(...).

Note  that  a  semicolon  between  two  prolog  rules 
represents a logical OR operator.

4.5. Heterogeneous transformations

The  general  case  for  model  transformations  is  of 
course  when  the  input  and  output  meta-models 
differ.  If  we  consider  for  instance a transformation 
from AADL to its equivalent representation in UML 
MARTE  [24],  the  implementation  process  that  is 
presented in section 4.3 can be applied. 

The work-flow consists in parsing the textual AADL 
specification  with  aadlrev  (orange  circle),  then  to 
apply the resulting facts base and the transformation 
rules base to the sbprolog engine (pink circle). The 
transformation  rules  must  include  in  that  case  the 
AADL  –  MARTE  mapping  as  well  as  an  XML 
generator complying with the UML meta-model.

The  AADL  -  MARTE  mapping  is  specified  in  the 
OMG  standard  itself  (annex  A2).  For  illustration 
purpose, a small fragment of this mapping is shown 
in the table below:

UML MARTE AADL
Package Package

Block (SysML) System

memoryPartition Process

swSchedulableResource Thread

hwProcessor Processor

HwMemory Memory

The mapping implementation in prolog can then look 
like as follows:

insertMemoryPartition(P) :- 
  isComponentType(P,_,N,'PROCESS',_), 
  write(Category), sp, write(Name), nl, 
  ... 
  write('END'), sp, write(Name), sc, nl

Interestingly, it is also possible to apply the reverse 
mapping,  i.e.  to  build  a  UML  MARTE  to  AADL 
transformation, using a similar implementation.

The work-flow now consists in parsing the XML file 
representing the UML MARTE model. This parsing is 
achieved  by  xmlrev,  another  tool  from  the  LMP 
toolbox  that  works  in  a  similar  way  as  aadlrev 
excepts that it produces a fact base describing the 
structure of an input XML file:

isXMLTag(...).
isXMLAttribute(...).

It  is  then  necessary  to  implement  the  reverse 
mapping and merge it with the AADL unparser that 
has been introduced in section 4.4.

isComponentType(Pkg,'PUBLIC',Name,'PROC
ESS','NIL') :- 
  isXMLTag(X,'xmi:XMI','NIL',_), 
  isXMLTag(M,'uml:Model',X,_), 
  isXMLTag(P,'packagedElement',M,_), 
  isXMLAttribute(P,'packagedElement',
    'xmi:type','uml:Package',_), 
  isXMLAttribute(P,'packagedElement',
    'name',Pkg,_), 
  isXMLTag(S,'packagedElement',P,_), 
  isXMLAttribute(S,'packagedElement',
    'xmi:type','uml:Component',_), 
  isXMLAttribute(S,'packagedElement',
    'name',Name,_),
  isXMLAttribute(S,'packagedElement',
    'xmi:id',I,_), 
  isXMLAttribute(_,
    'SW_Concurrency:MemoryPartition',
    'base_Classifier',I,_).

Page 7/10

.uml .sbp .aadl

.sbp

.uml .sbp .aadl

.sbp

.aadl .sbp .uml

.sbp

.aadl .sbp .uml

.sbp



5. LMP assessment

In this section, we attempt to provide a few elements 
about the assessment of  the LMP technology.  We 
firstly give a more exhaustive overview of the various 
model processing rules sets that have been  realized 
using the LMP technology, an then we provide a few 
evaluation  criteria  for  each  ISO  9126  standard 
quality assurance characteristic, which are:

- Functionality
- Reliability
- Usability
- Efficiency
- Maintainability
- Portability

5.1. Overview of the main LMP realizations

We presented in sections 3 and 4 various kinds of 
model processing transformations that have already 
been  developed  using  the  LMP  technology.  This 
approach has also been followed for the purpose of 
other products, such as Adele [25] and TASTE [26].

The table below gives a non exhaustive overview of 
the current  contents of  the LMP model processing 
rules library that has been developed by Ellidiss and 
the name of the product they are embedded in.

Rules Product
AADL Consistency AADL Inspector
AADL Legality AADL Inspector
AADL Naming AADL Inspector
MARTE to AADL AADL Inspector
AADL Metrics AADL Inspector,Taste
AADL to Cheddar AADL Inspector,Taste
AADL to Marzhin AADL Inspector,Taste
AADL to AADL AADL Inspector,Taste
AADL to TasteIV Taste
AADL to TasteDV Taste
TasteIV to SMP2 Taste
SMP2 to TasteIV Taste
AADL to HOOD Stood
Ada to HOOD Stood
C to HOOD Stood
HOOD to AADL Stood
HOOD to Ada Stood
HOOD to C Stood
HOOD to C++ Stood
HOOD Checker Stood
AADL to Adele Adele
AADL to Compass Under development
AADL to Fiacre Under development
AADL to Signal Under development

This list should be extended by the specific sets of 
rules that have been developed by the end users of 
these products, like Airbus. 

5.2 Functionality

One of the base principle of  the LMP approach is 
“one  rule  per  requirement”.  This  principle  cannot 
always be achieved but together with the declarative 
style  of  the  prolog  language,  it  enforces  a  good 
traceability  between  the  implementation  and  the 
desired functionalities.

Although the main products that are encompassing 
the  LMP  technology  are  not  distributed  under  an 
Open Source license, the prolog source code of the 
model processing rules can be made available to the 
end user, so that he can actively contribute to their 
realization,  which  increases  the  relevance  of  the 
developments. 

5.3. Reliability

The clear and rigorous separation between the facts 
and rules bases ensures that  the execution of  the 
program will not impact the input model.

Moreover, the exclusive use of Boolean logic for the 
implementation  of  the  model  processing  rules 
increases the ability to verify its correctness.

5.4. Usability

As far the end user is concerned, the LMP based 
features  are  fully  hidden  by  the  Graphical  User 
Interface of the product in which they are integrated 
(e.g. Stood, Adele, TASTE, AADL Inspector). 

For  the  tool  administrator,  configuration  of  LMP 
based  features  is  made  easy  thanks  to  the 
modularity of the implementation.

The job is harder for the LMP features development 
teams. Although the prolog language is a standard, 
the realization of relevant and efficient sets of rules 
require a very good expertise in this technology.

5.5. Efficiency

Prolog  programs  are  often  criticized  for  their 
supposed  bad  performances.  It  is  true  that  minor 
changes  in  a  prolog  program  may  have  a  major 
impact  on  its  efficiency.  However,  with  an 
appropriate skill,  it  is most of the times possible to 
solve these issues.

The memory footprint of the LMP programs is very 
low when compared to their equivalent realizations in 
the Eclipse/Java world. The size of a complete rules 
base  is  rarely  more  than  250  kilo  bytes  to  which 
must be added the size of the facts base. The size of 
the facts base is about the same as the size of the 
serialized form of the model to be processed. This 
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sum represents the memory size that is required for 
the program area. An equivalent memory allocation 
is required for the stack area. At the end, most of the 
times, a few mega bytes of memory are sufficient.

Timing efficiency is more difficult to control, but the 
potential  problems  can  be  solved  during  the 
development  phase  with  proper  program  profiling 
analysis.  The  pure  declarative  programming  style 
sometimes  imply  that  some  time  consuming  rules 
are  called  several  times.  This  can  be  avoided  for 
instance  by  dynamically  asserting  new  predicates 
that  store  intermediate  results.  An improvement  of 
the timing performance has also been obtained by 
the  direct  generation  of  prolog  byte  code  which 
reduces the duration of the initialization phase.

For instance, building an basic instance hierarchy of 
5 processors, 22 processes and 123 threads from a 
12  000  lines  AADL  source  file  takes  around  20 
seconds on a two year old low cost laptop.

5.6. Maintainability

The first realizations based on a preliminary version 
of the LMP technology have been elaborated in the 
mid nineties for the implementation of HOOD rules 
checker and code generators in the Stood product.

These features have been maintained continuously 
during nearly twenty years, and used by many large 
scale industrial projects. 

For  the most  recent  LMP realizations,  Ellidiss has 
set up an integrated development environment that 
facilitates the graphical  design of  new rules bases 
and the reuse of modular libraries. This environment 
also  includes a  sbprolog byte  code generator  and 
design documentation facilities.

5.7 Portability

The  use  of  a  standard  programming  language 
minimizes the effort to ensure the portability of the 
model  processing  functions  to  another  run-time 
environment.

In our case, we currently use the sbprolog run-time 
environment,  whose C source code is available to 
ensure  its  portability  to  a  non  already  supported 
platform, if required. Currently, LMP is supported by 
Ellidiss  for  Windows,  Linux,  Solaris  and  MacOs 
environments. 

Finally, the sbprolog byte code has specifically been 
specified to ensure a complete portability of the facts 
and  rules  bases  across  the  various  supported 
platforms.

Conclusion

This  paper  highlights  the  importance  of  Model 
Verification  activities  in  industrial  critical  software 
development processes. 

It also introduces an original technology developed 
by Ellidiss and called LMP, for the implementation of 
such Model Verifications that has been extended to 
cover the more general need of Model Processing.
 
This paper finally provides feedback on practical use 
of  this  approach  in  major  industrial  avionics 
programs and in the realization of a commercialized 
software tool. Presented return of experience mostly 
concerns  HOOD  and  AADL  modelling  languages 
and  the  LMP  technology  is  implemented  by  a 
lightweight standalone toolbox. LMP can however be 
applied to any kind of meta-model and adapted to 
any modelling framework.
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