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Introduction 
 
Increasing use of Model Driven Engineering in 
industry implies the need to elaborate efficient 
solutions for model processing. Typical model 
processing activities address early verification 
(model exploration, constraints enforcement, static 
analysis, interfacing with verification languages and 
tools) as well as production (automatic generation of 
documentation, code or test cases). 
 
Most of the time, model processing languages are 
closely associated with the modelling language they 
are working on, such as OCL [9] for UML. 
Sometimes, they can be dedicated to a specific 
development environment like Eclipse Acceleo [10]. 
Finally, they have generally been developed to meet 
a particular need, such as ATL [11] for model 
transformations. 
 
The AADL [1] community has also identified the 
need to define processing languages that can 
leverage the intrinsic strong semantics of this 
modelling approach. Dedicated languages like REAL 
[12], LUTE [13] or RESOLUTE [8] have been 
developed in that purpose.  
 
This paper presents an original and powerful model 
processing language that can be directly embedded 
within AADL models. Based on the use of the Prolog 
language [14] and the LMP framework [2,3], this new 
model processing language is called LAMP standing 
for Logic AADL Model Processing. 
 
1. LAMP Foundations 
 
1.1. The Prolog language 
 
Prolog, whose name is a shortcut of Programmation 
Logique in French, is a declarative language that 
can be used to express rules applying on predicates. 
Rules can then be combined using Boolean Logic. 
Prolog syntax is very simple, and most programs can 
be specified using only AND, OR and NOT logical 
operators. 
 
Executing a Prolog program consists in specifying a 
query on one of the rules and letting the interpreter 

find all the solutions for which this query is logically 
true. 
 
The Prolog language is an ISO standard (ISO/IEC 
13211-1, 1995) and many development and training 
resources are available, either with free access or 
commercial support. 
 
1.2. The LMP framework 
 
LMP (Logic Model Processing) is an adaptation of 
logic programming to Model Driven Engineering 
using standard prolog language. The LMP 
framework consists of a methodology, a set of tools 
and Prolog libraries.  
 
Assuming that the modeling language to be 
processed is defined by a meta-model, the LMP 
methodology can be summarized as follows: 
 
- Each class of the meta-model defines a Prolog fact 
specification whose parameters correspond to the 
attributes of the metaclass. 
- An instantiated model consists in a populated 
Prolog facts base, where facts parameters values 
correspond to classes attributes values. 
- The model processing program is expressed by a 
set of Prolog rules whose predicates are other rules 
or facts. 
- To execute a LMP program, it is necessary to 
produce the facts base associated with the model to 
be processed, to merge it with the rules base 
associated with the processing to be performed and 
to run a query with the Prolog interpreter. 
 

 
Figure 1: Logic Model Processing 

 
LMP has been used for the implementation of many 
tool features and successfully applied in the context 
of industrial projects [2]. This significant return of 
experience has contributed to the definition of a set 
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of libraries that facilitates the development of new 
LMP applications. 
 
LMP currently uses the sbprolog open source prolog 
interpreter [15] but could be adapted to any other 
Prolog environment if needed. 
 
When applied to AADL model processing, LMP 
gives access to a low-level API to all model 
elements corresponding to a node in the parser’s 
abstract tree. For instance, the corresponding AADL 
declarations will be translated into a Prolog facts 
base by the parser as shown below: 
 

package P public 

system S  

features 

  I : in data port D; 

  O : out data port D; 

end S; 

data D end D; 

end P; 

 
isPackage('P','PUBLIC',1). 

isComponentType('P','PUBLIC','S','SYSTEM',…). 

isFeature('PORT','P','S','I','IN','DATA','D',…). 

isFeature('PORT','P','S','O','OUT','DATA','D',…) 

isComponentType('P','PUBLIC','D','DATA',…). 

 
It is thus possible to use standard Prolog queries or 
rules on top of such a facts base to get any 
processing result. For instance, the following query 
prints all the component types and their category 
that are found in the AADL statements defined 
above. 
 

isPackage(P,'PUBLIC',_),  

isComponentType(P,'PUBLIC',N,C,_,_),  

write(T), sp, write(C), nl. 

 
This can be interpreted as follows: “look inside the 
public section of all the packages (P), AND get the 
name (N) and category (C) of all found component 
types AND print them”. The result of such query will 
be: 
 

SYSTEM S 

DATA D 

 
The benefits of the LMP approach are multiple: 
 
- It uses an existing ISO standard language: There is 
no language specification and maintenance cost. 
Moreover, its semantics is formally defined and 
many tool implementations and learning material are 
available. 
- The declarative style of the Prolog language is very 
appropriate to specify queries and processing rules; 
implicit loops make Prolog programs more readable. 
- The clean separation between the facts bases 
(input data) and the rules bases (program) brings 

robust and secure model processing 
implementations. 
- The approach can be applied to any kind of data 
source, in memory or in a file, given that there is a 
way to convert it into a facts-base in its textual or 
binary form. Usual parsing technologies can be used 
for this purpose.  
- Facts bases from different data sources can be 
merged to perform cross-models processing. 
 
1.3. The AADL standard 
 
AADL has been defined to describe software 
intensive real-time systems and to embed a 
sufficient level of semantics to enable the use of 
early analysis or production tools.  
 
AADL is an international standard of the SAE, 
Aerospace Division, under reference AS-5506C, 
January 2017. 
 
An AADL model can be fully described by its textual 
representation, which makes it very scalable and 
appropriate for version and configuration 
management. 
 
The language standard is composed of a core and 
several optional annexes. The core language 
addresses the description of multi-threaded, 
distributed software architectures. Currently 
standardized annexes cover in particular Time and 
Space Partitioned architectures (ARINC 653 annex), 
Real-Time behaviour (Behavior annex) and Error 
modelling (EMV2 annex). Some time ago, the AADL 
standardization committee started the specification 
of a constraint language for AADL. However, this 
work was stopped, and the currently available 
solutions take the form of specific annexes 
embedding foreign sub-languages such as LAMP 
that is further described in the next sections. 
 
Interfacing AADL models with verification solutions 
requires having access to all the modelling entities 
through an appropriate API. This API may be 
implicitly available with the modelling framework, 
such as with Eclipse based tools, or specifically 
designed as a separate tool, like the LMP AADL 
parser (aadlrev) that produces the complete Prolog 
facts base corresponding to the input AADL model.  
 
Except for the simplest static model verification 
activities, the AADL declarative model requires to be 
instantiated prior to be processed. This leads to the 
definition of an AADL instance model that can be 
automatically derived from the declarative model as 
soon as the top-level component has been identified. 
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2. LAMP Principles and Implementation 
 
It is thus possible to use LMP principles with AADL 
models and this approach has been applied 
intensively to develop most of the AADL processing 
features that are embedded inside the AADL 
Inspector tool.  A summary of these LMP programs 
is listed below: 
 

LMP feature category 

AADL semantic rules model checker 

AADL instance builder model exploration 

AADL ARINC 653 rules model checker 

UML MARTE to AADL model transformation 

SysML to AADL model transformation 

Capella to AADL model transformation 

AADL to Cheddar model transformation 

AADL to Marzhin model transformation 

AADL to OpenPSA model transformation 

AADL printer model unparser 

LAMP checker model checker 

Table 1: LMP plugins in AADL Inspector 
 
However, all these features are statically defined at 
tool design time and cannot be customized by the 
user. The need to be able to develop LMP features 
at modelling time has been identified. This is useful 
for prototyping new LMP features, to perform 
dynamic model explorations or when the set of rules 
must remain closely attached to the AADL input 
model, for technical or confidential reasons. This is 
the purpose of LAMP. 
 
2.1. Principles 
 
Like LMP, LAMP allows for writing standard Prolog 
programs operating on standard AADL models. Low-
level access to AADL model elements is still given 
by the Prolog facts that are automatically generated 
by the LMP framework. However, as opposed to 
LMP, LAMP rules can be embedded within the 
AADL model under the form of Annex subclauses. 
 
LAMP is currently implemented in the AADL 
Inspector tool [4] and is composed of three main 
components: 
- LAMP Annexes in the end user source text, where 
processing goals and rules can be defined. 
- The LAMP Standard Library providing a list of 
predefined utility rules and access to the AADL 
declarative and instance models. 
- A LAMP Checker plugin that assembles the Prolog 
facts and rules bases together, runs the Prolog 
interpreter and displays the results in a console. 
 
Figure 2 shows that LAMP lies on top of the LMP 
framework (parsers and libraries), which itself makes 
use of the Prolog environment (interpreter and 
libraries). For the components in orange colour, the 
Prolog source code is available to the end user. 

 

 
Figure 2: The LAMP stack 

 
2.2. LAMP Annexes 
 
LAMP annex subclauses can be located either within 
AADL Components or inside AADL Packages and 
can thus be directly interpreted while editing the 
AADL source text.  
 

package Ellidiss::ERTS2020::paper26::e1 

public 

 

abstract A 

  /* a LAMP annex at component level */ 

  annex LAMP {**  

    /* standard prolog syntax */  

  **}; 

end A; 

 

/* a LAMP annex at package level */ 

annex LAMP {**  

  /* standard prolog syntax */  

**}; 

 

end Ellidiss::ERTS2020::paper26::e1; 

 
It is recommended to restrict the use of LAMP 
annexes at component level to insert short 
processing goals or queries and to group longer or 
reusable rules into LAMP annexes at package level. 
 
2.3. LAMP Standard Library 
 
The LAMP Std Lib provides easy access to all the 
AADL model elements, including the Behavior and 
Error standard annexes. It supports not only the 
AADL declarative model, but also the AADL Instance 
model. It may also include more specific rules to 
gather information that comes from other sources, 
such as non-AADL models (requirements, source 
code…) or analysis tools outputs (simulation, …). 
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Practically, the LAMP Std Lib is implemented by a 
set of dedicated AADL Packages containing one or 
several LAMP annexes. 
 

 
Figure 3: The LAMP Standard Library 

 
2.3.1. Access to core declarative model 
 
Textual AADL specifications defines a declarative 
model. It is composed of a list of component 
definitions inside packages representing 
namespaces. The AADL declarative model 
describes a library of individual components with a 
single level of hierarchy (subcomponents).  
 
The AADL declarative model is formally defined by a 
BNF grammar and can thus be parsed with usual 
techniques. As explained above, the LMP AADL 
parser generates a Prolog facts base representing 
all the elements of the AADL declarative model. For 
the LAMP user, this facts base represents the LMP 
facts or the AADL low-level API. This API is 
documented in wiki pages that can be accessed at 
the following URL: 
http://www.ellidiss.fr/public/wiki/wiki/aadlparser.  
A fragment of this low-level API is given below: 
 

isPackage/3   

isComponentType/6  

isFeature/10 

isComponentImplementation/8  

isSubcomponent/9  

isConnection/10  

isFlowSpec/9  

isFlowImplementation/8 

isMode/7  

isModeTransition/8  

isAnnex/7 

isPropertySet/2 

isProperty/9 

Table 2: AADL core low-level API 

 
However, this low-level API may be too detailed for 
writing readable processing rules. That’s why higher-
level access to the AADL declarative model and its 
annexes has been defined in specialized libraries 
that are provided and documented in the AADL 
Inspector project browser. This set of LAMP rules is 
located in the Declarative sub-package. 

 

package Ellidiss::LAMP::Declarative 

public 

annex LAMP {** 

 getClassFeatures(…) :- … 

 getClassSubcomponents(…) :- … 

 getLocalProperties(…) :- … 

… **}; 

end Ellidiss::LAMP::Declarative;  

 
This high-level API consists of a set of Prolog rules 
using the low-level API and a set of general purpose 
utility functions. An example is shown below: 
 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*\ 

| getClassFeatures(Cla,Name,Cat,FCla): 

| succeeds for each feature found in  

| given component type and ancestors. 

| - Cla (+): component classifier  

|           qualified name 

| - Name(-): feature identifier 

| - Cat (?): feature kind in upper 

|           case (e.g. 'IN DATA PORT')  

| - FCla(-): feature classifier 

|           reference  

\*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

 

getClassFeatures(Cla,Name,Cat,FCla) :- 

  getClassifier(Cla,P,T,_),  

  getAncestorRec(P,T,'NIL',Q,U,_),   

  isFeature(K1,Q,U,Name,K2,K3,FCla,…),  

  concat(K2,' ',K3,' ',K1,Categ). 

 
The AADL declarative model may also include 
optional annexes representing specialized sub-
languages. The currently standardized sub-
languages are the Behavior Specification annex and 
the Error Model annex. Both can be recognized by 
the LMP AADL parser which produces additional 
Prolog predicates for the low-level API.  
 
2.3.2. Access to behavior model 
 
The AADL Behavior Specification annex allows for 
adding behavioural details, typically to enrich the 
description of Threads and Subprograms. The 
behavior annex specifies state-transition automata 
that can act as pseudo-code for advanced timing 
analysis and simulation. This annex is formally 
defined in document SAE AS-5506/3. 
 
As for the core language, the LMP AADL parser 
translates textual Behavior Specification statements 
into Prolog predicates. The most significant ones are 
shown below: 
 

isBAVariable/9  

isBAProperty/10  

isBAState/7  

isBATransition/9  

isBACondition/9  

http://www.ellidiss.fr/public/wiki/wiki/aadlparser
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isBADispatchExpression/10  

isBADispatchTrigger/8  

isBAAction/11 

Table 3: AADL Behavior Annex API 

 
Within the LAMP library, higher-level accessors have 
also been defined for the AADL Behavior 
Specification annexes. They can be found inside the 
BA2 sub-package. 

 

package Ellidiss::LAMP::BA2  

public 

annex LAMP {** 

 getBAVariables(…) :- … 

 getBAStates(…):- … 

 getBADispatch(…) :- … 

 getBAComputation(…) :- … 

…  **}; 

end Ellidiss::LAMP::BA2; 
 
2.3.3. Access to error model 
 
A similar approach has been followed for the other 
standardized AADL sub-language, the Error Model 
annex that is defined in document SAE AS-5506/1A. 
This annex, that is often called EMV2, covers many 
aspects required to follow a complete safety analysis 
process and support analysis techniques such as 
Failure Mode and Effects Analysis (FMEA) or Fault 
Tree Analysis (FTA). 
 
The output of the LMP AADL parser for Error Model 
statements consists of another list of Prolog 
predicates: 
 

isEMV2ErrorBehavior/4 

isEMV2UseTypes/7 

isEMV2UseBehavior/6 

isEMV2Event/10 

isEMV2State/9 

isEMV2Transition/12 

isEMV2Condition/11 

isEMV2ConditionTrigger/10 

isEMV2TransitionBranch/10 

isEMV2ErrorPropagation/8 

isEMV2ErrorSource/11 

isEMV2ErrorSink/8 

isEMV2ErrorPath/11 

isEMV2OutgoingPropagation/11 

isEMV2ErrorDetection/11 

isEMV2CompositeState/9 

isEMV2CompositeStateExpr/10 

isEMV2CompositeStateElem/9 

isEMV2ConnectionError/10 

Table 4: AADL Error Model API 
 
For the same reasons as the AADL core language 
and its Behavior Specification sub-language, the 
Error Model is more easily managed via the higher-

level API that is implemented by Prolog rules in a 
EMV2 sub-package of the LAMP library. 

 

package Ellidiss::LAMP::EMV2  

public 

annex LAMP {** 

 getErrorTypes(…) :- … 

 getErrorStates(…) :- …  

… **};  

end Ellidiss::LAMP::EMV2; 

 
2.3.4. Access to instance model 
 
As explained above, the AADL declarative model 
describes each component individually with a single 
level of hierarchy. It can be seen as a library of 
reusable component classifiers that may be 
instantiated several times in a given project and 
reused across different projects. In most model 
processing situations, there is a need to access 
each individual component instance independently. 
This alternate view of the same set of AADL 
components is called the AADL instance model.  
 
The AADL instance model can be automatically 
derived from an AADL declarative model, provided 
that the top-level component is properly identified. 
This specific component is the root of the component 
hierarchy. Note that as opposed to the declarative 
model, the instance model format is not 
standardized by the AADL specification. Its 
implementation remains tool dependant. It cannot be 
used for model interchange between AADL tools, the 
declarative model must be used instead for that 
purpose. 
 
The LMP framework and the LAMP standard library 
provide a set of rules to automatically detect the 
most likely root component, compute the instance 
model and give access to each individual instance 
through an appropriate API. The automatic selection 
of the root component can be overridden by setting a 
dedicated property. 
 
At low-level, the main Prolog predicates that are 
produced by the LMP framework are shown in the 
table below: 
 

isAADLRoot/6 

isAADLInstance/12  

isAADLConnection/12  

isAADLBinding/7 

Table 5: AADL Instance Model API 
 
Note that each AADL component instance is 
identified by a unique identifier representing its 
position inside the instance tree with a dotted 
notation. The first element of each identifier is 
always root, which represents the top-level classifier 
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of the declarative model from which the instance 
model is computed. 
 

package Ellidiss::ERTS2020::paper26::e2 

public 

-- … 

system implementation instance.i 

subcomponents 

  hw : processor hw.i; 

  sw1 : process sw.i; 

  sw2 : process sw.i; 

properties 

  actual_processor_binding =>  

  (reference(hw)) applies to sw1, sw2; 

end instance.i; 

 

process implementation sw.i 

subcomponents 

  th1 : thread t; 

  th2 : thread t; 

  th3 : thread t; 

end sw.i; 

 

thread t end t; 

-- … 

end Ellidiss::ERTS2020::paper26::e2; 

 
For example, from the AADL declarative model 
fragment presented above and considering that the 
root component is instance_pkg::instance.i, all the 
instantiated components will be: 
 

category identifier 

system root 

processor root.hw 

process  root.sw1 

thread root.sw1.th1 

thread root.sw1.th2 

thread root.sw1.th3 

process root.sw2 

thread root.sw2.th1 

thread root.sw2.th2 

thread root.sw2.th3 

Table 6: AADL Instance Model Identifiers 

 
As before, the LAMP layer introduces a more 
compact set of accessors to facilitate the processing 
rules work for the developer. 
 

package Ellidiss::LAMP::Instance  

public 

annex LAMP {** 

 getRoot(…) :- 

 getInstances(Id,…) :- …          

 getProperties(Id,…) :- … 

… **}; 

end Ellidiss::LAMP::Instance; 
 
 

2.3.5. Access to foreign data 
 
In addition to the information that can be directly 
(declarative model) or indirectly (instance model) 
extracted from the AADL specification, it is possible 
to complete the database by lists of Prolog 
predicates generated from foreign models or tools. 
 
For example, the Marzhin simulator that is 
embedded in AADL Inspector produces Prolog 
predicates giving various details about the last 
simulation run. These raw data can then be 
processed to provide higher-level information for 
further analysis. The following fragment shows how 
information generated by simulation is made 
available to LAMP processing rule, such as 
computed response time for threads or observed 
port values at a given time.  
 

package Ellidiss::LAMP::Analysis  

public 

annex LAMP {** 

 getResponseTime(Id,Duration) :- … 

 getPortValue(Id,Tick,Value) :- … 

… **}; 

end Ellidiss::LAMP::Analysis; 
 
Other possibilities consist in adding predicates 
coming from remote tools to perform cross-model 
processing. Examples of such foreign data could be 
as a list of requirements expressed in a ReqIF [16] 
file or system engineering components described by 
a SysML [17] model. 
 
These foreign data are often serialized in XML or 
XMI files that can be parsed by the appropriate LMP 
parser to produce the corresponding list of Prolog 
predicates. When possible, direct generation of 
Prolog predicates can be implemented into the 
foreign tool to avoid the serialization and parsing 
steps. This is typically what is done for the modelling 
tools developed by Ellidiss, such as Stood. 
 
2.4. LAMP Checker 
 
The LAMP checker is a dedicated AADL Inspector 
plugin that is used to run LAMP programs. When the 
user pushed the Run LAMP button, the following 
sequence of actions is performed: 
 
- The selected AADL files are parsed by the LMP 
framework and the corresponding predicates are 
loaded in the Prolog engine. 
- Optionally, additional foreign data predicates are 
also loaded if they exist. 
- The contents of all the LAMP annexes that are 
found inside the selected AADL files are 
concatenated together to build a single Prolog 
program that is loaded into the Prolog interpreter 
program area. 
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- The Prolog interpreter is launched and executes 
the Prolog queries found in the LAMP annexes 
declared at component level. 
- The results can be printed in the LAMP checker 
console or stored in output files. 
 

 
Figure 4: The LAMP Checker Tool 

 
Note that like all the other AADL Inspector plugins, 
the LAMP checker itself is implemented in Prolog on 
top of the LMP framework. 
 
3. Examples of use 
 
This section provides an overview of the processing 
capabilities of LAMP that are illustrated by simple 
examples of use. 
 
3.1. Model exploration 
 
The simplest usage of LAMP consists in doing 
advanced introspection inside the overall AADL 
model that has been loaded. Using default Prolog 
syntax makes it easy to perform SQL Select like 
queries based either on the low-level LMP API or the 
higher-level LAMP Libraries. 
 

package Ellidiss::ERTS2020::paper26::e3 

public 

-- …  

abstract LAMP_query 

annex LAMP {** 

 /* query 1 */ 

 ( getInstances(Id,_,_),  

   write(Id), nl ); 

 /* query 2 */ 

 ( getInstances(Id,'THREAD',_),    

   write(Id), nl ) 

**}; 

end LAMP_query; 

-- … 

end Ellidiss::ERTS2020::paper26::e3; 
 

This example uses one of the predicates of the 
LAMP standard library that gives all the component 
entities of the AADL instance model. Its first 
parameter is the unique instance identifier of the 
entity; the second parameter is the corresponding 
AADL category and the third one gives the qualified 
classifier name in the declarative model. 
 
Running the first rule (query 1) will list all the 
component identifiers, whereas running the second 
one (query 2) will only list the identifiers of thread 
components. Similar filtering could use the third 
parameter to list all the instances of a given 
classifier. In practice, both queries will be executed 
in sequence. 
 
3.2. Static analysis 
 
LAMP programs can be used to enforce semantic 
rules within an AADL model. It is likely that many of 
these rules will already be hardcoded within the 
AADL tool, however it may be interesting to add 
custom rules that reflect specific methodological 
good practices or language restrictions (AADL 
subsets). 
 
In the next example, the LAMP annex implements a 
methodological rule that will issue a warning 
message if it exits a thread that is not either periodic 
or sporadic. This could be for instance part of a 
Ravenscar profile compliancy verification process. 
 

package Ellidiss::ERTS2020::paper26::e4 

public 

-- …  

abstract LAMP_check 

annex LAMP {** 

 getInstances(Id,’THREAD’,Cla),  

 Prop = 'DISPATCH_PROTOCOL' 

 getProperties(Id,Cla,Prop,Val),  

 Val \= 'PERIODIC', Val \= 'SPORADIC',  

 write(‘Warning’), nl 

**}; 

end LAMP_check; 

-- … 

end Ellidiss::ERTS2020::paper26::e4; 
 
This simple Prolog program can be understood as 
follows: “get the unique identifier (Id) and classifier 
(Cla) of each thread in the instance hierarchy, AND 
get their dispatch protocol (Val), AND test if it is not 
periodic, AND test that it is not sporadic, AND write a 
warning message”. 
 
3.3. End to end flow latency analysis 
 
More sophisticated verification programs can be 
elaborated thanks to both the intrinsic processing 
power of the Prolog language and the 
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exhaustiveness of the LMP and LAMP model 
accessors. 
 
Computation of end to end flow latency is one of 
these non-trivial analysis functions that are 
frequently requested by AADL users. AADL end to 
end flows are used to specify semantic links across 
a hierarchy of AADL components, from an ultimate 
data source to an ultimate data sink. Source and 
sink are usually a device or a thread. 
 
The LAMP standard library includes a few facility 
rules to manage these complex objects. For 
instance, the rule getEndToEndFlow(Id, Flow, 

Elems) gives a Prolog list (Elems) containing all the 

model elements contributing to a given flow.  
 
To compute the global latency of an end to end flow, 
it is necessary to sum up the response time of all the 
time-consuming model elements contributing to this 
flow. These are typically threads and connections. A 
fragment of the LAMP program that performs this 
computation is shown below: 
 

package Ellidiss::ERTS2020::paper26::e5 

public 

-- …  

abstract LAMP_flow 

annex LAMP {** 

 /* threads */ 

 addFlowLatencyContributor(Elem) :-  

  splitName(Elem,G,X),  

  isAADLInstance('THREAD',…,P,T,…,X,…),  

  isFlowSpec(_,P,T,'NIL',H,_,_,_,_),  

  memezTra(G,H),  

  getMaxResponseTime(X,D,3),  

  strToNum(D,N), cpt1Add(N), !. 

 /* connections */ 

 addFlowLatencyContributor(Elem) :-  

  isAADLBinding('CONNECTION',Elem,_),  

  splitName(Elem,C,S),  

  concat(S,'.VirtualLink.',C,X),  

  getMaxResponseTime(X,D,3),  

  strToNum(D,N), cpt1Add(N), !. 

**}; 

end LAMP_flow; 

-- … 

end Ellidiss::ERTS2020::paper26::e5; 
 
The addFlowLatencyContributor/1 rule has an 

input parameter that represents one of the elements 
of an end to end flow. It is implemented by a 
disjunction of two cases that can be explained as 
follows: “’test if the input parameter (Elem) 
corresponds to a flow (G,H) crossing a thread (X), 
AND get its response time computed by simulation 
(D,N), AND add it to a global variable), OR (test if 
the input parameter corresponds to a connection 
bound to a bus, AND gets the response time(D,N) of 

the corresponding message (X) on the bus, AND 
add it to the global variable)”. 
 
This rule uses various LMP utility functions to 
manipulate strings and numbers, as well as the 
getMaxResponseTime/3 predicate that provides 

the measured response time of each thread and bus 
message obtained by simulation. All these rules are 
also written in prolog within the LMP framework and 
the LAMP libraries. 
 
3.4. Fault tree generation 
 
Another useful utilization of LAMP is the 
implementation of model transformations to generate 
input data for a remote processing tool. An example 
of such a feature is the generation of a file complying 
with the Open PSA standard [5] that can be 
processed by Fault Tree Analysis (FTA) tools like 
Arbre Analyste [6].  
 
Open PSA uses the XML syntax, but its contents are 
defined by a BNF grammar. The role of the LAMP 
program is to convert the appropriate AADL Error 
Model statements into Open PSA XML entities and 
attributes. The following example shows a fragment 
of this process, and more precisely how Fault Tree 
nodes are generated from AADL Error Model states. 
 

package Ellidiss::ERTS2020::paper26::e6 

public 

 

system implementation  ControlSystem.i 

subcomponents 

 Sensors: system Sensors.i; 

 Controlunit: system Controlunit.i; 

 Actuators: system Actuators.i; 

 Dashboard: system Dashboard.i; 

 Network: bus Network; 

annex EMV2 {** 

 use behavior errorlibrary::failstop; 

 composite error behavior 

 states 

  [ Dashboard.FailStop or  

    Sensors.FailStop or  

    ControlUnit.FailStop or  

    Actuators.FailStop or  

    Network.FailStop ]-> FailStop; 

 end composite; 

**}; 

annex LAMP {** 

 /* inherited error behavior */ 

 getFTState(Class,Name,K,TS) :-  

  getTypeAndImpl(Class,P,T,I),  

  isEMV2UseBehavior(P,T,I,_,R,_),  

  splitReference(R,L,B,_),  

  isEMV2State(M,…,C,Name,TS,K,_),  

  memezTra(L,M), memezTra(B,C). 

 /* local error behavior */ 

 getFTState(Class,Name,K,TS) :-  

  getTypeAndImpl(Class,P,T,I),  
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  isEMV2State(Q,U,J,_,_,Name,TS,K,_),  

  memezTra(P,Q), memezTra(T,U),  

  memezTra(I,J). 

**}; 

end ControlSystem.i;  

-- … 

end Ellidiss::ERTS2020::paper26::e6; 
 
The getFTState/4 rule has one input parameter to 

specify the component classifier (Class) that must be 
explored, and three output parameters giving an 
error state name (Name), its kind (K) and the 
corresponding error type set (TS). As there are two 
separate sources of error states, within an imported 
library or within the component itself, the rule is 
implemented by a disjunction. It can be commented 
as follows: “(check if the component inherits from a 
behavior described in a shared error model library, 
AND returns all the error states that are defined 
there), OR (return all the error states that are defined 
inside the local error annex library)”. 
 
3.5. Security rules 
 
In some situations, there a great interest that the 
verification rules remain closely attached with the 
input model.  This is often the case with security 
rules for which specific security policies must be 
applied for a given project. LAMP can be used to 
implement these rules and include them inside the 
project packages. 
 
An example of project specific security rules policy 
could be: 

• Sec_R1: All components involved in a same end 
to end Flow must be at the same security level. 

• Sec_R2: The security level of a component is 
the higher security level value associated with its 
Data ports. 

• Sec_R3: When two components are connected 
via a shared Bus, they must comply with the No-
Read-Up and No-Write-Down rules [7]. 

 
A fragment of the corresponding LAMP 
implementation is given below: 
 

package ControlSystemAnalysis 

public 

 

annex LAMP {** 

/* rule Sec_R1 */ 

checkFlowSecurity :-  

 getRoot(R), getClassifier(R,P,T,I),  

 getAncestorRec(P,T,I,Q,U,J),  

 F = 'END TO END',  

 isFlowImplementation(F,Q,U,J,E),  

 concat('root.',E,F),  

 getEndToEndFlow('root',E,M),  

 getFlowSecurityLevels(M,[],L,0,N),  

 N > 1,  

 printMessageSec_R1(F,L). 

checkFlowSecurity :- nl. 

       

/* rule Sec_R2 */ 

checkMaxSecurityLevel :-  

 getMaxSecurityLevel(X,L),  

 printMessageSec_R2(X,L). 

checkMaxSecurityLevel :- nl. 

            

/* rule Sec_R3 */ 

checkNoWriteDown :-  

 isAADLBusBinding(_,C,_),  

 isAADLConnection(_,P,T,I,_,_,_,C,…),  

 getConnectionEnds(P,T,I,C,Xs,Xd),  

 getMaxSecurityLevel(Xs,Ls),  

 getMaxSecurityLevel(Xd,Ld),  

 Ls > Ld,  

 printMessageSec_R3(C,Ls,Ld). 

checkNoWriteDown :- nl. 

**}; 

-- … 

end ControlSystemAnalysis; 

 
These rules use a set of utility rules that are not 
shown here because of the limited space. One of 
them is getMaxSecurityLevel(X,L) that 

returns the security level (L) of a given component 
identifier (X). An informal description of the 
implementation of rule Sec_R3 is: “search all the 
connections (C) that are bound to a bus, AND get 
their source (Xs) and destination (Xd) ends , AND 
find the security level of each ends (Ls,Ld), AND test 
if the security level of the source is higher than the 
one of the destination, AND write an error message”. 
 
Conclusion 
 
Improving readiness of model verification techniques 
is a key concern to promote Model Driven 
Engineering and to guarantee successful 
development of software intensive critical systems. 
Making modelling and verification better integrated 
together contributes to the enhancement of the 
global development process.  
 
Within the scope of an AADL project, the LAMP 
model processing solution brings all the benefits of 
formal logic programming with Prolog, the industrial 
return of experience of the LMP framework and a 
close and exhaustive interface with the AADL 
standard. Embedding verification or processing rules 
inside the input model is made easy in this context 
thanks to the ability to add customized annexes that 
remain transparent for the AADL environments that 
cannot interpret them. 
 
All the features and examples that have been 
presented in this paper are implemented in the 
current AADL Inspector distribution at the time or 
redaction, i.e. version 1.7.1. 
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