
 Page 1/10

LAMP: A new model processing language for AADL

P. Dissaux1

1: Ellidiss Technologies, 24, quai de la douane, 29200 Brest, France

Introduction

Increasing use of Model Driven Engineering in
industry implies the need to elaborate efficient
solutions for model processing. Typical model
processing activities address early verification
(model exploration, constraints enforcement, static
analysis, interfacing with verification languages and
tools) as well as production (automatic generation of
documentation, code or test cases).

Most of the time, model processing languages are
closely associated with the modelling language they
are working on, such as OCL [9] for UML.
Sometimes, they can be dedicated to a specific
development environment like Eclipse Acceleo [10].
Finally, they have generally been developed to meet
a particular need, such as ATL [11] for model
transformations.

The AADL [1] community has also identified the
need to define processing languages that can
leverage the intrinsic strong semantics of this
modelling approach. Dedicated languages like REAL
[12], LUTE [13] or RESOLUTE [8] have been
developed in that purpose.

This paper presents an original and powerful model
processing language that can be directly embedded
within AADL models. Based on the use of the Prolog
language [14] and the LMP framework [2,3], this new
model processing language is called LAMP standing
for Logic AADL Model Processing.

1. LAMP Foundations

1.1. The Prolog language

Prolog, whose name is a shortcut of Programmation
Logique in French, is a declarative language that
can be used to express rules applying on predicates.
Rules can then be combined using Boolean Logic.
Prolog syntax is very simple, and most programs can
be specified using only AND, OR and NOT logical
operators.

Executing a Prolog program consists in specifying a
query on one of the rules and letting the interpreter

find all the solutions for which this query is logically
true.

The Prolog language is an ISO standard (ISO/IEC
13211-1, 1995) and many development and training
resources are available, either with free access or
commercial support.

1.2. The LMP framework

LMP (Logic Model Processing) is an adaptation of
logic programming to Model Driven Engineering
using standard prolog language. The LMP
framework consists of a methodology, a set of tools
and Prolog libraries.

Assuming that the modeling language to be
processed is defined by a meta-model, the LMP
methodology can be summarized as follows:

- Each class of the meta-model defines a Prolog fact
specification whose parameters correspond to the
attributes of the metaclass.
- An instantiated model consists in a populated
Prolog facts base, where facts parameters values
correspond to classes attributes values.
- The model processing program is expressed by a
set of Prolog rules whose predicates are other rules
or facts.
- To execute a LMP program, it is necessary to
produce the facts base associated with the model to
be processed, to merge it with the rules base
associated with the processing to be performed and
to run a query with the Prolog interpreter.

Figure 1: Logic Model Processing

LMP has been used for the implementation of many
tool features and successfully applied in the context
of industrial projects [2]. This significant return of
experience has contributed to the definition of a set

 Page 2/10

of libraries that facilitates the development of new
LMP applications.

LMP currently uses the sbprolog open source prolog
interpreter [15] but could be adapted to any other
Prolog environment if needed.

When applied to AADL model processing, LMP
gives access to a low-level API to all model
elements corresponding to a node in the parser’s
abstract tree. For instance, the corresponding AADL
declarations will be translated into a Prolog facts
base by the parser as shown below:

package P public

system S

features

 I : in data port D;

 O : out data port D;

end S;

data D end D;

end P;

isPackage('P','PUBLIC',1).

isComponentType('P','PUBLIC','S','SYSTEM',…).

isFeature('PORT','P','S','I','IN','DATA','D',…).

isFeature('PORT','P','S','O','OUT','DATA','D',…)

isComponentType('P','PUBLIC','D','DATA',…).

It is thus possible to use standard Prolog queries or
rules on top of such a facts base to get any
processing result. For instance, the following query
prints all the component types and their category
that are found in the AADL statements defined
above.

isPackage(P,'PUBLIC',_),

isComponentType(P,'PUBLIC',N,C,_,_),

write(T), sp, write(C), nl.

This can be interpreted as follows: “look inside the
public section of all the packages (P), AND get the
name (N) and category (C) of all found component
types AND print them”. The result of such query will
be:

SYSTEM S

DATA D

The benefits of the LMP approach are multiple:

- It uses an existing ISO standard language: There is
no language specification and maintenance cost.
Moreover, its semantics is formally defined and
many tool implementations and learning material are
available.
- The declarative style of the Prolog language is very
appropriate to specify queries and processing rules;
implicit loops make Prolog programs more readable.
- The clean separation between the facts bases
(input data) and the rules bases (program) brings

robust and secure model processing
implementations.
- The approach can be applied to any kind of data
source, in memory or in a file, given that there is a
way to convert it into a facts-base in its textual or
binary form. Usual parsing technologies can be used
for this purpose.
- Facts bases from different data sources can be
merged to perform cross-models processing.

1.3. The AADL standard

AADL has been defined to describe software
intensive real-time systems and to embed a
sufficient level of semantics to enable the use of
early analysis or production tools.

AADL is an international standard of the SAE,
Aerospace Division, under reference AS-5506C,
January 2017.

An AADL model can be fully described by its textual
representation, which makes it very scalable and
appropriate for version and configuration
management.

The language standard is composed of a core and
several optional annexes. The core language
addresses the description of multi-threaded,
distributed software architectures. Currently
standardized annexes cover in particular Time and
Space Partitioned architectures (ARINC 653 annex),
Real-Time behaviour (Behavior annex) and Error
modelling (EMV2 annex). Some time ago, the AADL
standardization committee started the specification
of a constraint language for AADL. However, this
work was stopped, and the currently available
solutions take the form of specific annexes
embedding foreign sub-languages such as LAMP
that is further described in the next sections.

Interfacing AADL models with verification solutions
requires having access to all the modelling entities
through an appropriate API. This API may be
implicitly available with the modelling framework,
such as with Eclipse based tools, or specifically
designed as a separate tool, like the LMP AADL
parser (aadlrev) that produces the complete Prolog
facts base corresponding to the input AADL model.

Except for the simplest static model verification
activities, the AADL declarative model requires to be
instantiated prior to be processed. This leads to the
definition of an AADL instance model that can be
automatically derived from the declarative model as
soon as the top-level component has been identified.

 Page 3/10

2. LAMP Principles and Implementation

It is thus possible to use LMP principles with AADL
models and this approach has been applied
intensively to develop most of the AADL processing
features that are embedded inside the AADL
Inspector tool. A summary of these LMP programs
is listed below:

LMP feature category

AADL semantic rules model checker

AADL instance builder model exploration

AADL ARINC 653 rules model checker

UML MARTE to AADL model transformation

SysML to AADL model transformation

Capella to AADL model transformation

AADL to Cheddar model transformation

AADL to Marzhin model transformation

AADL to OpenPSA model transformation

AADL printer model unparser

LAMP checker model checker

Table 1: LMP plugins in AADL Inspector

However, all these features are statically defined at
tool design time and cannot be customized by the
user. The need to be able to develop LMP features
at modelling time has been identified. This is useful
for prototyping new LMP features, to perform
dynamic model explorations or when the set of rules
must remain closely attached to the AADL input
model, for technical or confidential reasons. This is
the purpose of LAMP.

2.1. Principles

Like LMP, LAMP allows for writing standard Prolog
programs operating on standard AADL models. Low-
level access to AADL model elements is still given
by the Prolog facts that are automatically generated
by the LMP framework. However, as opposed to
LMP, LAMP rules can be embedded within the
AADL model under the form of Annex subclauses.

LAMP is currently implemented in the AADL
Inspector tool [4] and is composed of three main
components:
- LAMP Annexes in the end user source text, where
processing goals and rules can be defined.
- The LAMP Standard Library providing a list of
predefined utility rules and access to the AADL
declarative and instance models.
- A LAMP Checker plugin that assembles the Prolog
facts and rules bases together, runs the Prolog
interpreter and displays the results in a console.

Figure 2 shows that LAMP lies on top of the LMP
framework (parsers and libraries), which itself makes
use of the Prolog environment (interpreter and
libraries). For the components in orange colour, the
Prolog source code is available to the end user.

Figure 2: The LAMP stack

2.2. LAMP Annexes

LAMP annex subclauses can be located either within
AADL Components or inside AADL Packages and
can thus be directly interpreted while editing the
AADL source text.

package Ellidiss::ERTS2020::paper26::e1

public

abstract A

 /* a LAMP annex at component level */

 annex LAMP {**

 /* standard prolog syntax */

 **};

end A;

/* a LAMP annex at package level */

annex LAMP {**

 /* standard prolog syntax */

**};

end Ellidiss::ERTS2020::paper26::e1;

It is recommended to restrict the use of LAMP
annexes at component level to insert short
processing goals or queries and to group longer or
reusable rules into LAMP annexes at package level.

2.3. LAMP Standard Library

The LAMP Std Lib provides easy access to all the
AADL model elements, including the Behavior and
Error standard annexes. It supports not only the
AADL declarative model, but also the AADL Instance
model. It may also include more specific rules to
gather information that comes from other sources,
such as non-AADL models (requirements, source
code…) or analysis tools outputs (simulation, …).

 Page 4/10

Practically, the LAMP Std Lib is implemented by a
set of dedicated AADL Packages containing one or
several LAMP annexes.

Figure 3: The LAMP Standard Library

2.3.1. Access to core declarative model

Textual AADL specifications defines a declarative
model. It is composed of a list of component
definitions inside packages representing
namespaces. The AADL declarative model
describes a library of individual components with a
single level of hierarchy (subcomponents).

The AADL declarative model is formally defined by a
BNF grammar and can thus be parsed with usual
techniques. As explained above, the LMP AADL
parser generates a Prolog facts base representing
all the elements of the AADL declarative model. For
the LAMP user, this facts base represents the LMP
facts or the AADL low-level API. This API is
documented in wiki pages that can be accessed at
the following URL:
http://www.ellidiss.fr/public/wiki/wiki/aadlparser.
A fragment of this low-level API is given below:

isPackage/3

isComponentType/6

isFeature/10

isComponentImplementation/8

isSubcomponent/9

isConnection/10

isFlowSpec/9

isFlowImplementation/8

isMode/7

isModeTransition/8

isAnnex/7

isPropertySet/2

isProperty/9

Table 2: AADL core low-level API

However, this low-level API may be too detailed for
writing readable processing rules. That’s why higher-
level access to the AADL declarative model and its
annexes has been defined in specialized libraries
that are provided and documented in the AADL
Inspector project browser. This set of LAMP rules is
located in the Declarative sub-package.

package Ellidiss::LAMP::Declarative

public

annex LAMP {**

 getClassFeatures(…) :- …

 getClassSubcomponents(…) :- …

 getLocalProperties(…) :- …

… **};

end Ellidiss::LAMP::Declarative;

This high-level API consists of a set of Prolog rules
using the low-level API and a set of general purpose
utility functions. An example is shown below:

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*\

| getClassFeatures(Cla,Name,Cat,FCla):

| succeeds for each feature found in

| given component type and ancestors.

| - Cla (+): component classifier

| qualified name

| - Name(-): feature identifier

| - Cat (?): feature kind in upper

| case (e.g. 'IN DATA PORT')

| - FCla(-): feature classifier

| reference

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~/

getClassFeatures(Cla,Name,Cat,FCla) :-

 getClassifier(Cla,P,T,_),

 getAncestorRec(P,T,'NIL',Q,U,_),

 isFeature(K1,Q,U,Name,K2,K3,FCla,…),

 concat(K2,' ',K3,' ',K1,Categ).

The AADL declarative model may also include
optional annexes representing specialized sub-
languages. The currently standardized sub-
languages are the Behavior Specification annex and
the Error Model annex. Both can be recognized by
the LMP AADL parser which produces additional
Prolog predicates for the low-level API.

2.3.2. Access to behavior model

The AADL Behavior Specification annex allows for
adding behavioural details, typically to enrich the
description of Threads and Subprograms. The
behavior annex specifies state-transition automata
that can act as pseudo-code for advanced timing
analysis and simulation. This annex is formally
defined in document SAE AS-5506/3.

As for the core language, the LMP AADL parser
translates textual Behavior Specification statements
into Prolog predicates. The most significant ones are
shown below:

isBAVariable/9

isBAProperty/10

isBAState/7

isBATransition/9

isBACondition/9

http://www.ellidiss.fr/public/wiki/wiki/aadlparser

 Page 5/10

isBADispatchExpression/10

isBADispatchTrigger/8

isBAAction/11

Table 3: AADL Behavior Annex API

Within the LAMP library, higher-level accessors have
also been defined for the AADL Behavior
Specification annexes. They can be found inside the
BA2 sub-package.

package Ellidiss::LAMP::BA2

public

annex LAMP {**

 getBAVariables(…) :- …

 getBAStates(…):- …

 getBADispatch(…) :- …

 getBAComputation(…) :- …

… **};

end Ellidiss::LAMP::BA2;

2.3.3. Access to error model

A similar approach has been followed for the other
standardized AADL sub-language, the Error Model
annex that is defined in document SAE AS-5506/1A.
This annex, that is often called EMV2, covers many
aspects required to follow a complete safety analysis
process and support analysis techniques such as
Failure Mode and Effects Analysis (FMEA) or Fault
Tree Analysis (FTA).

The output of the LMP AADL parser for Error Model
statements consists of another list of Prolog
predicates:

isEMV2ErrorBehavior/4

isEMV2UseTypes/7

isEMV2UseBehavior/6

isEMV2Event/10

isEMV2State/9

isEMV2Transition/12

isEMV2Condition/11

isEMV2ConditionTrigger/10

isEMV2TransitionBranch/10

isEMV2ErrorPropagation/8

isEMV2ErrorSource/11

isEMV2ErrorSink/8

isEMV2ErrorPath/11

isEMV2OutgoingPropagation/11

isEMV2ErrorDetection/11

isEMV2CompositeState/9

isEMV2CompositeStateExpr/10

isEMV2CompositeStateElem/9

isEMV2ConnectionError/10

Table 4: AADL Error Model API

For the same reasons as the AADL core language
and its Behavior Specification sub-language, the
Error Model is more easily managed via the higher-

level API that is implemented by Prolog rules in a
EMV2 sub-package of the LAMP library.

package Ellidiss::LAMP::EMV2

public

annex LAMP {**

 getErrorTypes(…) :- …

 getErrorStates(…) :- …

… **};

end Ellidiss::LAMP::EMV2;

2.3.4. Access to instance model

As explained above, the AADL declarative model
describes each component individually with a single
level of hierarchy. It can be seen as a library of
reusable component classifiers that may be
instantiated several times in a given project and
reused across different projects. In most model
processing situations, there is a need to access
each individual component instance independently.
This alternate view of the same set of AADL
components is called the AADL instance model.

The AADL instance model can be automatically
derived from an AADL declarative model, provided
that the top-level component is properly identified.
This specific component is the root of the component
hierarchy. Note that as opposed to the declarative
model, the instance model format is not
standardized by the AADL specification. Its
implementation remains tool dependant. It cannot be
used for model interchange between AADL tools, the
declarative model must be used instead for that
purpose.

The LMP framework and the LAMP standard library
provide a set of rules to automatically detect the
most likely root component, compute the instance
model and give access to each individual instance
through an appropriate API. The automatic selection
of the root component can be overridden by setting a
dedicated property.

At low-level, the main Prolog predicates that are
produced by the LMP framework are shown in the
table below:

isAADLRoot/6

isAADLInstance/12

isAADLConnection/12

isAADLBinding/7

Table 5: AADL Instance Model API

Note that each AADL component instance is
identified by a unique identifier representing its
position inside the instance tree with a dotted
notation. The first element of each identifier is
always root, which represents the top-level classifier

 Page 6/10

of the declarative model from which the instance
model is computed.

package Ellidiss::ERTS2020::paper26::e2

public

-- …

system implementation instance.i

subcomponents

 hw : processor hw.i;

 sw1 : process sw.i;

 sw2 : process sw.i;

properties

 actual_processor_binding =>

 (reference(hw)) applies to sw1, sw2;

end instance.i;

process implementation sw.i

subcomponents

 th1 : thread t;

 th2 : thread t;

 th3 : thread t;

end sw.i;

thread t end t;

-- …

end Ellidiss::ERTS2020::paper26::e2;

For example, from the AADL declarative model
fragment presented above and considering that the
root component is instance_pkg::instance.i, all the
instantiated components will be:

category identifier

system root

processor root.hw

process root.sw1

thread root.sw1.th1

thread root.sw1.th2

thread root.sw1.th3

process root.sw2

thread root.sw2.th1

thread root.sw2.th2

thread root.sw2.th3

Table 6: AADL Instance Model Identifiers

As before, the LAMP layer introduces a more
compact set of accessors to facilitate the processing
rules work for the developer.

package Ellidiss::LAMP::Instance

public

annex LAMP {**

 getRoot(…) :-

 getInstances(Id,…) :- …

 getProperties(Id,…) :- …

… **};

end Ellidiss::LAMP::Instance;

2.3.5. Access to foreign data

In addition to the information that can be directly
(declarative model) or indirectly (instance model)
extracted from the AADL specification, it is possible
to complete the database by lists of Prolog
predicates generated from foreign models or tools.

For example, the Marzhin simulator that is
embedded in AADL Inspector produces Prolog
predicates giving various details about the last
simulation run. These raw data can then be
processed to provide higher-level information for
further analysis. The following fragment shows how
information generated by simulation is made
available to LAMP processing rule, such as
computed response time for threads or observed
port values at a given time.

package Ellidiss::LAMP::Analysis

public

annex LAMP {**

 getResponseTime(Id,Duration) :- …

 getPortValue(Id,Tick,Value) :- …

… **};

end Ellidiss::LAMP::Analysis;

Other possibilities consist in adding predicates
coming from remote tools to perform cross-model
processing. Examples of such foreign data could be
as a list of requirements expressed in a ReqIF [16]
file or system engineering components described by
a SysML [17] model.

These foreign data are often serialized in XML or
XMI files that can be parsed by the appropriate LMP
parser to produce the corresponding list of Prolog
predicates. When possible, direct generation of
Prolog predicates can be implemented into the
foreign tool to avoid the serialization and parsing
steps. This is typically what is done for the modelling
tools developed by Ellidiss, such as Stood.

2.4. LAMP Checker

The LAMP checker is a dedicated AADL Inspector
plugin that is used to run LAMP programs. When the
user pushed the Run LAMP button, the following
sequence of actions is performed:

- The selected AADL files are parsed by the LMP
framework and the corresponding predicates are
loaded in the Prolog engine.
- Optionally, additional foreign data predicates are
also loaded if they exist.
- The contents of all the LAMP annexes that are
found inside the selected AADL files are
concatenated together to build a single Prolog
program that is loaded into the Prolog interpreter
program area.

 Page 7/10

- The Prolog interpreter is launched and executes
the Prolog queries found in the LAMP annexes
declared at component level.
- The results can be printed in the LAMP checker
console or stored in output files.

Figure 4: The LAMP Checker Tool

Note that like all the other AADL Inspector plugins,
the LAMP checker itself is implemented in Prolog on
top of the LMP framework.

3. Examples of use

This section provides an overview of the processing
capabilities of LAMP that are illustrated by simple
examples of use.

3.1. Model exploration

The simplest usage of LAMP consists in doing
advanced introspection inside the overall AADL
model that has been loaded. Using default Prolog
syntax makes it easy to perform SQL Select like
queries based either on the low-level LMP API or the
higher-level LAMP Libraries.

package Ellidiss::ERTS2020::paper26::e3

public

-- …

abstract LAMP_query

annex LAMP {**

 /* query 1 */

 (getInstances(Id,_,_),

 write(Id), nl);

 /* query 2 */

 (getInstances(Id,'THREAD',_),

 write(Id), nl)

**};

end LAMP_query;

-- …

end Ellidiss::ERTS2020::paper26::e3;

This example uses one of the predicates of the
LAMP standard library that gives all the component
entities of the AADL instance model. Its first
parameter is the unique instance identifier of the
entity; the second parameter is the corresponding
AADL category and the third one gives the qualified
classifier name in the declarative model.

Running the first rule (query 1) will list all the
component identifiers, whereas running the second
one (query 2) will only list the identifiers of thread
components. Similar filtering could use the third
parameter to list all the instances of a given
classifier. In practice, both queries will be executed
in sequence.

3.2. Static analysis

LAMP programs can be used to enforce semantic
rules within an AADL model. It is likely that many of
these rules will already be hardcoded within the
AADL tool, however it may be interesting to add
custom rules that reflect specific methodological
good practices or language restrictions (AADL
subsets).

In the next example, the LAMP annex implements a
methodological rule that will issue a warning
message if it exits a thread that is not either periodic
or sporadic. This could be for instance part of a
Ravenscar profile compliancy verification process.

package Ellidiss::ERTS2020::paper26::e4

public

-- …

abstract LAMP_check

annex LAMP {**

 getInstances(Id,’THREAD’,Cla),

 Prop = 'DISPATCH_PROTOCOL'

 getProperties(Id,Cla,Prop,Val),

 Val \= 'PERIODIC', Val \= 'SPORADIC',

 write(‘Warning’), nl

**};

end LAMP_check;

-- …

end Ellidiss::ERTS2020::paper26::e4;

This simple Prolog program can be understood as
follows: “get the unique identifier (Id) and classifier
(Cla) of each thread in the instance hierarchy, AND
get their dispatch protocol (Val), AND test if it is not
periodic, AND test that it is not sporadic, AND write a
warning message”.

3.3. End to end flow latency analysis

More sophisticated verification programs can be
elaborated thanks to both the intrinsic processing
power of the Prolog language and the

 Page 8/10

exhaustiveness of the LMP and LAMP model
accessors.

Computation of end to end flow latency is one of
these non-trivial analysis functions that are
frequently requested by AADL users. AADL end to
end flows are used to specify semantic links across
a hierarchy of AADL components, from an ultimate
data source to an ultimate data sink. Source and
sink are usually a device or a thread.

The LAMP standard library includes a few facility
rules to manage these complex objects. For
instance, the rule getEndToEndFlow(Id, Flow,

Elems) gives a Prolog list (Elems) containing all the

model elements contributing to a given flow.

To compute the global latency of an end to end flow,
it is necessary to sum up the response time of all the
time-consuming model elements contributing to this
flow. These are typically threads and connections. A
fragment of the LAMP program that performs this
computation is shown below:

package Ellidiss::ERTS2020::paper26::e5

public

-- …

abstract LAMP_flow

annex LAMP {**

 /* threads */

 addFlowLatencyContributor(Elem) :-

 splitName(Elem,G,X),

 isAADLInstance('THREAD',…,P,T,…,X,…),

 isFlowSpec(_,P,T,'NIL',H,_,_,_,_),

 memezTra(G,H),

 getMaxResponseTime(X,D,3),

 strToNum(D,N), cpt1Add(N), !.

 /* connections */

 addFlowLatencyContributor(Elem) :-

 isAADLBinding('CONNECTION',Elem,_),

 splitName(Elem,C,S),

 concat(S,'.VirtualLink.',C,X),

 getMaxResponseTime(X,D,3),

 strToNum(D,N), cpt1Add(N), !.

**};

end LAMP_flow;

-- …

end Ellidiss::ERTS2020::paper26::e5;

The addFlowLatencyContributor/1 rule has an

input parameter that represents one of the elements
of an end to end flow. It is implemented by a
disjunction of two cases that can be explained as
follows: “’test if the input parameter (Elem)
corresponds to a flow (G,H) crossing a thread (X),
AND get its response time computed by simulation
(D,N), AND add it to a global variable), OR (test if
the input parameter corresponds to a connection
bound to a bus, AND gets the response time(D,N) of

the corresponding message (X) on the bus, AND
add it to the global variable)”.

This rule uses various LMP utility functions to
manipulate strings and numbers, as well as the
getMaxResponseTime/3 predicate that provides

the measured response time of each thread and bus
message obtained by simulation. All these rules are
also written in prolog within the LMP framework and
the LAMP libraries.

3.4. Fault tree generation

Another useful utilization of LAMP is the
implementation of model transformations to generate
input data for a remote processing tool. An example
of such a feature is the generation of a file complying
with the Open PSA standard [5] that can be
processed by Fault Tree Analysis (FTA) tools like
Arbre Analyste [6].

Open PSA uses the XML syntax, but its contents are
defined by a BNF grammar. The role of the LAMP
program is to convert the appropriate AADL Error
Model statements into Open PSA XML entities and
attributes. The following example shows a fragment
of this process, and more precisely how Fault Tree
nodes are generated from AADL Error Model states.

package Ellidiss::ERTS2020::paper26::e6

public

system implementation ControlSystem.i

subcomponents

 Sensors: system Sensors.i;

 Controlunit: system Controlunit.i;

 Actuators: system Actuators.i;

 Dashboard: system Dashboard.i;

 Network: bus Network;

annex EMV2 {**

 use behavior errorlibrary::failstop;

 composite error behavior

 states

 [Dashboard.FailStop or

 Sensors.FailStop or

 ControlUnit.FailStop or

 Actuators.FailStop or

 Network.FailStop]-> FailStop;

 end composite;

**};

annex LAMP {**

 /* inherited error behavior */

 getFTState(Class,Name,K,TS) :-

 getTypeAndImpl(Class,P,T,I),

 isEMV2UseBehavior(P,T,I,_,R,_),

 splitReference(R,L,B,_),

 isEMV2State(M,…,C,Name,TS,K,_),

 memezTra(L,M), memezTra(B,C).

 /* local error behavior */

 getFTState(Class,Name,K,TS) :-

 getTypeAndImpl(Class,P,T,I),

 Page 9/10

 isEMV2State(Q,U,J,_,_,Name,TS,K,_),

 memezTra(P,Q), memezTra(T,U),

 memezTra(I,J).

**};

end ControlSystem.i;

-- …

end Ellidiss::ERTS2020::paper26::e6;

The getFTState/4 rule has one input parameter to

specify the component classifier (Class) that must be
explored, and three output parameters giving an
error state name (Name), its kind (K) and the
corresponding error type set (TS). As there are two
separate sources of error states, within an imported
library or within the component itself, the rule is
implemented by a disjunction. It can be commented
as follows: “(check if the component inherits from a
behavior described in a shared error model library,
AND returns all the error states that are defined
there), OR (return all the error states that are defined
inside the local error annex library)”.

3.5. Security rules

In some situations, there a great interest that the
verification rules remain closely attached with the
input model. This is often the case with security
rules for which specific security policies must be
applied for a given project. LAMP can be used to
implement these rules and include them inside the
project packages.

An example of project specific security rules policy
could be:

• Sec_R1: All components involved in a same end
to end Flow must be at the same security level.

• Sec_R2: The security level of a component is
the higher security level value associated with its
Data ports.

• Sec_R3: When two components are connected
via a shared Bus, they must comply with the No-
Read-Up and No-Write-Down rules [7].

A fragment of the corresponding LAMP
implementation is given below:

package ControlSystemAnalysis

public

annex LAMP {**

/* rule Sec_R1 */

checkFlowSecurity :-

 getRoot(R), getClassifier(R,P,T,I),

 getAncestorRec(P,T,I,Q,U,J),

 F = 'END TO END',

 isFlowImplementation(F,Q,U,J,E),

 concat('root.',E,F),

 getEndToEndFlow('root',E,M),

 getFlowSecurityLevels(M,[],L,0,N),

 N > 1,

 printMessageSec_R1(F,L).

checkFlowSecurity :- nl.

/* rule Sec_R2 */

checkMaxSecurityLevel :-

 getMaxSecurityLevel(X,L),

 printMessageSec_R2(X,L).

checkMaxSecurityLevel :- nl.

/* rule Sec_R3 */

checkNoWriteDown :-

 isAADLBusBinding(_,C,_),

 isAADLConnection(_,P,T,I,_,_,_,C,…),

 getConnectionEnds(P,T,I,C,Xs,Xd),

 getMaxSecurityLevel(Xs,Ls),

 getMaxSecurityLevel(Xd,Ld),

 Ls > Ld,

 printMessageSec_R3(C,Ls,Ld).

checkNoWriteDown :- nl.

**};

-- …

end ControlSystemAnalysis;

These rules use a set of utility rules that are not
shown here because of the limited space. One of
them is getMaxSecurityLevel(X,L) that

returns the security level (L) of a given component
identifier (X). An informal description of the
implementation of rule Sec_R3 is: “search all the
connections (C) that are bound to a bus, AND get
their source (Xs) and destination (Xd) ends , AND
find the security level of each ends (Ls,Ld), AND test
if the security level of the source is higher than the
one of the destination, AND write an error message”.

Conclusion

Improving readiness of model verification techniques
is a key concern to promote Model Driven
Engineering and to guarantee successful
development of software intensive critical systems.
Making modelling and verification better integrated
together contributes to the enhancement of the
global development process.

Within the scope of an AADL project, the LAMP
model processing solution brings all the benefits of
formal logic programming with Prolog, the industrial
return of experience of the LMP framework and a
close and exhaustive interface with the AADL
standard. Embedding verification or processing rules
inside the input model is made easy in this context
thanks to the ability to add customized annexes that
remain transparent for the AADL environments that
cannot interpret them.

All the features and examples that have been
presented in this paper are implemented in the
current AADL Inspector distribution at the time or
redaction, i.e. version 1.7.1.

 Page 10/10

References

[1] AADL: Architecture Analysis and Design

Language:

https://www.sae.org/standards/content/as5506c/

[2] “Model Verification: Return of Experience”, P.

Dissaux and P. Farail, ERTS 2014.

[3] “Merging and Processing Heterogeneous Models”, P.

Dissaux and B. Hall, ERTS 2016.

[4] AADL Inspector:

http://www.ellidiss.fr/public/wiki/wiki/inspector

[5] The Open PSA initiative:

http://www.open-psa.org/

[6] Arbre Analyste:

https://www.arbre-analyste.fr/en.html

[7] Combined security and schedulability analysis for

MILS real-time critical architectures, I. Atchadam, F.

Singhoff, H. N. Tran, N. Bouzid and L. Lemarchand, in

4th international workshop on Security and Dependability

of Critical Embedded Real-Time Systems (CERTS),

Stuttgart, Germany, 2019.

[8] “Resolute: an assurance case language for architecture

models”. A. Gacek, J. Backes, D. Cofer, K. Slind, M.

Whalen. HILT 2014.

[9] OCL: Object Constraint language

http://www.omg.org/spec/OCL/

[10] Acceleo:

https://www.eclipse.org/acceleo/

[11] ATL: Atlas Transformation Language

http://www.eclipse.org/atl/

[12] “Expressing and Enforcing User-Defined Constraints

of AADL Models”,Gilles O., Hugues J. ICECCS 2010,

337-342.

http://www.openaadl.org/ocarina.html#about-ocarina

[13] "Compositional verification of architectural
models.", Cofer, D., et al. NASA Formal
Methods. Springer Berlin Heidelberg, 2012. 126-140.
[14] Prolog language: ISO/IEC 13211-1, 1995.
[15] sbprolog: Stony Brook Prolog,
https://www.cs.cmu.edu/Groups/AI/lang/prolog/impl/
prolog/sbprolog/0.html
[16] ReqIF: Requirements Interchange Format,
https://www.omg.org/reqif/
[17] SysML: Systems Modeling Language,
http://sysml.org

http://www.ellidiss.fr/public/wiki/wiki/inspector
http://www.open-psa.org/
http://www.omg.org/spec/OCL/
http://www.eclipse.org/atl/
http://www.openaadl.org/ocarina.html#about-ocarina

