
Doc.Ref.:

Printed :

HUM-1.0

July 11, 1996 1:38 pm

HOOD USER MANUAL
RELEASE 1.0
HOOD USERs GROUP

HOOD USER’sMANUAL
Issue: Working Document 1.0
Created:  July 27, 1994
Reference: HUM3-1
Prepared by: HUM Working Group
Approved by: HOOD Technical Group
Diffusion HOOD USERs Group



HUM

HOOD USER MANUAL

Technical Document property of the HUG

Document No.:

Issue No.:

Last Modified :

1.0

July 11, 1996 1:38 pm

page -ii
HOOD USER MANUAL HUM-1.0

Abstract : HOOD (HierarchicalObject OrientedDesign, a trademark of The Hood User
Group) is the industrial design method chosen by the European Space Agency (ESA) as the com-
mon method for European software projects. HOOD is a design method supporting the definition
of interfaces, reusable modules as well as architecture models. It allows to represent systems and
software architecture as a set of interconnected hierarchies of objects.

HOOD is therefore supporting programming in the large, relying on code generator technology
from high level or formal notations. HOOD is thus primarily aiming to better fill the needs of the
prime contractor and integrator than those of the low level programmer. Although HOOD puts
the emphasis on interface and behaviour mastering, these benefits have been rather neglected by
today users of graphical programming notations for object oriented programming languages.

This document presents the HOOD development approach and gives examples for both master-
ing architecture definition and integration of components developed with different technologies
and teams in the area of large and complex, real time, critical and distributed data processing sys-
tems.

Index Terms: Method, Integration, HOOD, Object, Design, Formal, Verification, Control Ex-
pression, Real-Time, Reliability, Distribution, Test.



Copyright © 1995-96 by HOOD Users Group page iii

page -iii
HOOD USER MANUAL 1.0 HUM-1.0

PREFACE

The HOOD method was developed in 1987 under European Space Agency (ESA) contract  A0/
1-1890/86/NL/MA by a consortium of Cisi, CRI A/S and Matra Marconi Space.HOODTM is a
registered Trademark of the HOOD User Group. This fact must be stated in any publication
referencing the name of HOOD in the context of the HOOD method as the basis of the publica-
tion.
HOOD has been selected by ESA projects including Columbus and Hermes as the design method
for the Architectural Design phase. Since, HOOD was selected by several large long lived project
from aerospace and industry.

In 1991, the HOOD USER GROUP (HUG) was setup as a non profit organisation aiming to pro-
vide support for sharing experience and to control the evolution of the method. The HUG is or-
ganized in a STEERING GROUP (HSG) in charge of administrative issues, and in a
TECHNICAL GROUP (HTG) in charge of all technical issues possibly delegating work to spe-
cific WORKING GROUPs.
The HUG is officially based at:

C/O Spacebel Informatique, attn HUG
11,rue Colonel Bourg
B-1140 BRUSSELS, Belgium
Tel.: (32) 2.730.46.50
Fax: (32).2.726.85.13
e-mail: hug@spacebel.be
http://www.spacebel.be

The HOOD REFERENCE MANUAL Issue 3.1 was developed in 1991 by the HOOD TECHNI-
CAL GROUP and approved for two years by vote by the HOOD USER GROUP at the Pisa (It-
aly) april 3rd 1992 HUG meeting, and published by MASSON and PRENTICE HALL in 1993.

The HOOD Manual Issue 3.0 has been further developed in 1989 in response to user experience
by the HOOD Working Group comprising representatives of ESTEC, COLUMBUS and
HERMES projects.

The present document is the HOOD USER’S MANUAL and has as goals to illustrate how to use
the HOOD method for the design and development of large, complex and reliable software.

The material of this book shows usage of HOOD in various application domains, but avoids too
much arguing on how the thing is done. The authors have tried to leave each part self document-
ed, so that there is no precise rule to read the book, and that readers can jump from one chapter
to another according to their present needs on information about HOOD usage. There is however
a general line followed by the contents:

• chapter one is a summary of the method concepts, including some terminology, and some
HOOD examples and illustrations,

• chapter two describes the HOOD ideal usage in the ideal project: you have time, man-power,
and tools. It gives advanced hints and techniques on how to produce HOOD designs and
models in several common areas in the data processing domain. These hints are given from
a pure technical point of view, ignoring any project and support environment constraints,

• chapter three tries to help HOOD designers trapped in the constraints of a particular context
and project. It gives advice on how to cope and integrating HOOD techniques within given



Copyright © 1995-96 by HOOD Users Group page iv

page -iv
HOOD USER MANUAL 1.0  by HUM Working Group

constraints, standards and toolsets.

This book is not a HOOD study, nor a pedagogic manual; we hope that despite of the different
backgrounds of the readers, they will manage to understand the HOOD spirit that the authors
have tried to put down along the different sections.

The current version is a working document intended only to be distributed among HOOD User
Group members only .
It has to be considered as set of technical notes providing a synthesis of the industrial experience
of the authors and various contributors.

A further version will take into account new concepts introduced within the HOOD4 evolution.



Copyright © 1995-96 by HOOD Users Group page v

page -v
HOOD USER MANUAL 1.0 HUM-1.0

OBSERVATION REPORTS

For submission of comments for modification or extension to this manual, we would appreciate
them being sent via e-mail to the following address:

heitz@cisi.cnes.fr
If you do not have e-mail access, please send the comments using the special Observation Report
(OR) form given on the following page, to HOOD TECHNICAL GROUP at the following ad-
dress:

Attn HTG-Chairman
Maurice HEITZ,
CISI
13, rue Villet
31400 TOULOUSE - FRANCE
fax 33 - 61.17.66.96



Copyright © 1995-96 by HOOD Users Group page vi

page -vi
HOOD USER MANUAL 1.0  by HUM Working Group

Observation report FORM

OBSERVATION REPORT (OR)    From

Document under review:
HOOD USER MANUAL

Para:            Page:                          No:

Subject:
Discrepancy:

Recommendation:



Copyright © 1995-96 by HOOD Users Group page vii

page -vii
HOOD USER MANUAL 1.0 HUM-1.0

ACKNOWLEDGMENTS

The assistance provided for meetings of the HOOD TECHNICAL GROUP by CISI, CRI AS,
ESA-ESTEC, INTECS, LOGICA, MATRA MARCONI SPACE, and SEMA GROUP, is grate-
fully acknowledged : without their support this work could not have been undertaken. We are
also grateful for the support of the employers of the HOOD TECHNICAL GROUP members and
other organisations that provided valuable feedbacks for the HOOD definition.

Particular thanks are due to MATRA MARCONI SPACE, CISI and CNES whose support made
possible the production of this book. A number of ideas and advices have been borrowed from
studies funded by the ESPRIT or EUREKA programmes and projects. We gratefully acknowl-
edge the work done in the TOOL’USE, COMPLEMENT, ESF and PROTEUS projects. Other
significant inputs were taken from HOOD training course materials developed by CISI and
MMS.

On a more personal note, we are especially grateful to the authors of observation reports on ear-
lier definition of the HOOD method, and to all members of the HOOD TECHNICAL GROUP
who contributed with many technical notes and to multiple and detailed discussions. Special
thanks for contributions from Giancarlo SAVOIA, Rainer GERLICH, Peter J ROBINSON and
Andy CARMICHAEL.
The authors want also to thank all early readers for their comments and discussions which con-
tributed significantly on the elaboration of this manual.

Attendees of HOOD TECHNICAL GROUP included :

Edouard ANDRE [Sema Group]
Jorge AMADOR [ESA/ESTEC]
Andy CARMICHAEL [Systematica]
Javier CAMPOS [GMV]
Bernard DELATTE [CNES]
Jean Marie WALLUT [CNES]
Pierre DISSAUX [TNI]
Antony ELLIOT [IPSYS]
Rainer GERLICH [Dornier]
Winfried BOELKE [ERNO]
Patrice Micouin [Steria]
Alain Paul Andry [Trasys]
Maurice HEITZ [Cisi] (HTG chairman)
Jean François MULLER [MMS] (HTG secretary)
Christophe .PINAUD [MMS]
Peter J ROBINSON [CANA]
Giancarlo SAVOIA [Intecs]

We also acknowledge gratefully the support of Jardine BARRINGTON-COOK, chairman of the
HOOD STEERING GROUP, and the HSG secretariesPatrick Van der DONCKTand Guy
PAQUET, who provided the necessary liaison between the HOOD TECHNICAL GROUP and
the HOOD USERs GROUP.

B. DELATTE, M. HEITZ, J.F. MULLER,C.PINAUD Editors



Copyright © 1995-96 by HOOD Users Group page viii

page -viii
HOOD USER MANUAL 1.0  by HUM Working Group

About the Authors

Bernard Delatte is an engineer in computer science and is responsible for Object Oriented meth-
ods support atCNES, 18 av Edouard Belin, 31055 TOULOUSE, FRANCE, Phone: (33)
61.27.49.51 Fax: (33) 61.27.30.84e-mail: bdelatte@cst.cnes.fr
Bernard joined CNES in 1984 as a software quality assurance engineer on the SPOT1 project,
and then moved onto software engineering, Ada and HOOD support activities.
Bernard is an active member of the HOOD TECHNICAL GROUP and is publisher of the HOOD
NEWS letters (2 issues a year). He is also involved in introducing OOA methods into space soft-
ware developments and is conducting research activities on the co-operation of OOA methods
and HOOD.

Maurice Heitz is an engineer in energetics and mechanics and is consultant on software engi-
neering within theCISI GROUP 13, rue Villet, 31400 TOULOUSE, Phone: (33) 61.17.66.66,
Fax (33).61.17.66.96.e-mail heitz@cisi.cnes.fr. Since 1983 Maurice developed the company’s
Ada education programme, and was technical manager of several Ada projects for the French Na-
tional Space Agency and the European Space Agency, before working on formal methods within
ESPRIT projects. He is currently involved in system engineering, software engineering, research,
development and training activities.
Maurice was one of the lead designers for the definition of HOOD, and he is now an active mem-
ber and chairman of the HOOD TECHNICAL GROUP. Maurice provided several contributions
to Ada Europe and software engineering conferences about HOOD and its application to distrib-
uted, fault tolerant systems, reuse and integration with formal methods.

Jean François Muller is an engineer in automatics and electronics and is responsible for the def-
inition of software engineering tools atMATRA MARCONI SPACE  1,rue des Cosmonautes,
31400 TOULOUSE, Phone: (33) 61.39.68.12, Fax (33).62.24.77.80e-mail muller@so-
leil.matra_espace.fr. Since 1982, Jean François was responsible for the development of the
HIPPARCOS on board software OS, and later for the COLUMBUS Software Development En-
vironment. Jean François was then project leader for the EUREKA ESF/FERESA and the space
FIP subprojects dealing with distributed software developments. Jean François was one of the
codesigners of HOOD, and he is now an active member of the HOOD TECHNICAL GROUP.

Christophe Pinaud is a software engineer and is responsible for the definition and use of the
software engineering methods atMATRA MARCONI SPACE  1,rue des Cosmonautes, 31400
TOULOUSE, Phone: (33) 61.39.65.40, Fax (33).62.24.77.80e-mail pinaud-christo-
phe@mms.matra_espace.fr. Since 1987, Christophe has worked on software engineering tools
and methods evaluation and application and on Man Machine Interface development methods
and tools. He then participated to the Hermes Software Development Environment definition and
development and has supported more than thirteen projects using HOOD (for on-board and
ground systems using mainly Ada and C langages) from the training to the design and implemen-
tation within toolsets.He is now an active member of the HOOD TECHNICAL GROUP.



Copyright © 1995-96 by HOOD Users Group page ix

page -ix
HOOD USER MANUAL 1.0 HUM-1.0

PREFACE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III

OBSERVATION REPORTS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII

1  GETTING STARTED 1

1.1 GENERAL PRESENTATION  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
 1.1.1 History and Objectives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
 1.1.2 HOOD in the development activities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
 1.1.3 BASIC CONCEPTS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

 1.1.3.1 HOOD Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
 1.1.3.2 Control Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
 1.1.3.3 The Include relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
 1.1.3.4 Types, Data and Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
 1.1.3.5 Class Objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
 1.1.3.6 Virtual Node Objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

 1.1.4 TEXTUAL FORMALIM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
 1.1.5 An ODS Illustration- the STACK Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
 1.1.6 From Architecture to Target Implementation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

 1.1.6.1 General Implementation Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
 1.1.6.2 Implementation of Constrained Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 THE HOOD DESIGN MODEL. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
 1.2.1 System to Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
 1.2.2 System Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 THE HOOD DESIGN PROCESS . . . . . . . . . . . . . . . . . . . . . . . . . . 22
 1.3.1 The Basic HOOD DESIGN PROCESS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

 1.3.1.1 The Basic Design Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
 1.3.1.2 The Basic design step applied to a root object . . . . . . . . . . . . . . . . . . . . . . . . . 31
 1.3.1.3 The Basic design step applied to terminal object . . . . . . . . . . . . . . . . . . . . . . . 31
 1.3.1.4 The Basic design step applied to the other types of object . . . . . . . . . . . . . . . . 32

 1.3.2 The Overall HOOD DESIGN PROCESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
 1.3.3 PHASE 1: Logical Architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
 1.3.4 PHASE 2: Infrastructure Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
 1.3.5 PHASE 3: Distribution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
 1.3.6 PHASE 4: Physical Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.4 INTEGRATING HOOD IN THE LIFE_CYCLE ACTIVITIES. 38
 1.4.1  Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
 1.4.2 Specification to design  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
 1.4.3 Design to code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
 1.4.4 Tests and Validation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

 1.4.4.1 Unit and integration tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
 1.4.4.2 Verification and Validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

 1.4.5 HOOD and Reuse  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
 1.4.6 HOOD and subcontracting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
 1.4.7 Phased Incremental Life Cycle  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



Copyright © 1995-96 by HOOD Users Group page x

page -x
HOOD USER MANUAL 1.0  by HUM Working Group

1.5 A HOOD EXAMPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
 1.5.1  Presentation of the EMS system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
 1.5.2 EMS   Solution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

 1.5.2.1 Statement of the Problem (H1.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
 1.5.2.2 Analysis and Structuring of Requirement Data (H1.2). . . . . . . . . . . . . . . . . . . 45
 1.5.2.3 Informal Solution Strategy (H2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
 1.5.2.4 Formalization of the Strategy (H3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
 1.5.2.5 Structuring the design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

 1.5.3  ODS examples of EMS system  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
 1.5.3.1 ENVIRONMENT OBJECT Input_Output_Driver. . . . . . . . . . . . . . . . . . . . . . 52
 1.5.3.2 PARENT OBJECT EMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
 1.5.3.3 TERMINAL CHILD OBJECT CTRL_EMS . . . . . . . . . . . . . . . . . . . . . . . . . . 54

 1.5.4 Example of Ada code implementation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2  ADVANCED CONCEPTS 61

2.1 ARCHITECTURAL GUIDELINES. . . . . . . . . . . . . . . . . . . . . . . . 61
 2.1.1 STRUCTURING BASED ON ADTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

 2.1.1.1 Object Abstraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
 2.1.1.2 Abstract Data Type Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
 2.1.1.3 ADT implementations as HADT objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
 2.1.1.4 Defining Logical Interfaces with ADT support. . . . . . . . . . . . . . . . . . . . . . . . . 68
 2.1.1.5 ADT Refinement Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
 2.1.1.6 Deriving HADT objects from DataFlows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

 2.1.2 THE HOOD DESIGN PROCESS AS SEVEN DESIGN RULES . . . . . . . . . . . . . . . . . 71
 2.1.3 OTHER GUIDELINES FOR IDENTIFYING OBJECTS  . . . . . . . . . . . . . . . . . . . . . . . 73

 2.1.3.1 Structuring based on layered models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
 2.1.3.2 Structuring based on Technological Components. . . . . . . . . . . . . . . . . . . . . . . 73
 2.1.3.3 Structuring and Refinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
 2.1.3.4 Modular and ADT Refinement Principles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.2 THE HOOD DESIGN DOCUMENTATION. . . . . . . . . . . . . . . . . 80
 2.2.1 Objectives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
 2.2.2 Documentation Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
 2.2.3 Documentation Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
 2.2.4 Documentation Elaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.3 EVALUATING A HOOD DESIGN  . . . . . . . . . . . . . . . . . . . . . . . . 82
 2.3.1 DEFINITIONS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

 2.3.1.1 Goal of HOOD design verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
 2.3.1.2 Means for HOOD design verification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

 2.3.2 DOCUMENTATION FOR VERIFICATION AND REVIEWS  . . . . . . . . . . . . . . . . . . 83
 2.3.2.1 Preliminary Design and Detailed Design Documents. . . . . . . . . . . . . . . . . . . . 83
 2.3.2.2 Documentation for Verifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
 2.3.2.3 Summary on Documentation and Reviews. . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

 2.3.3 DESIGN STEP VALIDATION  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
 2.3.4 DESIGN PROTOTYPING  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
 2.3.5 LEVEL VALIDATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
 2.3.6 DESIGN VERIFICATION IN THE DEVELOPMENT . . . . . . . . . . . . . . . . . . . . . . . . . 87



Copyright © 1995-96 by HOOD Users Group page xi

page -xi
HOOD USER MANUAL 1.0 HUM-1.0

2.4 REAL TIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
 2.4.1 Development Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
 2.4.2 Current Development Approaches  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

 2.4.2.1 Representing Common Real Time Mechanisms. . . . . . . . . . . . . . . . . . . . . . . . 89
 2.4.2.2 Establishing a Real Time architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

 2.4.3 Advanced Development Approaches  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
 2.4.3.1 Establishing a VN architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
 2.4.3.2 Implementing INTER-VNs communications . . . . . . . . . . . . . . . . . . . . . . . . . . 94

 2.4.4 Expressing inter-process communication with operation constraints . . . . . . . . . . . . . . . 95
 2.4.4.1 Use of Ada tasking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
 2.4.4.2 No use of Ada tasking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

2.5 DISTRIBUTED SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
 2.5.1 A Development Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
 2.5.2 VN Implementation Approach  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

 2.5.2.1 Implementing protocol constraints for VNs . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
 2.5.2.2 Managing VNS as HOOD OBJECTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

2.6 MAN MACHINE INTERFACES . . . . . . . . . . . . . . . . . . . . . . . . . 105
 2.6.1 Development Approach for complex MMIs Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 105
 2.6.2 Modelling interactions with Window Managers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
 2.6.3 Factorising interactions with Window Managers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

2.7 INFORMATION SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
 2.7.1 PARALLEL DEVELOPMENT of Information Systems . . . . . . . . . . . . . . . . . . . . . . . 111
 2.7.2 Example of a HOOD initial Information System Model . . . . . . . . . . . . . . . . . . . . . . . . 112

2.8 FAULT TOLERANT SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . 113

2.9 ERROR AND EXCEPTIONS HANDLING. . . . . . . . . . . . . . . . . 115
 2.9.1 The Exception Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
 2.9.2 Errors handling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
 2.9.3 Suggested solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

2.10 REUSING HOOD DESIGNS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
 2.10.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
 2.10.2 Top-down & bottom-up approaches  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
 2.10.3 General guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

 2.10.3.1 General design techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
 2.10.3.2 Classified guidelines for reuse and evolution . . . . . . . . . . . . . . . . . . . . . . . . . 122

 2.10.4 Advanced techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
 2.10.4.1 Transforming objects into HOOD3 classes. . . . . . . . . . . . . . . . . . . . . . . . . . . 131
 2.10.4.2 Using Virtual nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

 2.10.5 Summary on HOOD & Reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
 2.10.5.1 What to Reuse? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
 2.10.5.2 How to Do Reusable? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

2.11 HOOD AS A COMMON DEVELOPMENT FRAMEWORK. . 136
 2.11.1 Integration of MULTIPLE-DEVELOPMENT TECHNOLOGIES  . . . . . . . . . . . . . . . 138
 2.11.2 Conceptual and behaviours Modelling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
 2.11.3 Dynamic behaviour Modelling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

 2.11.3.1 Extended Object Execution Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142



Copyright © 1995-96 by HOOD Users Group page xii

page -xii
HOOD USER MANUAL 1.0  by HUM Working Group

 2.11.3.2 Requirements for selecting control expression notations . . . . . . . . . . . . . . . . 145
 2.11.3.3 Defining an Associated Verification Process . . . . . . . . . . . . . . . . . . . . . . . . . 146
 2.11.3.4 Synchronous Automata Code for Predicate Transition nets . . . . . . . . . . . . . . 148

 2.11.4 Performance Evaluation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
 2.11.4.1 Annotating a HOOD design for “automatic” performance analysis. . . . . . . . 149
 2.11.4.2 Kinds of performance related data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
 2.11.4.3 Inserting annotations into a HOOD design. . . . . . . . . . . . . . . . . . . . . . . . . . . 150
 2.11.4.4 Performance Annotations for a HOOD design . . . . . . . . . . . . . . . . . . . . . . . . 150
 2.11.4.5 Building a performance model from an annotated HOOD design.. . . . . . . . . 152

 2.11.5 Timing estimation and schedulability analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

2.12 TARGET LANGUAGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
 2.12.1 HOOD to targets Implementation principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
 2.12.2 HOOD to Ada Code Generation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
 2.12.3 Sequential Languages (C, C++, Fortran and Assemblers)  . . . . . . . . . . . . . . . . . . . . . . 156

 2.12.3.1 Operation Signatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
 2.12.3.2 Exceptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
 2.12.3.3 Generation rules for passive objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
 2.12.3.4 Generation rules for active objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
 2.12.3.5 Entity Naming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
 2.12.3.6 Conventions for C targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
 2.12.3.7 Code generation for Environments objects. . . . . . . . . . . . . . . . . . . . . . . . . . . 157

 2.12.4 Object Oriented Language Targets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
 2.12.4.1 Designing for OOPL implementation (HOOD3.1). . . . . . . . . . . . . . . . . . . . . 158
 2.12.4.2 Other Conventions for C++. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
 2.12.4.3 Implementation of state constrained operations . . . . . . . . . . . . . . . . . . . . . . . 158
 2.12.4.4 Implementation of protocol constrained operations . . . . . . . . . . . . . . . . . . . . 159

2.13 FULL ADA CODE ILLUSTRATION  . . . . . . . . . . . . . . . . . . . . . 161
 2.13.1 TERMINAL PASSIVE OBJECT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

 2.13.1.1 ODS Definition for passive STACK object . . . . . . . . . . . . . . . . . . . . . . . . . . 161
 2.13.1.2 Ada code generation for passive STACK object. . . . . . . . . . . . . . . . . . . . . . . 163
 2.13.1.3 ODS Definition for passive STACKS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
 2.13.1.4 Ada code generation for passive  object  STACKS . . . . . . . . . . . . . . . . . . . . 166

 2.13.2 TERMINAL ACTIVE OBJECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
 2.13.2.1 ODS Definition for active object STACKS . . . . . . . . . . . . . . . . . . . . . . . . . . 167
 2.13.2.2 Ada code generation for ACTIVE OBJECT STACKS. . . . . . . . . . . . . . . . . . 171

2.14 "NO TASKING" ADA CODE  ILLUSTRATION . . . . . . . . . . . 173
 2.14.1 Code for State Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
 2.14.2 Code Generation for Protocol Constraints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

3  GETTING THROUGH 181

3.1 HANDLING DOCUMENTATION STANDARDS . . . . . . . . . . . 181
 3.1.1 ADD standard  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

 3.1.1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
 3.1.1.2 Example of ADD Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

 3.1.2 DDD standard  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
 3.1.2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
 3.1.2.2 Example of DDD Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186



Copyright © 1995-96 by HOOD Users Group page xiii

page -xiii
HOOD USER MANUAL 1.0 HUM-1.0

3.2 MAINTENAINING CONSISTENCY BETWEEN DESIGN AND
CODE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

 3.2.1 Problem Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
 3.2.2 Mastering the relationship between ODs and CODE files  . . . . . . . . . . . . . . . . . . . . . . 187

 3.2.2.1 Maintaining Code definition within the ODS: . . . . . . . . . . . . . . . . . . . . . . . . 188
 3.2.2.2 Maintaining consistency between Code and ODSs. . . . . . . . . . . . . . . . . . . . . 188

3.3 REUSING ENVIRONMENTAL SOFTWARE (NON HOOD-
CODE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

3.4 MANAGING HOOD PROJECTS  . . . . . . . . . . . . . . . . . . . . . . . . 190
 3.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
 3.4.2 Subcontracting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

 3.4.2.1 Allocation of objects to subcontractors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
 3.4.2.2 Managing the consistency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

 3.4.3 Configuration Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
 3.4.3.1 Principles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
 3.4.3.2 Configuration of a Development. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
 3.4.3.3 Configuration Management of Code- versus -ODS . . . . . . . . . . . . . . . . . . . . 194
 3.4.3.4 Evolution of the Project Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

 3.4.4 Reviewing a HOOD Design  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
 3.4.4.1 Warning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
 3.4.4.2 Documentation Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
 3.4.4.3 Starting reading a Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
 3.4.4.4 ODSs Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
 3.4.4.5 Redundancy Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
 3.4.4.6 Evaluation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
 3.4.4.7 Managing Author-Reader Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

 3.4.5 Tutoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

4  METHOD SUPPORT AND EVOLUTION 201

4.1 THE HOOD USER GROUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

4.2 THE STANDARD INTERCHANGE FORMAT. . . . . . . . . . . . . 201

4.3 TOOLSETS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

5  CONCLUSIONS 203

6  BIBLIOGRAPHY 204

6.1 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

6.2 HOOD BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208



Copyright © 1995-96 by HOOD Users Group page xiv

page -xiv
HOOD USER MANUAL 1.0  by HUM Working Group

 6.2.1 Articles and Papers published in 1995  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
 6.2.2 Articles and Papers published in 1994  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
 6.2.3 Articles and Papers published in 1993  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
 6.2.4 Articles and Papers published in 1992  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
 6.2.5 Articles and Papers published in 1991  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
 6.2.6 Articles and Papers published in 1990  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
 6.2.7 Articles and Papers published in 1989, 1988 et 1987 . . . . . . . . . . . . . . . . . . . . . . . . . . 213

A  APPENDIXES 215

A1  MORE ON THE EMS EXAMPLE 216

A1.1 EMS REQUIREMENTS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
 A1.1.1  Presentation of the EMS system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
 A1.1.2 Client  Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
 A1.1.3 Software Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

A1.2 OBJECT AND OPERATION IDENTIFICATION  THROUGH
TEXTUAL ANALYSIS TECHNIQUES  . . . . . . . . . . . . . . . . . . . 217

 A1.2.1 Identification of Nouns :  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
 A1.2.2 Identification  of  Verbs  (  continue) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

A1.3 OTHER  ODS OF EMS SYSTEM  . . . . . . . . . . . . . . . . . . . . . . . . 219
 A1.3.1 OBJECT Timers_Driver IS ENVIRONMENT ACTIVE . . . . . . . . . . . . . . . . . . . . . . . 219
 A1.3.2 OBJECT Sensors IS ACTIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
 A1.3.3 OBJECT Bargraphs IS PASSIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
 A1.3.4 OBJECT Alarm IS ACTIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

A2  EXAMPLE OF ADA CODE IMPLEMENTATION 228

A3  HOOD4 TARGET IMPLEMENTATION AND ILLUSTRATIONS 233

A3.1 HOOD4 TO TARGET IMPLEMENTATION PRINCIPLES . . 233
 A3.1.1 Implementing state constraints with standard Ada  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
 A3.1.2 Implementing state constraints without Ada tasking . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
 A3.1.3 Implementing protocol constraints in  Ada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

 A3.1.3.1 Implementing protocol constraints without Ada tasking . . . . . . . . . . . . . . . . 235

A3.2 HOOD4 ADA CODE  ILLUSTRATION . . . . . . . . . . . . . . . . . . . 238
 A3.2.1 HOOD4 State Constraint Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

 A3.2.1.1 STACK OSTD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
 A3.2.1.2 STACK OSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
 A3.2.1.3 STACK with state constraints  in Ada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

 A3.2.2 Protocol constraints SUPPORT ILLUSTRATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242



Copyright © 1995-96 by HOOD Users Group page xv

page -xv
HOOD USER MANUAL 1.0 HUM-1.0

 A3.2.2.1 STACK  with protocol constrained operations  (Client code) . . . . . . . . . . . . 244
 A3.2.2.2 STACK  with protocol constrained operations  (STACK_RB CODE) . . . . . 245
 A3.2.2.3 STACK  with protocol constrained operations  (STACK_SERVER CODE)  246

 A3.2.3 Client_Server  illustration for classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

A4  ODS CONTENTS ILLUSTRATION 248

A4.1 ODS CONTENT IN STATE "CHILD" . . . . . . . . . . . . . . . . . . . . 248

A4.2 ODS CONTENT IN STATE "PARENT"  . . . . . . . . . . . . . . . . . . 248

A4.3 ODS CONTENT IN STATE "TERMINAL". . . . . . . . . . . . . . . . 248

A5  ABBREVIATION LIST 249



Copyright © 1995-96 by HOOD Users Group page xvi

page -xvi
HOOD USER MANUAL 1.0  by HUM Working Group



Copyright 1995-96 by HOOD Users Group page xvii

page -xvii
HOOD USER MANUAL 1.0 HUM-1.0

LIST of FIGURES

  Figure 1 -  HOOD in the development activities .....................................................................................  2

  Figure 2 -  Classification of the different HOOD Objects........................................................................  3

  Figure 3 -  Objects providing and requiring services and exchanging information items .......................  4

  Figure 4 -  HOOD Object execution model .............................................................................................  5

  Figure 5 -  Representation of Parent, Child Uncle and Environment objects ..........................................  6

  Figure 6 -  A class as root object using environment and formal parameters object ...............................  8

  Figure 7 -  Structure of a HOOD Object ..................................................................................................  9

  Figure 8 -  ODS Outline .........................................................................................................................  10

  Figure 9 -  Graphical representation for the active object Stack............................................................  11

  Figure 10 -  Object behaviour for STACK...............................................................................................  11

  Figure 11 -  ODS for STACK (User Manual) ..........................................................................................  12

  Figure 12 -  ODS for STACK (Internals) .................................................................................................  13

  Figure 13 -  ODS for STACKs (Internals continued)...............................................................................  14

  Figure 14 -  Mapping between HOOD and Ada entities..........................................................................  15

  Figure 15 -  Code generation principle for Parent object .........................................................................  16

  Figure 16 -  Code generation principle for Parent object (standard generation)......................................  16

  Figure 17 -  Code generation principle for Parent object (Nesting Child packages in parent Body)) .....  16

  Figure 18 -  HOOD 3 Code structure for constraint operations ...............................................................  17

  Figure 19 -  Code generation principles for terminal active object..........................................................  18

  Figure 20 -  A System To Design within a whole project (Client/server use relationships are not shown) 19

  Figure 21 -  The HOOD design model into a set of spaces and hierarchies. ...........................................  21

  Figure 22 -  HOOD Design Tree as decomposed from the ROOT object ...............................................  22

  Figure 23 -  The HOOD design activities and associated outputs ...........................................................  24

  Figure 24 -  Application of Basic Design Steps to the system configuration...........................................  33

  Figure 25 -   Full Design Activities Overview .........................................................................................  34

  Figure 26 -  Full Design Activities applied on the HOOD Architecture..................................................  35

  Figure 27 -  The “Z” strategy ...................................................................................................................  39

  Figure 28 -  The different models in the “Z” life cycle............................................................................  39

  Figure 29 -  Test environment generation ................................................................................................  40

  Figure 30 -  Phased Incremental Development Approach For Complex Systems...................................  43

  Figure 31 -  State Transition Diagram modelling the behaviour of the EMS system ..............................  46

  Figure 32 -   EMS HOOD DIAGRAM (H3.4)......................................................................................... 49

  Figure 33 -  EMS objects and Design Views............................................................................................  51

  Figure 34 -  Ada Specification associated to EMS ODS..........................................................................  58

  Figure 35 -  Ada Specification associated to Ctrl_EMS ODS..................................................................  58

  Figure 36 -  Ada Body associated to Ctrl_EMS ODS.............................................................................. 58

  Figure 37 -  Ada Specification associated to EMS ODS (Continued) .....................................................  59

  Figure 38 -  HOOD Diagram of a Bounded Stack ...................................................................................  63

  Figure 39 -  Textual view of a Bounded Stack defined as an ADO .........................................................  63



Copyright 1995-96 by HOOD Users Group page xviii

page -xviii
HOOD USER MANUAL 1.0  by HUM Working Group

  Figure 40 -  An alternative to the previous stack .....................................................................................  64

  Figure 41 -  A bounded stack defined as an ADT ....................................................................................  65

  Figure 42 -  Graphical representation of object ADT_STACK................................................................  66

  Figure 43 -  Structure and ODS of HOOD object ADT_STACK encapsulating Data Instances.............  66

  Figure 44 -  Graphical representation of object ADT_STACK................................................................  67

  Figure 45 -  Structure and ODS of object ADT_STACK.........................................................................  67

  Figure 46 -  Objects exchanging a complex data “Image”.......................................................................  68

  Figure 47 -  interface_object “ADT image” associated to  data Image....................................................  68

  Figure 48 -  Objects of initial HOOD model exchanging a complex data “Message”.............................  69

  Figure 49 -  HADT object ADT_MESSAGE   providing a MESSAGE class.........................................  70

  Figure 50 -  ADT object ADT_MESSAGE providing a MESSAGE class .............................................  70

  Figure 51 -  HOOD Method of decomposition and refinement ...............................................................  71

  Figure 52 -  Typical Layered Model of a on board Application...............................................................  73

  Figure 53 -  Typical System Information Model partitioned through Technological Components .........  74

  Figure 54 -  Modular and ADT Refinement .............................................................................................  76

  Figure 55 -  Principle of specifying Interfaces through ADTs .................................................................  76

  Figure 56 -  Combining Modular with ADT Refinement.........................................................................  77

  Figure 57 -  Refinement Techniques of a HOOD model..........................................................................  79

  Figure 58 -   Relationships between parent and child ODS description sections.....................................  81

  Figure 59 -  States in the ODS production life cycle ...............................................................................  81

  Figure 60 -   Design Step activities and associated documentation section.............................................  85

  Figure 61 -  Representations of tasks with HOOD...................................................................................  88

  Figure 62 -  Representations of cyclic tasks;............................................................................................  89

  Figure 63 -  Representation of semaphores..............................................................................................  90

  Figure 64 -  Representation of mail boxes ...............................................................................................  90

  Figure 65 -  Representation of shared areas .............................................................................................  90

  Figure 66 -  Representation of events.......................................................................................................  91

  Figure 67 -  Initial representation of a RT architecture ............................................................................  91

  Figure 68 -  Explicating inter-process communications...........................................................................  92

  Figure 69 -  initial representation of a VN architecture ...........................................................................  93

  Figure 70 -  Explicit inter-VN communications.......................................................................................  93

  Figure 71 -  Implementation of a VN.......................................................................................................  94

  Figure 72 -  Principle of additional code to the logical model one in the physical model/......................  98

  Figure 73 -  Execution Model for protocol constrained operations for VN.............................................  99

  Figure 74 -  OPCS_ER code Sample for STACK.PUSH  client stub operation ......................................  99

  Figure 75 -  OPCS_SER codefor STACK.PUSH  RB  operation ..........................................................  100

  Figure 76 -  Architecture Principle of the VNCS software ....................................................................  100

  Figure 77 -  Illustration of ServerVNCS.Message_in code ...................................................................  101

  Figure 78 -  Illustration of ServerObcs code of an allocated object in a remote VN.............................  102

  Figure 79 -  Illustration of the representation of the physical model at terminal level ..........................  104

  Figure 80 -  Generic Architecture for MMIs..........................................................................................  106



Copyright 1995-96 by HOOD Users Group page xix

page -xix
HOOD USER MANUAL 1.0 HUM-1.0

LIST of FIGURES

  Figure 81 -  Animation and prototyping of MMIs .................................................................................  107

  Figure 82 -  Modelling DIALOG AUTOMATA with HOOD object.....................................................  108

  Figure 83 -  HOOD Representation of callbacks ...................................................................................  109

  Figure 84 -  Isolating the application from GUIMS code ......................................................................  110

  Figure 85 -  Typical architecture of an Information System initial HOOD model ................................  112

  Figure 86 -  Dedicated Object to handle Error and exceptions ..............................................................  116

  Figure 87 -  Classical Top-Down Approach...........................................................................................  118

  Figure 88 -  Layered Bottom-Up Approach ...........................................................................................  119

  Figure 89 -  Mixed Approach.................................................................................................................  120

  Figure 90 -  Definition of a disk driver and its associate properties.......................................................  123

  Figure 91 -  defining an array .................................................................................................................  124

  Figure 92 -  two different put operations................................................................................................  124

  Figure 93 -  instantiation of INPUT-OUTPUT.......................................................................................  124

  Figure 94 -  A generic stack providing a print operation .......................................................................  125

  Figure 95 -  an object to sort data...........................................................................................................  127

  Figure 96 -  Instance for sorting integer .................................................................................................  127

  Figure 97 -  Instance for sorting string...................................................................................................  127

  Figure 98 -  Generalization of the simple ADO BOUNDED_STACK..................................................  129

  Figure 99 -  Generalization of the simple ADT BOUNDED_STACKS................................................  129

  Figure 100 -  A class violating Advice 29................................................................................................  130

  Figure 101 -  The same class respecting Advice 29.................................................................................  130

  Figure 102 -  an Object with explicit dependency ...................................................................................  131

  Figure 103 -  de-coupling a reusable object .............................................................................................  132

  Figure 104 -  Transformation of the above Example into a class.............................................................  132

  Figure 105 -  level decomposition of a terminal Virtual Node.................................................................  133

  Figure 106 -  Models and Components of a complex software architecture............................................  136

  Figure 107 -  HOOD Architectural Model of a complex information system .........................................  139

  Figure 108 -  Target Code architecture associated to OBCS and OPCSs ................................................  141

  Figure 109 -  Extended Execution model for constrained operations ......................................................  142

  Figure 110 -  Automata Code modelling an Object OBCS......................................................................  143

  Figure 111 -  Principle of I_INTERFACE procedure Code.....................................................................  143

  Figure 112 -  Principle of O_INTERFACE procedure Code ...................................................................  143

  Figure 113 -  I_INTERFACE Code for HSER constraint ........................................................................  144

  Figure 114 -  O_INTERFACE Code for HSER constraint ......................................................................  144

  Figure 115 -  I_INTERFACE Code for LSER constraint ........................................................................  144

  Figure 116 -  O_INTERFACE Code for LSER constraint .......................................................................  144

  Figure 117 -  I_INTERFACE Code for HSER constraint ........................................................................  144

  Figure 118 -  I_INTERFACE Code for TOER_LSER constraint ............................................................  145

  Figure 119 -  I_INTERFACE Code for TOER_HSER constraint............................................................  145



Copyright 1995-96 by HOOD Users Group page xx

page -xx
HOOD USER MANUAL 1.0  by HUM Working Group

  Figure 120 -  Integration based on several concurrent AUTOMATA......................................................  147

  Figure 121 -  Integration based on merge of AUTOMATA .....................................................................  147

  Figure 122 -  Ada Code generation for PTN............................................................................................  148

  Figure 123 -  : from performance requirements and design elements to performance model .................  149

  Figure 124 -  : Annotation with performance constraints ........................................................................  150

  Figure 125 -  : Annotation with an execution profile. ..............................................................................  151

  Figure 126 -  Estimating worst case execution time ................................................................................  152

  Figure 127 -  : Generation of a performance model from an annotated HOOD design...........................  152

  Figure 128 -  Timing estimations: Analysis of each HOOD object .........................................................  153

  Figure 129 -  Timing estimations: Build overall execution skeleton .......................................................  154

  Figure 130 -  Example of HOOD annotations for performance and timing estimations .........................  154

  Figure 131 -  Sample code of testing exceptions in client code...............................................................  156

  Figure 132 -  Graphical representation for the object Stack.....................................................................  161

  Figure 133 -  ODS of  passive STACK  object ........................................................................................  162

  Figure 134 -  Ada specification Unit for passive  object STACK ............................................................  163

  Figure 135 -  Ada body Unit for passive  object STACK ........................................................................  163

  Figure 136 -  Graphical representation for the active object Stacks ........................................................  164

  Figure 137 -  ODS of  passive STACK S. ................................................................................................  165

  Figure 138 -  Ada specification Unit for passive STACKS......................................................................  166

  Figure 139 -  Ada body Unit for passive STACKS..................................................................................  166

  Figure 140 -  Graphical representation for the active object Stack..........................................................  167

  Figure 141 -  Object behaviour for STACK.............................................................................................  167

  Figure 142 -  Ada OBCS code for stack...................................................................................................  168

  Figure 143 -  ODS Illustration  of  STACKS ...........................................................................................  169

  Figure 144 -  Internals of ODS  for active object STACKS.....................................................................  170

  Figure 145 -   Ada specification Unit for active object STACKS ............................................................  171

  Figure 146 -  Ada Body Unit for Active STACKS ..................................................................................  171

  Figure 147 -  Additional HEADER code to the OPCS for state constraint support with an FSM...........  173

  Figure 148 -  Ada Specification Unit for  State Constrained Operations without tasking .......................  173

  Figure 149 -  Ada Body Unit for Constrained Operations without tasking .............................................  174

  Figure 150 -  Ada Specification Unit for Constrained Operations without tasking .................................  175

  Figure 151 -  Ada body code generation with no tasking - protocol constraints .....................................  176

  Figure 152 -  OBCS body code  with no tasking - protocol constraints ..................................................  178

  Figure 153 -  Separate part of OBCS body code  containing the dedicated SerDispatcher code.............  178

  Figure 154 -  Example of a HOOD initial model at level1 of decomposition .........................................  190

  Figure 155 -  Example of Refinement of initial HOOD model ................................................................  190

  Figure 156 -  HOOD Design trees states in the development life-cycle ..................................................  191

  Figure 157 -  Consistency of multi System-Configurations.....................................................................  193

  Figure 158 -  The EMS System................................................................................................................  216

  Figure 159 -  The EMS Hardware Block Diagram .................................................................................. 216

  Figure 160 -  Suggested   Target Code structure for constraint operations ..............................................  234



Copyright 1995-96 by HOOD Users Group page xxi

page -xxi
HOOD USER MANUAL 1.0 HUM-1.0

LIST of FIGURES

  Figure 161 -   Principle of Code for Protocol onstrained operation support ............................................  236

  Figure 162 -   Principle of Code for Protocol Constrained operation support .........................................  237

  Figure 163 -   State Constraints Implementation Schema........................................................................ 238

  Figure 164 -   OSTD for STACK object ..................................................................................................  238

  Figure 165 -  OSTD Implementation Example ........................................................................................  239

  Figure 166 -  STACK object  with state constraints operations ...............................................................  240

  Figure 167 -  STACK  with state constraints code Sample ......................................................................  240

  Figure 168 -   STACK  with state constraints code Sample .....................................................................  241

  Figure 169 -   STACK with protocol constraints......................................................................................  243

  Figure 170 -   STACK with protocol constraints  (without tasking) ........................................................  244

  Figure 171 -  STACKwith protocol constraints  (without tasking) ..........................................................  244

  Figure 172 -  STACK 1 with protocol constraints  (without tasking) ......................................................  246

  Figure 173 -  Client_Server Code structure for class TStack................................................................... 247



Copyright 1995-96 by HOOD Users Group page xxii

page -xxii
HOOD USER MANUAL 1.0  by HUM Working Group



Copyright 1995-96 by HOOD Users Group page 1

page -1
HOOD USER MANUAL 1.0 HUM-1.0

1 GETTING STARTED

1.1 GENERAL PRESENTATION

HOOD (HierarchicalObjectOrientedDesign) is a design method, which is used after the re-
quirement analysis activities and covers architectural design, detailed design and coding. The
method resulted from merging methods known asabstract machines andobject oriented design
and was further adapted to the needs of European Software Industry as an attempt to unify and
integrate object orientation and advanced software engineering concepts and notations[2] .

1.1.1 HISTORY AND OBJECTIVES

In September 1989, HOOD3.0 was released by theHOOD Technical Group founded by ESA.
In July 1992 an evolution of the design methodHOOD, release 3.1, incorporating feed-back
over two years experience on various projects, was adopted by theHOODUser'sGroup (HUG)
[4] as the method official release see HRM[1] .

After an evaluation phase on small pilot projects, the method was chosen for the COLUMBUS
Manned Space and ARIANE5 programs. Since, it has been adopted by EUROCOPTER, the
French NAVY and by several other large projects in aerospace, defence, transport, energy and
nuclear applications.

HOOD is anobject based method that supports a modular technology, centered on client-server
and composition relationships, where minor emphasis is put on inheritance. This is why, beside
the recent blossoming of Object Oriented methods, HOOD has evolved slowly and a new release
is only planned to be compatible with Ada95[7] . Experience has proven that inheritance in re-
quirement analysis is not the same as inheritance used for implementation, thus there is a need
for an intermediate method in design. The advantages promised byfull inheritance basedobject
oriented methods are currently not balancing the drawbacks of introducing them straight on large
scale projects. Furthermore we are convinced that industrial use of inheritance will be limited to
data modelling and detailed design programming support. Today OOP is only made possible
through powerful programming and debugging support environments, and limited to very small
integrated teams. HOOD on the other side has been recently worked out to integrate both modular
and inheritance programming, thus making HOOD the architectural design method of choice.

With more than thousand engineers trained in Europe and the availability of several toolsets and
companies providing support for using the method, HOOD is spreading continuously within the
industry. The HUG[4]  has been set-up as an international non profit organisation and is in charge
of controlling the method evolution.

1.1.2 HOOD IN THE DEVELOPMENT ACTIVITIES

HOOD supports identification of a software architecture after requirement analysis activities and
leads naturally into detailed design where operations of objects are further designed using a Pro-
gram Description Language (PDL) inspired from Ada. This detailed design description may be
further refined into target language descriptions up to a point where the target code can be gen-



Copyright 1995-96 by HOOD Users Group page 2

page -2
HOOD USER MANUAL 1.0  by HUM Working Group

erated. The figure hereafter (Figure 1 -) indicates HOOD applicability within a simplified life-
cycle model.

Figure 1 -  HOOD in the development activities

Due to the complexity and duration of activities in a large project, HOOD design activities may
take place several times in a real development life-cycle. Traceability with requirement analysis
as they are refined followed by refined solutions is still a problem in the management of large
projects. However HOOD refinement properties provide support for a development approach
that goes across the different design phases and helps support consistency of a design solution
from the initial approved solution down to the implementation one, and that is still specific and
adapted to particular target systems.

These issues may be more refined in dedicated sections of this document (see Section 2.1.2, or
Section 2.1.3) but what the reader should already point out now is that:

• HOOD is not a requirement analysis method

• HOOD handles “design requirement analysis” activities in transitioning from requirements
analysis to design (see Section 1.3 below)

• HOOD is an architectural design method, helping a designerto partition the software into
modules or objects of well defined interfaces that can either be directly implemented or fur-
ther partitioned with HOOD into modules of lower complexity.

• HOOD concepts looking for integration of design with the other development activities. Es-
pecially, HOOD object properties having been definedin order to ease interface mastering,
testing and integration in the context of parallel, multi-people team developments.

1.1.3 BASIC CONCEPTS

HOOD is a method based on:

• a formalism:

- thegraphical notation allows to express an abstraction of a solution in a clear, high level
and easy-to-understand notation.

- thetextual notation allows formal expression and refinement of the object’s characteris-
tics and properties by means of anObject Description Skeleton(ODS). This concept
helps to structure the descriptions into separate fields which support appropriate control
and program description notations. Finally these descriptions may be fully translated into
a target language (Ada, C, C++, or Fortran).

• a process describing and refining a software model from abstract structures and concepts to-
wards target machine code.

Requirement definition

HOOD

Architectural design Detailed design Coding Testing



Copyright 1995-96 by HOOD Users Group page 3

page -3
HOOD USER MANUAL 1.0 HUM-1.0

• rules coming from industrial experiences.

These notations allow to use powerful structuring concepts for describing and organising a sys-
tem as a set of interconnected hierarchies of objects. The principles supported are threefold:

• the notations allow hierarchic representation supporting both global and local views of com-
ponents. Furthermore the concept of uncle and environment object supports formal represen-
tation of acontext of a model with full consistency checking.

• the graphical notation is an abstraction of a fully detailed model, offeringreduced but con-
sistent views, and allowing hierarchical refinement of representations and understanding.

• the textual notations leave provisions for both informal and formal texts, allowing the defi-
nition of a documentation skeleton as a framework for a step by step integration of advanced
notations to capture and formally verify the characteristics of an object.

1.1.3.1 HOOD Objects

Within HOOD, everything is an object, but the term “object” does have the general meaning of
MODULE encapsulating a number of properties. However a number of modules may be charac-
terized more precisely. In order to ease the understanding of the method, one can group objects

different into different categories according to three perspectives1:

• decomposition: characterizes objects according to the way they are structured,

• behaviour: characterizes objects according to their behavioural properties,

• organization: characterizes objects according to their role in the system development.

A synthetic view of this classification is provided in Figure 2 - below.

Figure 2 -  Classification of the different HOOD Objects

1.be careful those views are not facets; in other words, each HOOD object must not be characterized by a term in each of those
views, and some of these types are exclusive

decomposition

organisation

behaviour

terminal non-terminal

normal instance op-control

active passive

Object virtual node class environment



Copyright 1995-96 by HOOD Users Group page 4

page -4
HOOD USER MANUAL 1.0  by HUM Working Group

In the following, we give a more detailed description of the HOOD object concept as a summary
of its description in the HRM[1] .
Theobjectis theunit of modularityand is defined by the services that itprovides, encapsulating
astate, and a set of services that itrequires from other objects. To require a service, a client object
must identify the server object to perform it; thus every object has a unique identifier and may be
referenced unambiguously. Aservice is an abstraction of an operation or an access to anattribute
/ componentof the state of an object.
Each service has asignature, (expressed using an Ada like syntax) which defines the number and
type of its arguments. The set of signatures constitutes the provided interface; similarly, the re-
quired interface comprises the set of signatures of the required services. Communication between
objects - the USE relationship - is only possible by service requests, which are similar to Small-
talk method calls or Ada procedure or task entry calls:

• there is a many-to-one connection pattern, reflected by the naming scheme.

• the provider of the service must be named by the client.

• the name of the client is not directly known by the server.

• a client object requesting a service from a server object is said to use the server and this re-
lation is represented by a bold use arrow.

• information items can be exchanged between communicating objects; the associated infor-
mation flow may be bidirectional and is represented by arrows along the use relationship one
(see Figure 3 -)

Figure 3 -  Objects providing and requiring services and exchanging information items

Communication protocols may be achieved by attaching execution requests and constraints to a
given service. Two kinds of constraints are defined:

• state constraints(service activation constraints relying on the semantics and internal state of
the object) are represented through non labelled trigger arrows.

• protocol execution constraints (represented by text labels attached to a trigger arrow) which
define that the client requesting process execution is suspended after its request :

- until full completion of the requested service ( Highly Synchronous Execution Request or
HSER protocol)

Start
Stop
Put

A

Item

SERVER

ASER
 by Supervisor

Start

Stop

A CLIENT

Info

Get
Get_Status



Copyright 1995-96 by HOOD Users Group page 5

page -5
HOOD USER MANUAL 1.0 HUM-1.0

- until completion of the request processing by a server process (Loosely Synchronous Ex-
ecution Request orLSER protocol)

- until runoff of a time delay or until full completion of the requested service (TOER_HSER
protocol)

- until runoff of a time delay or until completion of the request processing by a server pro-
cess (TOER_LSER protocol)

- or not suspended (ASynchronous Execution Request orASER protocol). This kind of ex-
ecution request corresponds to classical message passing communication.

1.1.3.2 Control Structures

HOOD allows the precise description of the dynamical behaviour attached to the execution of
services (with or without attached execution constraints) throughprocesses which are ultimately
implemented on target machine processors. The behaviour of processes is captured through two
orthogonal concepts:

• the OPeration Control Structure (OPCS, one by service/operation) which describes how
a sequential process executes within an operation.
Example: For a FILE object withread andwrite constraints operations, the OPCS of theread
operation consists in reading a file contents.

• the OBject Control Structure (OBCS one per object) which controls the activation and trig-
gering of constrained operations, whereas non constrained operation execute directly under
the client requesting process (see Figure 4 -).

Figure 4 -  HOOD Object execution model

A

Operation_1

Operation_2

Operation_3

Operation_4

ASER_by_IT

HSER_TOER 2s

Exécution Mode

Op_2
Exécution Mode

Op_1: OPCSOp_1

Op_2: OPCS

Op_4: OPCS

interprocessOBCS

Op_3: OPCS

Other

Operations

communication
and synchronisation

RequiredInternal OPCS



Copyright 1995-96 by HOOD Users Group page 6

page -6
HOOD USER MANUAL 1.0  by HUM Working Group

This model supports:

• A complete separation of reactive and transformational parts.

• An easy mapping to ADA tasking.

• The possibility of prototyping the dynamics.

• The possibility of expressing the dynamic behaviour using other formalism.

• The definition of execution mode at server level (not at client side)

1.1.3.3 The Include relationship

An object (called a parent or a non-terminal object) may itself be defined as the composition of
other objects (called child objects). Provided services are thenimplemented_by child provided
services. Theimplemented_by relationship is represented by a dashed one-to-one arrow.

• Child objectsare represented as objects within the parent internals, and may require services
provided by uncles (objects which are used by their parents) represented as a connection port
attached to the parent boundaries.Terminal objects are objects that are not further decom-
posed into child objects.

• Environment objectsare objects that do not belong to the current parent-child hierarchy and
are represented as uncle objects with an “E” in left side

.

Figure 5 -  Representation of Parent, Child Uncle and Environment objects

Parent_Object

Object_B

Operation1
Operation2
Operation3

Object_D

Operation3

Object_C

 {opes_1}

Uncle_1

Operation1

Operation1
{opes}

 {opes_2}

Operation2

Operation1

Operation2

{Child_C_ops}

Operation4

{Op_set :
    {C_ops}

     Operation3
    {D_ops}

}

Dataflow2

Dataflow1

Env_1E



Copyright 1995-96 by HOOD Users Group page 7

page -7
HOOD USER MANUAL 1.0 HUM-1.0

1.1.3.4 Types, Data and Attributes

Data can only be exchanged between objects which are related by a USE relationship. Data may
be:

• either instances of target language types (Ada, C, Fortran or Assemblers)

• or instances of abstract data types which are defined in another HOOD object, from which
the type definition is then required. Appendix3 gives a detailed illustration of a Stack imple-
mentation as aHOOD Abstract Data Type (HADT) object.

Types

HOOD enforces a flat typing structure as supported by most target languages. Types are declared
either:

• in theProvided Interface of the current object. In that case, they must be related to parameters
of provided operations. An object should not provide any type which is not an operation pa-
rameter type.

• in its Internals,

• or they are provided by another object (environment or HADT ones)

Data (or variable)

Data may only be declared in:

• theInternal parts of a terminal object. This restriction prohibits the definition of architectures
with global data, recognized as poorly reliable and maintainable ones.

• thelocal datapart of an OPCS (or OBCS) in which case this data is a temporary one and only
exists during the execution of the OPCS.
For example, a state data shall be declared as much as possible locally within the OBCS in
order to not be used by the OPCS.

Attributes

Attributes of an object are data that define invariant properties of an object. While some object
models define attributes as a valued data readable by clients,HOOD unifies all access to an ob-
ject through operations.Hence attributes of an object in HOOD are modelled as provided oper-
ations (possibly returning an attribute value).

1.1.3.5 Class Objects

A HOOD class object2is defined as a template for objectswhich may be parameterized by ser-
vices (types, constants and/or operations) and allowing to factor the descriptions of identical or
similar objects.

2.The term class object came out as the OOP terminology was not well established. HOOD CLASS object shall not be confused
with OOP classes, but are templates or generic objects (similar to generic Ada packages). A HOOD object has always the mean-
ing of “module”.In order to avoid misunderstanding with OOP terminology the terms “class instance” should always be
used to designate an OOP object instance.



Copyright 1995-96 by HOOD Users Group page 8

page -8
HOOD USER MANUAL 1.0  by HUM Working Group

A class object is defined as a separateroot object(top-level object of a parent-child hierarchy),
and may itself be decomposed only into objects and/or instances of other class objects. (see Fig-
ure 6 -)

Figure 6 -  A class as root object using environment and formal parameters object

1.1.3.6 Virtual Node Objects

The Virtual Node (VN) concept is the extension of the object concept (meaning a software mod-
ule) to the system level (i.e. an executable, a process, a sub-system, a system...). The VN defines
an indivisible partition of the memory space and software units for distribution.

Links between objects map procedures calls, even though links between VN map communication
protocol. Communication between VN is only through protocol constrained operations. Some
projects have used the VN concept to design a system where software, hardware and human ac-
tivities have to contribute. In the same way than objects, a man or a hardware may provide ser-
vices in response to requests.

A VN hierarchy (or Virtual Node Tree, VNT) gives the decomposition of a system into elements
providing services and which constitute the whole system. Thus a parent VN may be decomposed
into child VNs. At the lower level, a terminal virtual node consists in a system element which
may either implemented by software, hardware or human actions. In case of software, the HOOD
method allows to present the set of objects which are necessary to build that VN.
Thus, a terminal virtual node implemented by software is decomposed into those objects. We say
that thoseobjects are allocated to the terminal VN. This is not an include relationship but an
allocation relationship. We can thus say that a terminal virtual node may map an executable (a
UNIX process for example) built after compilation and link of all allocated objects.

Finally several VNs can be allocated to a physical processor, but one terminal VN cannot be dis-
tributed across several ones.

1.1.4 TEXTUAL FORMALIM

Each HOOD object is described in an associated Object Description Skeleton (ODS) which
structures its properties into both informal and formal descriptions. Formal notations can be
checked against informal descriptions and by tools.
An overview of the ODS is given in Figure 7 - below.

A_CLASS

E TEXT_IO

F

LIST: LIST_MNGT

Formal_Parameters

an object, instance
of another class

a child
object

TABLE

data_out

OP1

Op1
Op2
OP3



Copyright 1995-96 by HOOD Users Group page 9

page -9
HOOD USER MANUAL 1.0 HUM-1.0

Figure 7 -  Structure of a HOOD Object

ODS Structure

OBCS
Describes implementation of

the object behaviour

OPCS
Describes implementations for

provided and internal operations

Visible Part

Internals
Private or incomplete provided
constants and types are defined

 Implementation of
Provided types and constants

Those definitions are not visible
from outside

 Definition of internal
types, data & operations

 Object Declaration
May be an active or passive object,

a virtual node or a class

Description
Informal text describing what the object does.

(Object functional specification)

Implementation Describe any target implementation constraints

Provided Resources provided TO other objects:
Types, Constants, Operations (sets), Exceptions Interface

Required Resources required FROM other objects:
Types, Constants, Operations (sets), Exceptions Interface

Flows
Data flows coming from required objects

Exception flows coming from required objects

OBCS
Informal description of object behaviour

list of constrained operations

Constraints



Copyright 1995-96 by HOOD Users Group page 10

page -10
HOOD USER MANUAL 1.0  by HUM Working Group

Figure 8 -  ODS Outline

OBJECT <Object_Name> is<Object_Type>
PARAMETERS -- Only for Class instances

TYPES, OPERATIONS, CONSTANTS

DESCRIPTION
-- Text in natural language giving all information for understanding and maintaining the object
IMPLEMENTATION_CONSTRAINTS
Natural language text giving constraints (memory limits, cpu, performances) for the object.

PROVIDED INTERFACE
-- Set of element provided to client objects. They are followed by a description in natural language
TYPES -- HOOD identifier,
CONSTANTS -- HOOD identifier,
OPERATION_SETS -- HOOD identifier

OPERATIONS --signature1 in Ada,
EXCEPTIONS -- HOOD identifier

OBCS -- Only for active objects
DESCRIPTION
-- Text in natural language describing the behaviour of the object
CONSTRAINED OPERATIONS  -- Sub set of provided operations which are constrained

DATA_FLOWS
--Textual Description of Data labels along the use relationship
EXCEPTION_FLOWS
--Textual Description of Exceptions labels along the use relationship

REQUIRED INTERFACE
For each Required Object, the subset of elements provided by the server object and really used in the current object
TYPES, CONSTANTS, OPERATIONS, EXCEPTIONS

INTERNALS

OBJECTS2 -- List all child objects implementing the object

TYPES3, CONSTANTS6, DATA4, EXCEPTIONS6

--definition in target language of both provided elements (if not defined in the visible part) and internal one

OPERATIONS5 -- list of operation (with their signature in Ada) internal to the object

OBCS --Only for active objects

PSEUDO_CODE6--with suitable notation
CODE -- in target language

OPERATION CONTROL STRUCTURES -- Only for terminal objects

For eachOPCS7

Description
Used_Operations -- Operations (internal or external) used by that operation
Exceptions_Propagated
Exceptions_Handled
PSEUDO_CODE -- in PDL
CODE -- in target language

END <Object_Name>

1.Signature = syntactic specification of an operation. By default it is expressed in Ada syntax, what ever target language
2.This field is empty for terminal objects
3.These fields provide for definition of implementation of associated structures in terminal objects, and for definition of
'implemented_by' relationship for non terminal ones.
4.This field only exists for terminal objects.
5. This field declares the “implemented-by” links of parent operations down to child ones. For terminal objects additional
internal operations may be declared here in the process of step-wise refinement of provided operation control structures.
6.The notation can be a graphical one or textual one, allowing to specify formally control (Ada, Petri nets, Finite state Au-
tomata, Esterel, Temporal Logic) and provide for automatic generation of code.(see[2]  for more details).
7.These subfields are filled for each operation internal or provided ones.



Copyright 1995-96 by HOOD Users Group page 11

page -11
HOOD USER MANUAL 1.0 HUM-1.0

The different descriptions fields of the ODS allow to capture and refine object properties, and can
be processed by dedicated toolsets in order to:

• generate target code units automatically

• generate various documents for verification (cross reference tables, dictionaries, indexes)

1.1.5 AN ODS ILLUSTRATION- THE STACK OBJECT

In the following we give an illustration of an ODS associated to a terminal object called STACK,
modelling a STACK abstract data type and which is represented as Figure 9 -, with two opera-
tions PUSH and POP constrained by the object’s internal state.

Figure 9 -  Graphical representation for the active object Stack
The STACK object behaviour can be modelled by a state transition diagram as in Figure 10 -,
where transitions are exclusively associated to operation execution.

Figure 10 -  Object behaviour for STACK

The OBCS implementation can be reduced in this case into one Ada task implementing the state
transition diagram and the associated Ada code could be described in the OBCS CODE field(see
Figure 11 -).

STACK

PUSH
POP
STATUS

A

HSER
HSER

not_empty_not_full

EMPTY

FULL

first PUSHlast POP

last PUSHPOP

POP
or
PUSH



Copyright 1995-96 by HOOD Users Group page 12

page -12
HOOD USER MANUAL 1.0  by HUM Working Group

The ODS of Figure 11 - shows the declarations of OBCS, and declaration of provided and re-
quired types of object STACK.

Figure 11 -  ODS for STACK (User Manual)

OBJECT STACK IS ACTIVE
DESCRIPTION

-- abstract data type STACK with no encapsulation of data instances
IMPLEMENTATION_CONSTRAINTS

--The target system shall be an Ada system with full Ada83 tasking
PROVIDED_INTERFACE

TYPES
T_Statusis (BUSY, IDLE, UNDEFINED);
-- definition of provided type to hold the status of the stack code.
type T_DATA is array (integer <>) of ADT_Element.T_Element;

--data structure to hold values of the type
type T_STACK(MAX: integer) is --type STACK implementation
record

DATA : T_DATA (1 .. MAX); -- only needed space is declared
TOP: integer:=0;
SIZE: integer:=MAX;

ETAT: PROJECT_ENV.T_STATES;
end record;
-- a client declares stack objects as
--Client_Stack: T_STACK(150);

OPERATIONS
PUSH (STACK:in out T_STACK; Element:in T_Element);
POP(STACK:in out T_STACK; Element:out T_Element);
STATUS(STACK:in out T_STACK) return  T_Status;
EXCEPTIONS
X_FULL raised by PUSH when more then MAX elements in the STACK
X_EMPTY raised by POP when no elements in the STACK

OBJECT CONTROL STRUCTURE  -- visible part of OBCS
DESCRIPTION
PUSH and POP operations should only be activated when the state of STACK is non(EMPTY) for POP or n(FULL)

for PUSH
CONSTRAINED_OPERATIONS
PUSH is constrained by HSER. -- HSER is additional to state constraints
POP is constrained by HSER- -- because the access must be protected in a multi-client/ multi thread context

---------------------------------------------------------------------------------------------------------------------------------------------
-- END OF STACK USER MANUAL
---------------------------------------------------------------------------------------------------------------------------------------------
REQUIRED_INTERFACE

OBJECT ADT_ELEMENT
TYPES
T_Element;--l STACK requires type T_Element, provided by object ADT_ELEMENT.

OBJECT ADT_SEM
TYPES
T_SEM;--STACK requires type T__SEM, provided by object   ADT_SEM.
OPERATIONS
P,V;

OBJECT PROJECT_ENV
TYPES
T_States;--STACK requires type T_STATES, provided by object PROJECT_ENV stores basic type definitions for

this project ( alittle more than the Ada standard package)

INTERNALS
-- not shown here, see below



Copyright 1995-96 by HOOD Users Group page 13

page -13
HOOD USER MANUAL 1.0 HUM-1.0

The INTERNALS part of the STACK ODS in Figure 12 - shows the declaration of internal types,
data and OBCS code.

Figure 12 -  ODS for STACK (Internals)

INTERNALS  -- hidden part of the object:
OBJECTS None; --NO CHILD OBJECTS
TYPES None; -- no internal types
CONSTANTS None; -- no internal constants
DATA

GARDE: ADT_SEM.T_SEM:=FREE; --exclusion semaphore
STATUS: T_Status; -- class variable

OPERATIONS None; -- no internal operations
OBCS

PSEUDO_CODE
--see OBCS STD in figure A2.2
CODE --of OBCS --
task body OBCS is
begin

loop --
select-- choice according to current state see Figure 10 - above

when Not_EMPTY | FULL =>
accept POP (One_Element:out T_Element)do

OPCS_POP (One_Element);--associated OPCS body
end POP;

or when not(FULL) =>
accept PUSH (One_Element:in T_Element)do

OPCS_PUSH (One_Element);-- associated OPCS body
end PUSH;

end select
end loop;

endOBCS;

OPERATION CONTROL STRUCTURES
OPERATION STATUSreturn T_Statusis --OPCS of POP

DESCRIPTION
Get status of class STACK code
USED_OPERATIONSNone;-
PROPAGATED_EXCEPTIONS -- None;-
PSEUDO_CODE None; - --see code;
CODE-- in Ada

begin
return  STATUS;

END --of opcs STATUS
-- see other OPCS on next page



Copyright 1995-96 by HOOD Users Group page 14

page -14
HOOD USER MANUAL 1.0  by HUM Working Group

Figure 13 -  ODS for STACKs (Internals continued)

OPERATION POPis --OPCS of POP
DESCRIPTION
Remove an Element from the data structure T_DATA
USED_OPERATIONS
None;--
PROPAGATED_EXCEPTIONS
X_STACK_UNDEFINED;
PSEUDO_CODE--

if [ the STACK is not EMPTY]then
[put STACK in BUSY state]
[remove Element from STACK_DATA]
[put STACK in IDLE state]

else
[put STACK in UNDEFINED state]

end if;
CODE-- OPCS_body is

begin
if  STACK.TOP>0then

STATUS:=busy; -- STACK code is BUSY
Element:=STACK_DATA(STACK.TOP);
STACK.TOP:=STACK.TOP-1;
STATUS:=idle;-- STACK code is IDLE

else
STATUS:=undefined; --STACK code UNDEFINED
raise X_EMPTY; --impossible case

end if;
END --of opcs POP

OPERATION  PUSHis --OPCS of operationPUSH
DESCRIPTION
Put an element onto STACK
USED_OPERATIONSNone;--
PROPAGATED_EXCEPTIONS

X_STACK_UNDEFINED;--
PSEUDO_CODE--

if  [the STACK is not FULL]then
[put STACK in BUSY state]
[PUT Element in STACK]
[put STACK in IDLE state]

else
[put STACK in UNDFINED state]

end if;
CODE -- -- OPCS_body

begin
if STACK.TOP<STACK.SIZE_STACKthen

STATUS:=busy; --class code in BUSY state;
STACK.TOP:=STACK.TOP+1;
STACK_DATA(STACK.TOP):=Element
STATUS:=idle;--class code in IDLE state

else
STATUS:=undefined; -class code in UNDEFINED state
raise X_FULL; --impossible case

end if;
END --of opcs POP

END_OBJECT STACK;



Copyright 1995-96 by HOOD Users Group page 15

page -15
HOOD USER MANUAL 1.0 HUM-1.0

1.1.6 FROM ARCHITECTURE TO TARGET IMPLEMENTATION

HOOD defines code generation rules allowing the definition of target units and modules by ex-
traction of code fields from the ODS:

• HOOD entities declaration such as OBJECTS, PROVIDED REQUIRED INTERFACE
(TYPES, OPERATIONS and EXCEPTIONS) are “target language independent” and can be
used to build a target unit architecture using visibility and encapsulation mechanisms as
available in the target language/system.

• The associated body fields are “target language dependent” and are directly included in the
right place within the target skeleton architecture.

- mapping HOOD objects to target units.Encapsulation mechanisms provided by the lan-
guage and target environment are used. For e.g. a Ada package, or a C or C++ module(de-
fined by two files with extension.h and.c) is associated to each HOOD object.

- implementation of object relationships.INCLUDE relationships will be implemented by
encapsulation mechanisms, visibility mechanisms such as the use of Ada “with” clauses,
and possibly direct file inclusion at source code level. USE relationships will be imple-
mented trough target language mechanisms controlling intra and inter unit visibility, and
possibly by using code inclusion. (as e.g. in C or C++).

HOOD has standard code generation rules for the Ada language, since this latter comprises a
tasking model, thus making the generated code as an executable model on Ada targets, but also
a specification model for alternative implementations on other targets. Specific rules for target
systems other than Ada are described in Section 2.12.

Figure 14 -  Mapping between HOOD and Ada entities

1.1.6.1 General Implementation Rules

The code generation rules differ for parent or for terminal objects:

• for parent objects: the associated code is generally a specification unit mapping the provided

interface of the object. These specifications are implemented usingrenamesAda clauses3

onto specification units associated to child terminal objects as illustrated in Figure 16 -.

• for child objects:by default are generated as “flat” Ada packages not included in parent pack-
ages. As a result parent packages “with ” those associated to their children as illustrated in

3.except for type renaming which is not supported in Ada Parent types may be implemented assubtypes andattribute access
functions to terminal child types. But a standard solution is to make parent unit have visibility on terminal child types through
with clauses. See also recommendations of HADA]

OBJECTS Ada Units
OBJECTS passive package
OBJECTS active package
OBJECTS active (terminal) package which includes one or more task unit
Operation (non constraint) procedure or function
Operation (constraint) task entry
Exception exception
CLASS OBJECTADT (package)orgeneric package
CLASS OBJECT INSTANCES package instantiation

RELATIONSHIPS
USE with clauses at the lower level of visibility
INCLUDE nested or withed packages



Copyright 1995-96 by HOOD Users Group page 16

page -16
HOOD USER MANUAL 1.0  by HUM Working Group

Figure 15 - and Figure 16 -.

Figure 15 -  Code generation principle for Parent object

Figure 16 -  Code generation principle for Parent object (standard generation)

An alternative solution is to nest the child packages into the body of the parent package, whose
specifications are then implemented by extra code mapping child ones, what might become rather
inefficient as illustrated in Figure 17 -.

Figure 17 -  Code generation principle for Parent object (Nesting Child packages in parent Body))

This solution has however to be used for children associated to generic packages in order to give
visibility to the formal parameters (parameters of generic Ada units).

PARENT

CHILD1

X

Y

X

CHILD2

Y

with  CHILD1; --visibility on CHILD1 generated as a library unit
with CHILD2; --visibility on CHILD2 generated as a library unit
package PARENTis

-- specification unit associated to object PARENT
procedure X renames CHILD1.X;
procedure Y renames CHILD2.Y;

endParent;

package body PARENTis -body associated to object PARENT
package CHILD1 is --specification unit associated to object CHILD1

procedure X;
• • •

endCHILD1
package CHILD2 is --specification unit associated to object CHILD2

procedureY;
• • •

endCHILD2;
procedureX is
begin

CHILD1.X; -- call to CHILD operation
endX;
• • • •

endPARENT;



Copyright 1995-96 by HOOD Users Group page 17

page -17
HOOD USER MANUAL 1.0 HUM-1.0

1.1.6.2 Implementation of Constrained Operations

When an operation execution is constrained, its activation is related to the object state and/or to
a given communication protocol to be enforced between the current object and the client. The
implementation principle, illustrated in Figure 18 -, is to introduce additional code upon the body
of an OPCS, which will handle these constraints as the body of the associated operation will ex-
ecute.

Figure 18 -  HOOD 3 Code structure for constraint operations

The idea is that most ofthe code associated to the constraints could be automatically gener-
ated and can be defined once for all, so that the designer and coder has only to do with the core
OPCS body.

Moreover, this separation allows to do feasibility analysis, prototyping of real-time behaviors
completely in parallel with the development of the functional code of a system ( the pure opcs
bodies)

The implementation schema is that the OBCS is implemented as a (or more) target unit (in Ada
it is a package or task generally named OBCS) which handles execution requests and operation
execution via calls to an associated procedure named by convention OPCS_<Operation_Name>.

Figure 19 - below illustrates these principles for an active object O with four constrained opera-
tions S, X,Y and W.

By convention, there is one such OBCS per object, but in case of resource shortage, its is always
possible to group several OBCS into one. HOOD standard generation rules[1]  define the OBCS
as an Ada package, possibly reduced to one task unit, and the OPCS header code as a rename of
an OBCS entry hiding the OBCS to clients, whereas the OPCS body code is defined in a proce-
dure called OPCS_OpName. The standard scheme may be quite resource consuming especially
when guards are used to handle state constraints; accordingly a schema based on FSM (Finite
State Machine) has been defined and detailed in Appendix A3.2.1.

 CLIENT Process

OBCS

execution request

 OPCS_BODY part

return of request



Copyright 1995-96 by HOOD Users Group page 18

page -18
HOOD USER MANUAL 1.0  by HUM Working Group

Figure 19 -  Code generation principles for terminal active object

O

X
Y

A

 LSER

HSER

package O is
task OBCSis

entry S; -- state constrained operation
entry X; -- ASER constrained operation
entry Y; -- LSER constrained operation
entry W; -- HSER constrained operation

endOBCS;
procedureS renames OBCS.S;
procedureX renames OBCS.X;
procedureY renamesOBCS.Y;
procedure W renames OBCS.W;

end O;

W

ASER

package body O is
• • •
procedure OPCS_S is separate;
procedure OPCS_X is separate;
procedure OPCS_Y is separate;
procedure OPCS_Wis separate;
task bodyOBCS is
begin

loop
select

accept S;--State constraint
OPCS_S; --return with operation executed if State was OK

-- state can also be handled as guards applied to the entry
or

accept X;-- State constraint and ASER constraint
--return without execution if State is not OK
-- state can also be handled as guards applied to the entry

OPCS_X; --ASER is roughly implemented in Ada
or

accept Y do; --LSER constraint
-- save parameters

end Y; -- release client process
OPCS_Y;

or
accept W do --State constraint and HSER constraint

--return without execution if State is not OK
-- state can also be handled as guards applied to the entry

OPCS_W;
end W; --release client process

end select;
end loop;

endOBCS;
end O;

S



Copyright 1995-96 by HOOD Users Group page 19

page -19
HOOD USER MANUAL 1.0 HUM-1.0

1.2 THE HOOD DESIGN MODEL

The HOOD method gives a framework for the project design organisation. Principles of that or-
ganisation are developed in that section. They will be the basis for the HOOD design process pre-
sentation.

1.2.1 SYSTEM TO DESIGN

Before going into the HOOD design process, we first introduce the System To Design notion
(STD). This is the System (in the large sense) which has to be designed from a given specifica-
tion. It may be a part of the whole project.
A HOOD System To Design (STD) may be first seen as an object defined by its interface with
its environment. The environment is considered as an other part of the project, not designed for
the purpose of the current system, and for which the root is seen as an environment object from
the STD. The object is then decomposed into child objects, which can themselves be further de-
composed (until the specifications of child objects can be directly implemented in the target lan-
guage). A STD can thus be represented as a root object of a HOOD design tree(HDT) where
branches represent parent objects decomposed into child objects, and where leaves are terminal
objects which are no more decomposed.
Figure 20 - hereafter represents a STD as a root of a hierarchy of objects within a whole project
including other hierarchies (other HDTs).

Figure 20 -  A System To Design within a whole project (Client/server use relationships are not shown)

Thus, a project is defined by a set of root objects, each of them being considered in turn as the
STD by a development team, all others appearing as potential environment objects for this par-
ticular system.

Element of the system to design

PROJECT

Element of the system used by the STD (through its root)

Element of an other system of the Project, not used by the STD

STD



Copyright 1995-96 by HOOD Users Group page 20

page -20
HOOD USER MANUAL 1.0  by HUM Working Group

1.2.2 SYSTEM CONFIGURATION

In order to manage HDTs through interface descriptions still consistent with their environment,
a HDT is defined within anobject space comprising the current system to design and associated
environment hierarchies of objects.

Classes4 define templates of objects. Classes are not objects and cannot be used. Thus, the class
hierarchies (Class Design Tree or CDT) cannot be defined within the object space. The CDT are
described in an other space: the class object space.

Following similar description principles, the Virtual Node hierarchies (VNT) are defined in a
separatedVirtual Node space allowing to define distributable entities, memory partitionsor
heavyweight processes as defined in [3].

Finally, VNs have to be allocated to physical nodes of the physical architecture. This architecture
is defined as thePhysical space.

A whole project organisation may thus be defined through the HOOD design model (see Figure
21 -) as:

• A system to design hierarchy (HDT associated to the STD), which is an emphasised part of
the object space and which defines orthogonal client-server and composition relationships
between objects. Instantiation relationships to class objects may exist in this HDT as some
objects may be defined as replication of templates.

• A set of hierarchies of HDTs appearing as environment to the current STD, and which are
part of the object space and allow to describe (formally) in an homogeneous framework and
notation, the external used entities by the STD.

• A set of class hierarchies or CDTs, which are part of the class space and which define param-
eterized reusable structures and templates, organised and structured by client-server and in-
clude relationships as defined above. The class space includes all class which are instantiated
within the HDTs of the object space.

• A set of VN hierarchies or VNTs, which are part of the Virtual Node space and which define
the potential granularity for partitioning onto a physical architecture of processes or ma-
chines.

• The Physical architecture on which terminal virtual nodes are allocated.

Thescope of a HOOD design model is controlled through the concept ofSystem Configuration
which defines all root of hierarchies describing the system (Object hierarchies, Class hierarchies
and Virtual Nodes hierarchies).

4.Classes in HOOD4 are termed GENERICS, thus avoiding a clash with the OO terminology



Copyright 1995-96 by HOOD Users Group page 21

page -21
HOOD USER MANUAL 1.0 HUM-1.0

Figure 21 -  The HOOD design model into a set of spaces and hierarchies.

Sys
tem

 to

Des
ign

Virtual Node Hierarchy

Class Hierarchy

O
bj

ec
t H

ie
ra

rc
hi

es

Physical Architecture



Copyright 1995-96 by HOOD Users Group page 22

page -22
HOOD USER MANUAL 1.0  by HUM Working Group

1.3 THE HOOD DESIGN PROCESS

The HOOD method proposes a process to guide the designer in his job. This process allows to
get a good design what ever the size and the complexity of the project. This approach orients to
the best choices. Two different processes are imbricated:

• a general process driving the development approach, called “Overall HOOD Design
Process” in the following. This process describes the approach and activities to perform
along the architectural design phase in order to organise the system according to the devel-
opment constraints of the project (sub-contracting for example). It allows to define several
models of the system down to the system configuration. This approach is more detailed in
Section 1.3.2 below,

• the basic HOOD Design Processwhich defines the activities to decompose a given object
into children, from a top object to all terminal objects, and to get thus a HOOD Design Tree
(HDT or CDT). This process is applicable for all objects and classes and is more detailed in
Section 1.3.1 below.

1.3.1 THE BASIC HOOD DESIGN PROCESS

The basic HOOD design process consists in building a HOOD Design Tree (HDT or CDT). It is
globally top-down. The system to design is first defined as a high-level object calledroot object,
and then is broken down into several lower level objects up to they can be directly implemented
by target language units and environment services.
As seen in Section 1.2, the system to design can be represented by aHOOD design tree where
branches represent parent objects broken in children and leaves represent terminal objects, which
are no more decomposed.
The process of decomposing one object into child objects is called thebasic design step. Thus,
it is necessary to perform a succession of basic design steps to build the whole HDT.

Figure 22 -  HOOD Design Tree as decomposed from the ROOT object

Step y

system
to

design

OBJECT HOBJECT G OBJECT I OBJECT J OBJECT K

Step 3Step 2

OBJECT A OBJECT B OBJECT C

root OBJECT

Step 1

ENVIRONMENT

Step x Step z



Copyright 1995-96 by HOOD Users Group page 23

page -23
HOOD USER MANUAL 1.0 HUM-1.0

1.3.1.1 The Basic Design Step

Originally inspired from OOD techniques[BERARD85], [BOO86], [BERARD85]. The basic de-
sign step allows to decompose a well defined object (in term of provided and required services,
behaviour and functions) into children. It comprises a set of elementary activities allowing to
continuously transform an object from its definition up to its implementation. Some results of
those activities (textual and/or graphical pieces) will later be assembled to setup ODS and design
documents. The basic design step activities are structured according to life cycle phases.

The method discussed hereafter will not find a design solution, but will help the designer to
build the best one (if any) according to project constraints.

The basic design step consists in a set of (initially) consecutive and different activities:

• Activity 1: Definition and Analysis of the Problem: This activity consists in well understand-
ing the requirements before starting the design,

• Activity 2: Elaboration of an Informal Solution Strategy: This activity consists in describing
how the system is working,

• Activity 3: Formalisation of the Strategy: This activity consists in organising (through a
HOOD diagram) the design of the solution previously described,

• Activity 4: Solution Refinement: This activity consists in refining the previous solution tak-
ing into account particular project constraints,

• Activity 5: Formalisation of the Solution: When the previous refinement is finished, this ac-
tivity consists in detailing the solution in terms of textual descriptions (ODS),

• Activity 6: Solution Analysis and Justification

Main ideas of that process are to quickly build a first solution (end of third activity) which is the
basis for a refinement(activity 4). The method will constrain this solution according to good soft-
ware engineering and design principles in order to achieve a better solution. The fourth activity
then consists in modifying this solution according to other constraints in order to get the final so-
lution.

Figure 23 - below gives a summary of activities of the basic design step and main outputs, where-
as a detailed discussion is given below.

Outputs of activities are produced during the basic design step as text sections, but may not all
be included in a relevant ADD. It is generally interesting to keep that information for the project
history of for design justification (Activity 6).
In order to ease readability of the design documentation, each activity output is numbered. A pos-

sible numbering convention prefixes the activity with an H5 :

• identify activity outputs as:

- H1 for Problem Definition

- H2 for Informal Solution Strategy

- H3 for Formalisation of the Strategy

• identify subsections activities as H1.1 H1.2, H3.1, H3.2 etc

5.H for HOOD Design Step



Copyright 1995-96 by HOOD Users Group page 24

page -24
HOOD USER MANUAL 1.0  by HUM Working Group

Figure 23 -  The HOOD design activities and associated outputs

Activity 1: Problem Definition

Activity Inputs

A basic design step may start either after a specification phase (beginning of the design phase),
or after a previous design step (during the design phase).
When starting froma specification (SRD), the designer has to understand and classify require-
ments (functional, behavioural, structural and interfaces) and the current activity is essential.
When starting during the design, froma child ODS, the designer has to understand information
described within the parent ODS visible part (Object description, provided and required interfac-
es, OBCS description). Requirements are already reorganized and are at a lower more detailed
level.

PROBLEM

ELABORATION of an

FORMALISATION

FORMALISATION

Functions (SADT, SA)

DEFINITION

INFORMAL SOLUTION
STRATEGY

of the STRATEGY

of the SOLUTION

Behaviour (SDL, Petri)
Structures (E/A))

Textual Description

Parent ODS (completed)

Children ODSs (visible part)

Rewritten and completed
requirements
(designer point of view)

WHAT ?

HOW ?

Objects List
Operations List
First HOOD Diagram

Parent ODS (visible part)

of Operations

SOLUTION REFINEMENT

SOLUTION ANALYSIS

Actual Operationsg

Final HOOD Diagram

SRD or ODS

SRD Requirements:

Textual Description
of Operations



Copyright 1995-96 by HOOD Users Group page 25

page -25
HOOD USER MANUAL 1.0 HUM-1.0

Activity

“ Understand the problem to solve before jumping on a solution”
“Design Oriented Analysis”

The goal of this phase is to integrate all facets of the problem, before devising a solution. Rec-
ommendations here are to make the designer state himself the problem, and to analyse and re-
structure the requirements with respect to his own designers perception.

• Statement of the Problem (SOP): The designer states the problem in one correct sentence
giving a clear and precise definition of the problem as well as the context of the system to
design.He must identify objectives of the current design (in terms of portability, reusability,
etc...).

• Analysis and Structuring of the Requirement Data: The designer gathers, analyses and or-
ganises all the information relevant to his problem,clarifying all points which are not yet
clear.When starting from high level requirements, his first task is to define the environment
of the system-to-design (provided and required interfaces). Then, he organizes the require-
ments intofunctional, behavioural and non-functionalones (such as performances) and pro-
duces a synthesis. He performsdesign sensitive analysisupon them and possibly produces a
user manual outline of the system-to-design.

NB: It is here that the transition between requirement analysis (description of the WHAT), and
the design (description of the HOW) is made.

Activity Outputs (H1)

• Statement of the Problem (H1.1):

- Description of the problem and its context in a few sentences.

- List of main design objectives.

• Analysis and Structuring of the Requirement Data (H1.2):

- analysis and definition of interfaces

- HOOD context diagram-

- analysis of functional constraints6

- analysis of behavioural constraints7

- analysis of structural constraints8

- analysis of non functional constraints9

- user manual outline

Only the System to design environment and the statement of the problem may have to be included
in a relevant ADD.

6.Functional constraints are constraints not related to any implementation; they are just a result of the pure functional analysis
7.behavioural constraints are mostly analysed, expressed using state transition models
8.data model constraints define all relationships between data identified at analysis level.
9.these are all constraints related to the particular target and context of the project (performances, reliability, distribution, main-
tainability, etc.)



Copyright 1995-96 by HOOD Users Group page 26

page -26
HOOD USER MANUAL 1.0  by HUM Working Group

Activity 2: Elaboration of an Informal Solution Strategy (ISS)

Activity Inputs

At this stage, all necessary elements are well organized (either in a note coming from the previous
phase, or in the child ODS coming from the previous design step) and the design activity may
really start.

Activity

“Outline a solution, put it down as a text and work it out”

This phase has as goals the expression ofa solution that the designer should have started to imag-
ine (tophantasmabout) from the earlier phases. The designer shall identify the main abstractions
and actions and give a scenario of solution accordingly.
Such a strategy shall be expressed in natural language in order to explicit clearlyhow the solu-
tion will work , without requiring any organisation (don’t speak about objects in a first issue). The
purpose is to explain what happens when the current object services are required in terms of data
and actions on those data.

Good example:On IT reception from the Start push button, the EMS inits bargraphs, creates and
starts a timer which triggers the monitoring each second.

Bad example10: The EMS is composed of a Sensor object which encapsulate all actions on the
physical sensors.

This activity will not allow to build the final design but a first issue of that design. The designer
has mainly to consider the quality of the design more than its efficiency (this will be the purpose
of the next activities). Design quality relies on ISS text (actions and data).

Activity Outputs(H2)

A clear and concise text expliciting the solution. This text will have to evolve as the design ma-
tures during the design step as well as to be consistent with the graphical description elaborated
during the third activity.

10.The structure of the system is described; we still do not know how it works!



Copyright 1995-96 by HOOD Users Group page 27

page -27
HOOD USER MANUAL 1.0 HUM-1.0

Activity 3: Formalisation of the strategy

Activity Inputs

Input of the current activity is an informal textual description ofa solution scenario.

Activity

“ Refine and work out your solution”

This phase has as goals the extraction of the major concepts of a solution strategy in order to
come smoothly to a formalised description of the previous solution through a HOOD diagram.
The idea is that a solution which can be expressed clearly in natural language is an almost mas-
tered solution.

A good set up of the previous activity leads into identification of objects through nouns and op-
erations provided by those objects though verbs. Thus, the current activity may consist in:

• identifying nouns (ex: «The user requires a chocolate from the vending machine»):

- nouns which provide services are generally good candidates for objects (ex: «vending ma-
chine» provides services),

- nouns which does not provide services define main dataflows of the design (ex: «choco-
late» does not provide service. It is a data coming from the vending machine to the user).

• identifying verbs: All verbs are operations. Those operations use and/or return data (Ex: «re-
quires» verb allow to define the require operation. It returns «chocolate» data).

• grouping operations and verbs: This task, started from the two previous lists of objects and
operations gives a structured representation of the strategy and helps completing a graphical
description of the solution (ex: The «require» operation is provided by the «vending ma-
chine» object).In certain cases, it is difficult to join operations to objects and it could be in-
teresting to add objects (such as controller, monitor, scheduler) to encapsulate those
operations.

• drawing graphical representation of the design. This task consists into drawing, (within
the parent object), objects identified during this activity with their operations, using the
HOOD graphical formalism.Use links between child objects (and potentially uncles or en-
vironment objects) andimplemented_bylinks between parent operations and children oper-
ations are identified. Dataflow (or exception flows) along the use links should also be

identified according to the understanding of the activities/functions allocated to the objects11.

Activity Outputs (H3)

The produced graphical HOOD diagram must be consistent with the ISS text (H2).

11.This understanding can be gained if the ISS text was well written or is well understood.



Copyright 1995-96 by HOOD Users Group page 28

page -28
HOOD USER MANUAL 1.0  by HUM Working Group

Activity 4: Refinement of the solution

Activity Inputs

Current solution of the design expressed with consistent textual description of the ISS (H2) and
graphical description (H3).

Activity

“Review and agree on your solution, before formalizing it!”

Output of the previous activity may not be considered as the final HOOD design but as a prelim-
inary version used to support discussion between designers. Indeed, designers have to introduce
specific project constraints, behavioural and dynamic ones (attributes relative to parallelism, syn-
chronism, periodic execution), or even build prototypes to check particular points and then to
modify the solution.
Thus, this activity has to be included between the formalisation of the first solution and the final-
ization of the last one. Advantage of the previous activities are that all designers work from a
same design (graphical and textual) which has a good quality level.

It is relevant to stress that the graphical description goes with the textual descriptions (and vice-
versa) and that the consistency between these two kind of representations shall always be en-
sured.

This activity also consists into review and author/reader cycles on produced HOOD diagram and
textual descriptions.

An important part of that activity consists in expressing reasons of design decisions (scenario and
organisation) which may be questionable or is not obvious. This allows to justify the design
choices and to achieve reasons of those choices.

Activity Outputs

Outputs of this activity are a consistent:

• textual description of the solution scenario,

• graphical description of the solution organisation,

• justification of design decisions.



Copyright 1995-96 by HOOD Users Group page 29

page -29
HOOD USER MANUAL 1.0 HUM-1.0

Activity 5: Formalisation of the solution

Activity Inputs

Once the formalisation of the strategy has been completed, the solution is well defined through
the textual ISS, the objects, provided and required interfaces identified through the HOOD dia-
gram, the designer can formally capture his solution.

Activity

“Detail the solution through ODS”

The goal of this phase is to achieve a description of the solution with the detailed characteristics
of the objects being formalised in the ODS fields. The capture of this formal description consists
in filling each field of theObject Description Skeleton (see Section 1.1.4 above). In order to
have knowledge of the environment of the ODS to be filled, it is important to fill ODS from bot-
tom (objects which does not use other objects) to top (objects which are not used).
The designer should:

• describe the object in terms of «what the object does»,

• define constraints operations and describe the OBCS (if any) explaining the synchronisation
and relationships between constrained operations,

• describe the provided operations (and Operation_set) «what the operation does and error cas-
es»,

• refine the subset of operations really required (required interfaces),

• define parameters of provided operations and deduce provided types and exceptions,

• define and describe provided types and deduce potential provided constants,

• describe provided constants and exceptions.

Informal comments may be added to describe the semantic behaviour, to provide useful informa-
tion for further implementation or to justify possibly implementation decisions.

Activity Outputs (H4)

Note: The way the ODS are completed will depend of the functionalities of the toolset used. In
the worst case, one has only a textual ODS editor and the designer has to complete the fields of
an ODS skeleton text.
However a HOOD toolset provides facilities that help and automate the filling of the ODS fields
that were already created as the graphical description was elaborated. Some toolsets even gener-
ate automatically some fields (REQUIRED INTERFACE) as they analyse relevant fields of the
ODS.

At the end of this phase, the ODS of the parent object is fully and formally described (ODS in-
ternals part is completed) and child ODSs are preliminary filled (ODS visible part is completed).



Copyright 1995-96 by HOOD Users Group page 30

page -30
HOOD USER MANUAL 1.0  by HUM Working Group

Activity 6: Analysis of the Solution

Activity Inputs

Any outputs of the previous phases.

Activity

“Critically Review the solution”

This phase is the key for quality insurance. After each decomposition, one have to verify the cor-
rectness of the solution. Different activities are foreseen:

• Design Justification,

• Re-structure the solution for a best design quality: minimize top level objects (not used),
maximize bottom objects (highly used), maximize consistency and minimize coupling, avoid
cycles, etc...

• Consistency and Completeness Validation,

• Identification of Re-usable Objects,

• Identification of Potentially Generic Objects,

• Post-Analysis Design Update possible updates in design step M and M-1

• Traceability entries: this is the right time to define which requirement the current design is
fulfilling. The designer can thus define entries in a traceability matrix or directly within the
ODS,

• Risk analysis in order to identify critical issues in the solution in terms of technical and man-
agement risks. For technical risks concerning failure management, detection means and re-
covery actions have to be studied and the solution have eventually to be updated.

 Activity Outputs

Associated texts may be put in the DESCRIPTION ODS fields as informal text.

Activity 7: Continue the decomposition

For each identified child object, analyse if it has to be decomposed and then restart the activity
1. In the other cases, see Section 1.3.1.3. below.



Copyright 1995-96 by HOOD Users Group page 31

page -31
HOOD USER MANUAL 1.0 HUM-1.0

1.3.1.2 The Basic design step applied to a root object

Unlike the other objects, the root object (STD) must be defined prior to be decomposed. Thus,
the «Problem Definition» activity needs to define the interfaces (provided and required) of the
root object. The designer puts the emphasis on the environment of the System To Design (STD);
he has to produce a diagram showing the STD within its environment.

1.3.1.3 The Basic design step applied to terminal object

The basic design step applied to the terminal objects is shorter and consists in detailing the inter-
nals with declarations, internal operations and pseudo-code. Each basic design step activity is re-
stricted as follows:

Activity 1: Problem Definition

The designer should gather all the information related to the terminal object.

Activity 2: Elaboration of an Informal Strategy

The purpose of this activity is to provide a short description for the internals OBCS and OPCS(s)
of the object, derived from their description in the ODS visible part. Those description are im-
plementation oriented. The designer has also to give internal declaration (not defined in the ODS
visible part).
The goal defined in the general scheme of creating a solution strategy is not applicable here, as
the terminal object is not decomposed any more.

Activity 3: Formalisation of the strategy

This activity consists in giving, for each OPCS (corresponding to provided operations) and
OBCS, a detailed description of implementation with a pseudo-code. This description highlights
control structures.

Activity 4: Refinement of the Solution

From the previous OPCS description, the designer has to identify new internal types, constants,
exceptions, and new internal operations in order to complete the ODS internals description.

Activity 5: Formalisation of the Solution

This activity consists in finalize description and definition of internal declaration (types, con-
stants, exceptions and data), description and pseudo-code of OBCS and OPCSs.

Activity 6: Analysis of the Solution

Applied to the internals of the ODS, this activity consists in a author/reader cycle on Control
Structures algorithms. Analysis will also highlights introduction of internals declarations (types,
constants, exceptions data) and internal operations.



Copyright 1995-96 by HOOD Users Group page 32

page -32
HOOD USER MANUAL 1.0  by HUM Working Group

1.3.1.4 The Basic design step applied to the other types of object

The way the HOOD basic design step is applied to other types of objects may slightly vary:

• Op_control:  An Op_control is a terminal object which is used to map parent operation to mul-
tiple child operations. Activity 2 to 4 are relevant for such an object. In Activity 2 “Elabora-
tion of an informal strategy”, a description of the object is provided. In Activity 4
“formalisation of the solution” the relevant fields of the ODS are filled.

• Environment object:  If the Environment object does not already exist (reuse objects), the pro-
vided interface of the ODS should be created in Activity 4.

• Class: Each Class should be designed separately as a root object of a new system to design
outside the design in which its instances are used. There is no basic design step to be per-
formed for an instance of a Class.

• Virtual node:  The basic design step performed for the Virtual Node follows the general
schemes of a non-terminal object.

As an illustration of the basic design step activities a simple example is detailed in Section 1.5
below.

1.3.2 THE OVERALL HOOD DESIGN PROCESS

The previous basic HOOD design process allows to build a unique HDT. In order to take into
account project management constraints such as subcontracting, parallel development, reuse,
system design, etc... The designer has to include new principles allowing to build the whole sys-
tem configuration, with the different spaces. The overall HOOD design process thus consists in
(see also Figure 24 - below):

• defining the system-to-design as an “interface” with respect to its environment
☞ define a root “STD” object and environment objects

If one plans to reuse objects or classes from a previous project, they will have to be included
in the system configuration

☞ define the system configuration

• performing the first basic design step (decompose the root STD into child objects)
☞ update the system configuration

If child objects are similar or reusable,
If child objects have to be sub-contracted, they will have to be included in the system config-
uration

☞ update the system configuration

• iterating basic design steps up to a level of detail enough for direct implementation and cod-
ing.

The basic design step is applied in the same way whatever the level of design. It provides activ-
ities to be performed by the designer, thus allowing for large systems improvement of the man-
agement procedures by allowing the distribution of design and development as well as the
definition of milestones providing unique visibility over work progress.



Copyright 1995-96 by HOOD Users Group page 33

page -33
HOOD USER MANUAL 1.0 HUM-1.0

Figure 24 -  Application of Basic Design Steps to the system configuration

The general principles of the HOOD design approach are top-down in order to reduce and master
complexity. Moreover HOOD offers to a designer aclient-server model of representation at dif-
ferent levels of abstraction and refinement, throughparent-child composition, but always keep-
ing consistency with initial representations of the design.
Such properties are exploited in the framework of complex system developments, by producing
successive refinements of an initial model down to the operational one with good traceability and
high reuse potential. The development approach is thus based on the following principles:

• Elaboration of an initial model or logical solution.This model is an abstraction of a solution
structured into HOOD object hierarchies, where target implementation related elements are
ignored. Such a solution should be fully independent from target and non functional charac-
teristics (languages, targets, efficiency, distribution,...),

• Refinement of initial models.HOOD refinement may simply add more details to existing
characteristics, or may also add new objects and/or hierarchies of objects in the models, thus
allowing refinement trading off with non functional constraints such as existing of-the-shelf
software, target constraints, as well asbottom-up, reusing development approaches.

Although such an approach is the technical way to go, designers are generally reluctant to apply
it. They often fear having to break the initial model when they adapt and refine it according to
their specific target or project constraints. We believe however that it is always easier to develop
a simplified system (and possibly redevelop it) than to start a system integrating all constraints
from scratch. Whatever the case, developing an initial HOOD model is efficient in that:

• it provides at hand a prototype of a solution that highlights the logical properties of the sys-
tem. It is then possible to reason about, instrument, prototype about the constraints.Thus de-
sign decisions can be justified, and the testing process can be made more efficient.

• it provides a logical model, possibly defining ageneric architecture that can be reused on
similar applications.

CDT

SDT
HDT

VNT

CDT

Basic
Design
Steps

Basic
Design
Steps

Basic
Design
Steps

Basic
Design
Steps

Basic
Design
Steps



Copyright 1995-96 by HOOD Users Group page 34

page -34
HOOD USER MANUAL 1.0  by HUM Working Group

The HOOD development approach, producing first logical models reflecting pertinent abstrac-
tions of a solution domain, in target independent way, is, at our knowledge, the only one leading
to solutions that take into account the following set of constraints:

• independence with respect to target hardware configuration,a requirement which is more an
more expressed on large projects.

• portability for several targets, also a growing demand on large projects where identical soft-
ware pieces are running on different targets and sites.

• reusability on frozen parts of a given application domain(reuse of high level architecture and
or parts of the designs),

• maintainability, which is most improved when the design is easily understandable.

This process allows to define the system configuration and associated elements. Associated ac-
tivities may be further grouped into phases, according to the technical area of concern:

• phase 1: Logical architecture
By logical one should understand “non physical” that means that a HOOD design shall first
be produced, ignoring all physical and implementation details and constraints. The principle
of the approach is to produce first a solution as if non constrained (supposing we have an ide-
al with unlimited power reliable target) and then rework it to add complexity for dealing with
specific non functional constraints such as performance, reliability, distribution....

• phase 2: Infrastructure
By Infrastructure one should understand the support software associated to the logical archi-
tecture e.g communication services, operating system, archiving system,...

• phase 3: Distribution
One should understand distributing the software associated to previous architectures and
HOOD objects over a physical network of “logical processors”or VNs.

• phase 4: Physical architecture
One should understand here the allocation of the logical processors identified in phase 3 onto
the physical architecture consisting of physical processors inter-connected through commu-
nication channels.

The four activities of that process are shown in Figure 25 - below:

Figure 25 -   Full Design Activities Overview

HOW ?

WHERE ?

LOGICAL

DISTRIBUTED

INFRASTRUCTURE

DISTRIBUTION

❶ ❷

Non Functional Requirements

Data sharing

Physical constraints
Implementation constraints
Communication means

Functional requirements

Performance constraints❸

❹
ARCHITECTURE

ARCHITECTURE

ARCHITECTURE

PHYSICAL



Copyright 1995-96 by HOOD Users Group page 35

page -35
HOOD USER MANUAL 1.0 HUM-1.0

The phase 2 may become insignificant if an existing (OS for example) or reused infrastructure
(real time monitor) is used.

These «Full Design Activities» are summarized in Figure 26 - and more detailed in the following
sections.

Figure 26 -  Full Design Activities applied on the HOOD Architecture

PN1 PN2

PN3

CDTsi

Logical Architecture Infrastructure

Functional constraints

HDTsi

HDTsj

VNT

CDTsj

Non Functional constraints

Distribution

Physical Architecture

Basic
Design
Steps

Basic
Design
Steps

Basic
Design
Steps

Basic
Design
Steps

❶ ❷

❸

❹



Copyright 1995-96 by HOOD Users Group page 36

page -36
HOOD USER MANUAL 1.0  by HUM Working Group

1.3.3 PHASE 1: LOGICAL ARCHITECTURE

This phase is done by the application of HOOD design steps, where the decomposition is pro-
duced as a grouping of HOOD objects directly supporting the system to design functionalities,
without taking into account the “non-functional constraints”. The resulting design defines the
main HOOD Design Tree.
These steps are specification (application) driven. Implementation constraints should not be con-
sidered during this phase. At the end of each design steps, similar objects, reusable objects, serv-
ers or sub-systems are identified.

Similar objects or reusable objects may be implemented as Classes. Each class is then decom-
posed by the application of HOOD design steps. The different Class Design Trees are built.

Servers or sub-systems may be implemented as other root objects (environment objects for the
main HOOD design tree). These root objects are decomposed into other HDTs.

The corresponding System Configuration is built step by step with the different HDTs and CDTs
built during that phase: they constitute theApplicative Environment of the system configura-
tion.

1.3.4 PHASE 2: INFRASTRUCTURE ARCHITECTURE

This phase may begin shortly after the logical architecture from the needs identified during that
phase or from some non functional requirements such as implementation constraints or perfor-
mances requirements. It consists of the following activities:

• Creation of the VN tree (not necessary at the beginning). The root VNs may be identified
from the analysis of:

- some project structure constraints such as partitioning into assemblies or sub-systems,

- some implementation constraints (channel throughout) onto predefined physical nodes.

• Identification of communication protocols needs between the different VNs. These protocols
are implemented in specific root objects (HDT) and considered as environment objects for
the applicative environment.

• Depending on the project, these root objects are part of the system to design. In that case they
are decomposed by the application of HOOD design steps which define new HOOD Design
Trees. This decomposition is implementation driven.

• Identification during each design steps of:

- similar objects or reusable objects; these objects may be implemented into class objects,

- servers which define new HDTs.

HDTs and CDTs defined during that phase constitute theImplementation Environment and the
System Configuration is completed accordingly.



Copyright 1995-96 by HOOD Users Group page 37

page -37
HOOD USER MANUAL 1.0 HUM-1.0

1.3.5 PHASE 3: DISTRIBUTION

This phase deals with the distribution aspects. The logical architecture has to be mapped to the
infrastructure architecture. This mapping is mainly driven by performance issues such as com-
munication overload, time constraints. It consists in the following activities:

• a further refinement of the VNTs identified in phase 2,

• an allocation of objects from HDTs to terminal VNs of the VNT.

During that phase, the analysis of performance constraints may lead to reallocation of objects
onto different VNs or to the creation of new VNs. The analysis of data sharing conflicts may lead
to further decompositions of the objects or to allocation of objects in a same VN.
Implementation or logical USE links may also be identified. Interfaces between the different VNs
have to be minimized.
During that phase, some modification on the logical architecture can be foreseen mainly to solve
data sharing conflicts or to add new objects in the implementation environment.

1.3.6 PHASE 4: PHYSICAL ARCHITECTURE

This phase consists in the allocation of the VNs onto the physical architecture. It consists in the
following activities:

• identification of physical nodes (PNs),

• identification of communication channels and of the associated communication protocols,

• allocation of VNs to PNs,

• verification of compatibility between channels and use relation between VNs,

• performance evaluation e.g. estimation of communication overload, response time and
throughputs, CPU overload... Specific performance evaluation support such as queuing net-
works, temporised Petri-nets, worst case execution time estimation techniques...can be used
during that phase.

Most of the time, the physical architecture is imposed. In that case, this phase consists only in the
allocation of VNs to PNs and in the verification of performances constraints.



Copyright 1995-96 by HOOD Users Group page 38

page -38
HOOD USER MANUAL 1.0  by HUM Working Group

1.4 INTEGRATING HOOD IN THE LIFE_CYCLE
ACTIVITIES

1.4.1  OVERVIEW

From requirement to design, the HOOD basic design step identifies a sub step which is the anal-
ysis and structuring of the requirements. This phase allows to trace the requirements implement-
ed in the design and leads to the concept of “Z” life cycle. In this life cycle, the design starts with
a high level specification, then each terminal object is specified before a further breakdown is ap-
plied on the object and so on until the detailed design may be performed on the object.

From design to code, the HOOD textual formalism allows possibly automatic translation into
Ada C++ or C.

During the design process HOOD can be easily integrated with a reuse environment.

For large projects, HOOD facilitates the share of work and sub contracting by a clear separation
of the interfaces of the objects from their internal.

1.4.2 SPECIFICATION TO DESIGN

HOOD is not aimed to support requirements analysis. It has been recognized that methods as
IDEF, structured analysis (SA), OMT,OOA... are more suitable to establish the functional break-
down of a system with the customer and user point of view. Therefore, there is the need to estab-
lish a mapping between the functional breakdown and the HOOD design objects tree which
represents the designer point of view. Unfortunately there is no trivial relationship between both
representations.
 Although there is no automatic way to find HOOD objects from the functional requirements
analysis, some heuristics have been established for the case of the IDEF method:

• the set of IDEF data inputs and outputs may be mapped into the HOOD objects and data
flows,

• the set of the IDEF actions may be mapped into the set of operations of the HOOD design.

Other methods such as Petri Nets, State Transition Diagrams are used for Real Time system spec-
ification (SA-RT) and may provide essential inputs for describing the behaviour of HOOD active
objects (through the OBCS).

For large projects, such as space software projects, the joint use of functional analysis and archi-
tectural design approaches is very fruitful.
For such systems it is useful to establish an overall architectural design which needs to be refined
with the help of a functional analysis. This is the concept of “Z” strategy which mixes the func-
tional and the architectural analysis (see Figure 27 -). Each terminal object of the level 1, which
may correspond to a large subsystem will be decomposed according to a functional analysis with
a method as IDEF. Then a further architectural design step is applied on each object. This process
is done until the level of complexity of the identified objects allows to start the detailed design.
One can see that this strategy is fully compliant with the HOOD basic design step.



Copyright 1995-96 by HOOD Users Group page 39

page -39
HOOD USER MANUAL 1.0 HUM-1.0

Figure 27 -  The “Z” strategy
This strategy leads to establish a set of requirement documents (SRDs) of a manageable size in-
cluding some independent specification models whereas the HOOD design models included in
the different ADDs are completely consistent (Figure 28 -) and parts of the system to design mod-
el. The traceability of requirements through the design is much easier as it is made level by level.

Figure 28 -  The different models in the “Z” life cycle

Requirement
Analysis

 SRD

Architectural
Design

 ADD

SWRD

Requirement
Analysis
 SRD

Architectural
Design

 ADD

Requirement
Analysis

 SRD

Architectural
Design

 ADD

System Level

Sub-System Level

Assembly Level

Product Level

To detailed design

SRD Software Requirement Document

ADD Architectural Design Document

A unique and Consistent
HOOD Design

Requirements Design

Specification Process

Design Process

“Include” Relation



Copyright 1995-96 by HOOD Users Group page 40

page -40
HOOD USER MANUAL 1.0  by HUM Working Group

1.4.3 DESIGN TO CODE

HOOD provides translation rules which allow to make more easier the design to code mapping,
specially when the coding language is Ada. HOOD does not remove the programming phase but
helps the programmer by giving him the possibility to concentrate on local algorithmic and cod-
ing problems within the scope of well-defined Ada units whose the interfaces and the body skel-
eton are directly derived from the design objects.
The apparent equivalence of the concepts in the HOOD method and Ada constructs does not im-
ply passive object and active object are just another word for package and task. Indeed, objects
are implemented by an Ada package, but in a very well-defined form with precise properties.
When the coding is not done in Ada, specific translation rules must be defined for the target lan-
guage but the overall approach remains the same.
A set of PRAGMAs is defined to give the designer a better control of the translation scheme. This
allows a development process in which the detailed design is a stepwise refinement of the archi-
tectural design then the code editing is the refinement of the detailed design. So the designer and
the coder see only the HOOD structure and the ODSs, the final translation into Ada being done
just at the end of the code phase or for design prototyping purposes.
With a such approach, code and design are always consistent

1.4.4 TESTS AND VALIDATION

1.4.4.1 Unit and integration tests

The unit and integration tests of parts of code developed using HOOD are done respectively
against the detailed design and the architectural design. The HOOD object concept has obvious
benefits for testing:

• from the definition of object interfaces (provided/required) it is possible to set-up a test en-
vironment

• information hiding inherent to objects, insures to have limited interaction with the test envi-
ronment

A typical HOOD object test environment (Figure 29 -) will be composed of:

• a test monitor in charge to trigger accessible operations defined in the provided interface

• a test simulator in charge to simulate the operations defined in the required interface

Figure 29 -  Test environment generation

Test Monitor

Objects to be Tested

Monitor

Simulator
Required interfaces

Provided interfaces

Test Simulator



Copyright 1995-96 by HOOD Users Group page 41

page -41
HOOD USER MANUAL 1.0 HUM-1.0

The relevant code for the test monitor and test simulator may be automatically generated from
the analysis of the design.
Thus, HOOD may support several testing strategies:

• module testing is defined as the activity of validating the behaviour of an operation with re-
spect to its interface specification.

• a bottom-up test strategy would start with objects that are only used

• a top-down test strategy would require main control flows to be completed, and stubs provid-
ed for other operations

• a sub-tree approach would allow parts of the HOOD hierarchy to be developed as sub-trees,
providing successively more functionality across the design.

1.4.4.2 Verification and Validation

One of the major problem encountered during the development of RT&E (Real Time and Em-
bedded) systems is the V&V (Verification and Validation) activity during all the life cycle phases
in order to detect errors very early during the development. Early verification allows to go further
in the development steps from a consolidated and validated basis. A key feature of V&V activity
is the verification of the dynamic behaviour of the system under design.
Techniques in software verification can be classified into two categories:

• Verification by simulation  is running a system or a subset of the system with a selected set
of input data and evaluates its response. Testing and/or prototyping are verification by sim-
ulation.

• Verification by proofs is making some mathematical proofs on intrinsic properties of a sys-
tem and/or on the behaviour invariants of a system when going toward its final implementa-
tion. These proofs can be done only if one uses a formal language, which allows logic calculi.

These two kinds of verification are complementary ones. Simulation is interesting to reveal un-
expected behaviour of a system, clean up bugs and get a better understanding of the system. Com-
pletely proven developments are quite too costly to put into practice, but must be planned for
critical RT&E systems.

The HOOD design process decomposes the design activity into basic design steps which facili-
tates the implementation of the V&V activities. After each step, a validation of the design is pos-
sible through informal techniques such as inspection, walk-through and reviews or verification
techniques such as design prototyping and design simulation.
Design validation and verification procedures in HOOD should be based on the separation (in
time) between the external description of an object and the availability of its implementation.
Two complementary activities are performed:

• step verification, ensuring consistency of one object decomposition

• level verification and validation, ensuring consistency of a complete level decomposition
(i.e. several objects together).

Step verification mainly consist of:

• checking the object interfaces,

• checking parent-child signatures,

• tracing the mapping of requirements behavioural models into Object Control Structure de-
scriptions.



Copyright 1995-96 by HOOD Users Group page 42

page -42
HOOD USER MANUAL 1.0  by HUM Working Group

Level validation is performed in order to check the consistency over several design steps togeth-
er. The definition of a design prototyping by implementing each terminal object allows to set-up
a test and pre-integration environment for each object with respect to its brothers.

1.4.5 HOOD AND REUSE

Reusability is today a topic of primary practical importance. In this area it appears that, reusabil-
ity of design is the most realistic approach since reuse of code is often to much target computers
and data management systems dependant
The use of HOOD greatly facilitates the software reusing process at the design stage. Studies are
being conducted in the ESPRIT and EUREKA research programs to enhance the strategy of de-
sign in that direction and to develop relevant environments.
Reuse consists of two major activities:

• design a current system to be reusable in other projects

• reuse parts of previous projects during the current system design

HOOD is a globally top-down process while reuse is globally bottom-up. So the reuse process is
included in the basic design step by the definition of different scenarios for reuse of design. After
the formalization of the solution, one can identify the possible areas in which reusable designs
i.e. objects could be reused. Then, the designer researches in a component library the objects
which could solve his problem. This search gives a short list of candidates and a “design to tar-
get” tries to include those candidates in the current design. This process is similar to the design
process for hardware components including commercial chips (IC, VLSI...).
The encapsulation principles in HOOD fit quite well on this scenario in the sense that the user
does not need to know the internals of an object and is only concerned with its provided interface
which describes how to use the object and its required interface which describes the context and
the environment requested by the object to provide the services.
More details on these topics are given in Section 2.10 of this document.

1.4.6 HOOD AND SUBCONTRACTING

There is a clear need to properly manage SW development in the context of large systems involv-
ing many contractors and subcontractors. In this context, HOOD may be used according either
to the “prime” point of view or to the “subcontractor” point of view.
The “prime” HOOD activities are mainly concerned with:

• responsibility of high-level design,

• interface validation,

• identification of HOOD sub-trees, subject to subcontracting,

• prototyping activities, by simulating subcontracted software parts mainly to validate the dy-
namical behaviour of the system,

• integration by replacing simulated code by delivered final code.

The “Subcontractor” HOOD Activities Are Mainly Concerned With:

• responsibility of a complete hood sub-tree,

• internal design activity performed according to the interfaces defined, validated and agreed
with “prime”,



Copyright 1995-96 by HOOD Users Group page 43

page -43
HOOD USER MANUAL 1.0 HUM-1.0

• possible pre-integration activity.

1.4.7 PHASED INCREMENTAL LIFE CYCLE

On large projects, requirements definition is anon monotone function of the development pro-
cess: requirements become more and more precise and mastered as the project goes forward.
Large projects developments have been compared to “cathedral building” and such top-down de-
velopment are now more and more questioned.

The risk of such projects can however be limited and at the same time conforming their develop-
ment to an organisational (management model) model of the V cycle, by splitting the project into

phases12, each of which is conducted as a subproject with deliverables and possibly an own V
life-cycle. In order to achieved some efficiency inputs of a phase may be taken from outputs of a
previous one.

The way the initial partitioning is done is of course of prime importance for the success of the
project, but hood recommends to follow a phased approach in order to limit this risk:

• start first by defining a logical partitioning that highlights relevant abstractions of the solu-
tion (phase 1),

• refine down the logical model and start to build the infrastructure model and the distribution
model to a verifiable, executable model on a ideal target (phase 2),

• adapt, refine further and tune on the final target by refinement of both model taking into ac-
count the physical model (phase 3).

Figure 30 -  Phased Incremental Development Approach For Complex Systems

12.Experience has shown that an “appropriate” duration for such phases should be less than one year.

Phase 1
delivery Final

delivery
Phase2
delivery

PHASE1
PHASE2 PHASE3

Time



Copyright 1995-96 by HOOD Users Group page 44

page -44
HOOD USER MANUAL 1.0  by HUM Working Group



Copyright 1995-96 by HOOD Users Group page 45

page -45
HOOD USER MANUAL 1.0 HUM-1.0

1.5 A HOOD EXAMPLE

In this section we shall illustrate a HOOD design, not a full fledged one, but trying merely to il-
lustrate a full design step.

1.5.1  PRESENTATION OF THE EMS SYSTEM

The EMS is a software to monitor   car engine parameters , to display them on a bargraph and
trigger an alarm if associated values are out of range. A detailed requirement of the EMS is given
in  APPENDIX A1 - of this document.

1.5.2 EMS   SOLUTION

A solution of the EMS software is defined by applying a basic design step.

1.5.2.1 Statement of the Problem (H1.1)

Design and develop a software to controls sensors and display associated values of a car engine.

1.5.2.2 Analysis and Structuring of Requirement Data (H1.2)1

• Analysis and definition of the EMS Environment:
The EMS software is running on the CPU, using an Input/Output and a Timers drivers.
The EMS is defined as an interface to its environment:

- Start, Stop Acknowledge are provided operations which are triggered by IT (handled by
the ADA Real Time Monitor) as the driver/operator will push the associated buttons;

- The interface to the ADA RTS is represented as two environment objects associated to the
TIMER and the I/O boards

1. Questions raised and answered during this activities
How to take into account the hardware interfaces (from push-buttons, sensor failure...)?
Which is the EMS software environment? Which is the range for oil, fuel and water? How to display a fault (sensor failure or
value out of range)? How to take into account several sensor failures or several values out of range?
How to stop the Alarm (with Ack push button, when fault has disappeared)? What about an existing Alarm after a start? How
and When to start and stop the system? The Acknowledge shall stop the Alarm for all faults which have set it.

Timers_DriverE

I/O_DriverE

EMS

Start

Stop

Acknowledge

A
ASER_by_IT

start push-button

ASER_by_IT
stop push-button
ASER_by_IT

ack push-button



Copyright 1995-96 by HOOD Users Group page 46

page -46
HOOD USER MANUAL 1.0  by HUM Working Group

• Analysis of Functional Requirements:
The function to performed by the EMS are:
-acquire the data from the sensors ==> handle ACQUISITION
-compute the mean value
-compare it the limit values of pressure, temperature and level ==> handle LIMITS
-display the values in green if ok, in red if not, flashing it failure ==>handle DISPLAY
-trigger the alarm ==> handle the ALARM
- handle sensors or display faults ==> handle the ERRORS

• Analysis of Behavioural Requirements:
The EMS can be started and stopped, at any time, independently of the car engine.The
EMS can be started and stoppedat any moment by pushing the associated push buttons, in-
dependently of the car engine.

- A start when the EMS is running shall haveno impact on the EMS.
A stop when the EMS is stopped yet shall haveno impact on the EMS.
An acknowledge when the alarm is switched off or the EMS stopped shall haveno impact
on the EMS.

- When the Alarm is set, itremains displayeduntil the ack push button is pushed or until the
corresponding fault has disappeared.
The Alarm shall be set only for a new fault (when the same fault has previously disap-
peared).
Alarm is restarted after a start (an ack before the previous stop shall be ignored).

Figure 31 - below summarizes the behaviour of the EMS system.

Figure 31 -  State Transition Diagram modelling the behaviour of the EMS system

Start

Acknowledge

EMS alarmed
EMS nominal

EMS stopped

Sensor failure

Bad value

valid value

Start

Start

Stop

Stop Start

(includes HW alarm
 ON or OFF)



Copyright 1995-96 by HOOD Users Group page 47

page -47
HOOD USER MANUAL 1.0 HUM-1.0

• Analysis of Non-Functional Requirements:

- The EMS must be reliable. More sensors might be handled. The EMS system might be
connected to a general vehicle control system.

- The values shall besmoothly displayed on the bargraphs (particularly in case of sensor
failure). Thus the display device shall continuously evolve.

• User Manual Outline
The values of water temperature, oil pressure and fuel level are displayed in green light on
three different bargraphs. In case of sensor failure, the corresponding bargraph flashes in red
light and the alarm is started. In case of a value is out of range, the bargraph displays the value
in red light and triggers the alarm.
The EMS can be started and stopped by using start and stop push buttons.
The alarm of the EMS may be switched off by the ack push button.

1.5.2.3 Informal Solution Strategy2 (H2)

On IT reception from the Start push button, the EMS is started: the Ctrl_EMS inits the bargraphs,
starts the alarm and the sensors and creates and starts a timer which triggers the monitoring each
second (monitoring timer). Initialisation of bargraphs switches on the hardware bargraph through
the I/O driver. Starting the alarm switches off the hardware alarm through the I/O driver. Starting
the sensors starts the hardware sensors and creates and starts a timer which triggers the sampling
at 10 Hz (sampling timer).

When the sensors are sampled every 1/10 second by a signal from the timer, the values and the
status (malfunction) of each sensor are get from the hardware sensors (through the I/O driver).
Every second, the monitoring activity is triggered by a signal from the timer: the Ctrl_EMS ac-
quires the status and the mean values of oil pressure, fuel level and water temperature from sen-
sors. It compares them with the limited values.

If a mean value is out of range or a sensor has failed, the Ctrl_EMS switches the alarm on (with
the type of sensor and the type of failure). If there is no failure and the mean value is correct, it
displays each mean value on the appropriate bargraph, sets the colour in green, stops flashing and
switches the alarm off. If a mean value is out of range, the corresponding bargraph is displayed
in red light. If there is a sensor failure, the corresponding bargraph flashes in red light. An even-
tual malfunction of the hardware bargraphs or the hardware alarm is of no effect on the
Ctrl_EMS.

On IT reception from the Ack push button, the alarm is acknowledged.
On IT reception from the Stop push button, the EMS is stopped if it was not: the alarm, the mon-
itoring timer and the sensors are stopped and the bargraphs are switched off. Switching the bar-
graphs off stops the hardware bargraphs (switches light off and put values to zero through the I/
O driver). Stopping the alarm stops the hardware alarm through the I/O driver. Stopping the sen-
sors stops the hardware sensors (through the I/O driver) and stops the sampling timer.

2.Note that this strategy is the ultimate one found after refinement of earlier outlines as the candidate child
objects and associated operations were described and refined in «Formalization of the Strategy activities»



Copyright 1995-96 by HOOD Users Group page 48

page -48
HOOD USER MANUAL 1.0  by HUM Working Group

1.5.2.4 Formalization of the Strategy (H3)

1.5.2.4.a Identification of objects (H3.1)

Object BARGRAPHS:
The bargraphs object allow to display values, in red or green with or without flashing, on appro-
priate display devices.It also provides all means to start and stop the hardware display device.

Object CTRL_EMS:
This object is the controller of the EMS. It starts and stops all the constituents objects of the EMS
and controls the monitoring.
The Ctrl_EMS inits the bargraphs, starts the alarm and the sensors and creates and starts a timer
which triggers the monitoring each second (monitoring timer).

Object SENSORS:
This object samples oil pressure, water temperature and fuel level at 10Hz and stores the read
values of the three sensors at any moment. It may provide the mean of stored values of a sensor.
It also provides all means to start and stop the hardware sensors.

Object ALARM
The Alarm object manages a set of software alarms. One hardware alarm is associated to those
software alarms. It is possible to switch a software alarm on or off at each time. The hardware
alarm is started when an unset software alarm is switched on (set). The hardware alarm is stopped
when the set of software alarms are switched off (unset) or when acknowledged by the user. In
that case the status of the set software alarms are not modified.

1.5.2.4.b Identification of operation (H3.2)

Object Input_Output_Driver:

• Put The Put operation allows to write information included in the provided descriptor to
the hardware device corresponding to the specified one.

• Get The Get operation allows to copy the current information, provided by the hardware
device corresponding to the provided one, into the provided descriptor.

Object CTRL_EMS:

• Start creates the monitoring timer, initialises the alarm, the sensors and the bargraphs which
are used during the monitoring.

• Stop; stops the monitoring timer and switches off the alarm and the bargraphs and stops the
sensors.

• Monitor ; acquires the values of each sensor. Those values are displayed on the appropriate
bargraph. In case of a value is out of range, this operation switches the alarm on and gives
the red colour to the bargraph. If there is a sensor failure, the alarm is switched on and the
bargraph flashes in red colour. In other cases, the values are displayed in green colour.

Object SENSORS:

• Start; initializes the hardware sensors.

• Sample is in charge of the Sensors sampling. It gets the current values of each hardware sen-
sor and stores them into an internal database.

• Acquire returns the mean of the ten last stored values of a sensor. It returns a



Copyright 1995-96 by HOOD Users Group page 49

page -49
HOOD USER MANUAL 1.0 HUM-1.0

SENSOR_FAILURE exception in case of hardware sensor problem.

• Stop stops the hardware sensors.

Object BARGRAPHS:

• Init ; initializes the hardware bargraphs. Bargraphs are switched on in green colour without
flashing and with a null value.

• Display displays the input percentage value in the corresponding hardware bargraph. The
colour and the flashing are not modified.

• Set_Colour sets the corresponding hardware bargraph in the specified colour. The displayed
value and the flashing are not modified.

• Flash allows to flash the corresponding hardware bargraph. The colour and the displayed
value are not modified.

• Switch_Off switches the hardware bargraphs off.

Object ALARM:

• Start switches the hardware alarm and the software alarms off.

• Acknowledge stops the hardware alarm without unset the set software alarms.

• Switch_On  switched the specified software alarm on. If this alarm was not yet set, the hard-
ware alarm is started (if it was not). In the other cases, nothing is modified.

• Switch_Off The Switch_Off operation switched the specified software alarm off. If the hard-
ware alarm is yet started and all the other software alarms are unset, the hardware alarm is
stopped.

• Stop; switches the hardware alarm off.

1.5.2.4.c HOOD DIAGRAM of EMS DECOMPOSITION (H3.4)

Figure 32 -   EMS HOOD DIAGRAM (H3.4)

E Timers

E Input/Output_Driver

EMSA
Ctrl_EMS

Start

Stop

Monitor

ASER_by_IT start push-button

ASER_by_IT

ASER_by_IT stop push-button

Sensors

Start
Sample
Acquire

A

A

Alarm
Start
Acknowledge
Switch_On

ASER_by_IT
A

Switch_Off

Bargraphs
Init
Display
Set_Colour
Flash
Switch_Off

ack push-button

Timer_10Hz

Start

Stop

ASER_by_IT

ASER_by_IT

start push-button

stop push-button

malfunction

data_in

mean_value
colour

Timer_1Hz

sensor_failure
mean_value

data_out
data_out

initial_frequency

Stop

ASER_by_IT

malfunction

Acknowledge

ASER_by_IT
ack push-button

Stop



Copyright 1995-96 by HOOD Users Group page 50

page -50
HOOD USER MANUAL 1.0  by HUM Working Group

1.5.2.4.d Justification of Design Decisions (H3.5)

Object BARGRAPHS implements the display functional constraints. It is able to display addi-
tional values.
Object ALARM implements the interface with the alarm system. Any change in the alarm system
will only affect the alarm object.
Object SENSORS handles the acquisition function, it is designed so as to be able to handle ad-
ditional sensors.
Object CTRL_EMS handles initialisation and stop of timers interrupts, as well as push button It.

1.5.2.4.e Grouping Operations & Objects (H3.3)

This section is given for illustration only. Its added value is a matter of discussion and taste and
depends highly of the toolset being used, experience, and project reviewing standards.

EMS
Start On IT from Start push-button
Stop On IT from Stop push-button
Acknowledge On IT from Ack push-button | implemented by ALARM

Bargraphs
Display value (oil, water, fuel) : IN
Set_colour colour (red, green) : IN
Flash
Switch_off

Sensors
Sample value (oil, water, fuel) : OUT  | every 1/10 second Time
Acquire value (oil, water, fuel) : OUT
Stop

sensor_failure : exception
Alarm

Switch_on
Stop
Acknowledge On IT from Ack push-button | implements EMS Reset

Ctrl_EMS
Monitor every second by Timer signal
Is_value_out_of_range internal operation|

value : IN
limited_oil_value : CONST,
limited_water_value : CONST,
limited_fuel_value : CONST

OBJECTS OPERATIONS COMMENTS



Copyright 1995-96 by HOOD Users Group page 51

page -51
HOOD USER MANUAL 1.0 HUM-1.0

1.5.2.5 Structuring the design

Analysis of reusable objects,
Analysis of reused object,
Analysis of distribution aspects,
.....
=> Building system configuration

SYSTEM_CONFIGURATION
ROOT OBJECTS

EMS, Timers_Driver, IO_Driver
CLASSES

Sensors, Bargraphs
END

Figure 33 -  EMS objects and Design Views

Class space

Distribution space

EMS Timers_Driver IO_Driver

EMS_System

EMS

Ctrl_EMS
Alarm Bargraph[1..3]

Sensor[1..3]
Timers_Driver

?

IO_Driver

?

Sensors

?

Bargraphs

?

: Uses

: Is allocated to

: Is instance of

S
ys

te
m

 T
o 

D
es

ig
n



Copyright 1995-96 by HOOD Users Group page 52

page -52
HOOD USER MANUAL 1.0  by HUM Working Group

1.5.3  ODS EXAMPLES OF EMS SYSTEM

1.5.3.1 ENVIRONMENT OBJECTInput_Output_Driver

OBJECT Input_Output_Driveris ENVIRONEMENT PASSIVE
DESCRIPTION

The Input_Output_Driver object provides means to exchange information with hardware devices. It allows to put or to set
information of these devices.

IMPLEMENTATION_CONSTRAINTS NONE
PROVIDED_INTERFACE
CONSTANTS

MAX_BARGRAPHS_NUMBER:constant:= 3;
Number of hardware bargraphs managed by the Input_Output_Driver object.
MAX_SENSORS_NUMBER :constant := 3;
Number of hardware sensors managed by the Input_Output_Driver object.
MAX_ALARMS_NUMBER : constant := 1;
Number of hardware alarms managed by the Input_Output_Driver object.

TYPES
T_DEVICE is(ALARM, BARGRAPH, SENSOR);
The T_DEVICE type defines the set of devices which are taken into account by the Input_Output_Driver.
T_DEVICE_STATUSis (ON, OFF);
Defines the status of a a device. ON : the hardware device is running, OFF : the hardware device is stopped.
T_BARGRAPH_COLOUR is (RED, GREEN);
This type defines the two different colours of a bargraph.
T_BARGRAPH_FLASH_STATUS is (ON, OFF);
This type defines the two different displaying status of a hardware bargraph.
T_DESCRIPTOR (DEVICE : T_DEVICE)is
record

STATUS : T_DEVICE_STATUS := OFF;
case DEVICE is

whenBARGRAPH =>
NUMBER : INTEGERrange 1 .. MAX_BARGRAPHS_NUMBER := 1;
VALUE : INTEGER range 0 .. 100 := 0;
COLOUR : T_BARGRAPH_COLOUR := GREEN;
FLASH : T_BARGRAPH_FLASH_STATUS := OFF;

when SENSOR=>
NUMBER : INTEGERrange 1 .. MAX_SENSORS_NUMBER := 1;
VALUE : INTEGER range 0 .. 100 := 0;

when ALARM =>
NUMBER : INTEGERrange 1 .. MAX_ALARMS_NUMBER := 1;

end case;
end record;
 The T_DESCRIPTOR type defines the set of information which may be sent to output devices or received from input de-
vices.

OPERATIONS
Put(DEVICE : in T_DEVICE; -- Output Device

ELEMENT : in T_DESCRIPTOR -- Descriptor to apply to a device);
The Put operation allows to write information included in the provided descriptor to the hardware device corresponding to
the specified one.
Get(DEVICE : in T_DEVICE; -- Input Device

ELEMENT : out T_DESCRIPTOR -- Descriptor including information from device);
The Get operation allows to copy the current information, provided by the hardware device corresponding to the provided
one, into the provided descriptor.
EXCEPTIONS
MALFUNCTION RAISED_BY Put, Get;
This exception is returned when the hardware device specified in the Put or Get operations is unavailable.

END_OBJECT Input_Output_Driver



Copyright 1995-96 by HOOD Users Group page 53

page -53
HOOD USER MANUAL 1.0 HUM-1.0

1.5.3.2 PARENT OBJECT EMS

OBJECT EMS IS ACTIVE
DESCRIPTION

The EMS monitors and displays the oil pressure, water temperature and fuel level on the appropriate bargraphs, and starts
an alarm in case of a value is out of a predefined range. First, the EMS shall be started.

IMPLEMENTATION_CONSTRAINTS
Start, Stop and Acknowledge operations are mutually exclusive (each of those operations shall wait the end of an other one
before to be started).

PROVIDED_INTERFACE
OPERATIONS

Start;
The Start operation starts the EMS. The EMS environment will be initialised.
Stop;
The Stop operation stops the EMS.
Acknowledge;
This operation stops the Alarm for the faults which have switched on it.

EXCEPTIONS
NONE

OBJECT_CONTROL_STRUCTURE
DESCRIPTION

The EMS accepts start, stop and acknowledge operations at any time. Start is not significant after a start. Stop or acknowl-
edge  are not significant after a stop.

CONSTRAINED_OPERATIONS
Start CONSTRAINED_BY ASER_by_IT Start_push-button;
Stop CONSTRAINED_BY ASER_by_IT Stop_push-button;
Acknowledge CONSTRAINED_BY ASER_by_IT Ack_push-button;

REQUIRED_INTERFACE

INTERNALS
OBJECTS

Ctrl_EMS;
Sensors;
Bargraphs;
Alarm;

OPERATIONS
StartIMPLEMENTED_BY Ctrl_EMS.Start;
StopIMPLEMENTED_BY Ctrl_EMS.Stop;
AcknowledgeIMPLEMENTED_BY Alarm.Acknowledge;

EXCEPTIONS
NONE

OBJECT_CONTROL_STRUCTURE
IMPLEMENTED_BY  Ctrl_EMS, Alarm;

END_OBJECT EMS



Copyright 1995-96 by HOOD Users Group page 54

page -54
HOOD USER MANUAL 1.0  by HUM Working Group

1.5.3.3 TERMINAL CHILD OBJECT CTRL_EMS

OBJECT Ctrl_EMSIS ACTIVE
DESCRIPTION

This object is the controller of the EMS. It starts and stops all the constituents objects of the EMS and controls the monitor-
ing

-IMPLEMENTATION_CONSTRAINTS
The Ctrl_EMS must perform the monitor operation in less than 1 second.

PROVIDED_INTERFACE
TYPES NONE
CONSTANTS NONE
OPERATION_SETS NONE
OPERATIONS

Start;
The Start operation creates the monitoring timer, initialises the alarm, the sensors and the bargraphs which are used during
the monitoring.
Stop;
The Stop operation stops the monitoring timer and switches off the alarm and the bargraphs and stops the sensors.
Monitor ;
The Monitor operation acquires the values of each sensor. Those values are displayed on the appropriate bargraph. In case
of a value is out of range, this operation switches the alarm on and gives the red colour to the bargraph. If there is a sensor
failure, the alarm is switched on and the bargraph flashes in red colour. In other cases, the values are displayed in green
colour.

EXCEPTIONS
NONE

OBJECT_CONTROL_STRUCTURE
DESCRIPTION

The Ctrl_EMS accepts start, stop and monitor operations at any time. A start is not significant after a start. A stop or a mon-

itor are not significant after a stop.

Start CONSTRAINED_BY ASER_by_IT Start push-button;
Stop CONSTRAINED_BY ASER_by_IT Stop push-button;
Monitor CONSTRAINED_BY ASER_by_IT Timer_1Hz;

REQUIRED_INTERFACE
OBJECT Sensors;

TYPES
T_SENSOR;

OPERATIONS
Start;
Acquire;
Stop;

EXCEPTIONS
SENSOR_FAILURE;

OBJECT Alarm;
TYPES

T_ALARM;
OPERATIONS

Start
Acknowledge

EMS alarmed
EMS nominal

EMS stopped

Sensor failure
Bad value

valid value

Start

Start

Stop

Stop Start

(includes HW alarm
 ON or OFF)



Copyright 1995-96 by HOOD Users Group page 55

page -55
HOOD USER MANUAL 1.0 HUM-1.0

Start;
Switch_On;
Switch_Off;
Stop;

OBJECT Bargraphs;
TYPES

T_COLOUR;
T_BARGRAPH;
T_FLASHING;
T_PERCENTAGE;

OPERATIONS
Init;
Display;
Set_Colour;
Flash;
Switch_Off;

OBJECT Timers_Driver;
TYPES

T_TIMER;
OPERATIONS

Create;
Start;
Delete;

DATAFLOWS
mean_value<= Sensors;
mean_value=> Bargraphs;
colour=> Bargraphs;
initial_frequency=> Timers_Driver;

EXCEPTION_FLOWS
sensor_failure<= Sensors;



Copyright 1995-96 by HOOD Users Group page 56

page -56
HOOD USER MANUAL 1.0  by HUM Working Group

INTERNALS

OBJECTS
NONE

TYPES
 TBD

CONSTANTS
IT_1HZ_ADDRESS : constant := Monitor’ADDRESS;
MONITORING_FREQUENCY : constant :=1;
 TBD

OPERATIONS
Is_Value_out_of_Range;
 TBD

EXCEPTIONS
 TBD

DATA
MONITORING_TIMER : Timers_Driver.T_TIMER;
 TBD

OBJECT_CONTROL_STRUCTURE
PSEUDO_CODE

TBD
CODE

 TBD

OPERATION_CONTROL_STRUCTURES

OPERATION  Start
DESCRIPTION

This operation initialises the system (the alarm, the bargraphs, the sensors) and then creates and starts a timer for it triggers
the monitoring every 1 second.

USED_OPERATIONS
Timers_Driver.Create; Timers_Driver.Start;Sensors.Start;Alarm.Start;Bargraphs.Init;

PROPAGATED_EXCEPTIONSNONE
HANDLED_EXCEPTIONS NONE
PSEUDO_CODE

 TBD
CODE

 TBD
END_OPERATION  Start
OPERATION Stop
DESCRIPTION

This operation stops all the system (the alarm, the bargraphs, the sensors) and resets the monitoring timer.
USED_OPERATIONS

Timers_Driver.Delete;
Alarm.Stop;
Bargraphs.Switch_Off;
Sensors.Stop;

PROPAGATED_EXCEPTIONSNONE
HANDLED_EXCEPTIONS NONE
PSEUDO_CODE

 TBD
CODE

 TBD
END_OPERATION  Stop



Copyright 1995-96 by HOOD Users Group page 57

page -57
HOOD USER MANUAL 1.0 HUM-1.0

OPERATION  Is_Value_out_of_Range
DESCRIPTION

 TBD
USED_OPERATIONS

 TBD
PROPAGATED_EXCEPTIONS

 TBD
HANDLED_EXCEPTIONS

TBD
PSEUDO_CODE

 TBD
CODE
END_OPERATION  Is_Value_out_of_Range

OPERATION  Monitor
DESCRIPTION

This operation is in charge of the EMS monitoring. It acquires the mean values of each sensor, controls them against limit
values with respect to each category of sensors, converts those mean values into displaying values according to min. and
max.  information and displays them on the corresponding bargraph. It sets the alarm if the mean value is out of range or if
there is a sensor failure. It also set the green colour of a bargraph when the value is correct, the red colour when the value
is out of range and the red flashing colour when  the corresponding sensor is failed.
The Monitor operation switched the alarm on for each out of range value and each failed sensor and switched the alarm off
for each correct value and running sensor.

USED_OPERATIONS
Alarm.Switch_On;
Alarm.Switch_Off;
Bargraphs.Display;
Bargraphs.Flash;
Bargraphs.Set_Colour;
Sensors.Acquire;
Is_Value_out_of_Range;

PROPAGATED_EXCEPTIONS
NONE

HANDLED_EXCEPTIONS
Sensors.SENSOR_FAILURE;

PSEUDO_CODE
 TBD

CODE
 TBD

END_OPERATION  Monitor
END_OBJECT Ctrl_EMS



Copyright 1995-96 by HOOD Users Group page 58

page -58
HOOD USER MANUAL 1.0  by HUM Working Group

1.5.4 EXAMPLE OF ADA CODE IMPLEMENTATION

In the following we give the Ada code generated from the ODS of object EMS and Ctrl_Ems.
APPENDIX A2 - of this document gives the same code where ODS text parts have been gener-
ated within the code as Ada comments.

Figure 34 -  Ada Specification associated to EMS ODS

Figure 35 -  Ada Specification associated to Ctrl_EMS ODS

Figure 36 -  Ada Body associated to Ctrl_EMS ODS

with  Ctrl_EMS, Alarm;
package EMS is
-- DESCRIPTION

procedure Start renames Ctrl_EMS.Start;
procedureStop renames Ctrl_EMS.Stop;
procedureAcknowledge renames Alarm.Acknowledge;

end EMS;

package Ctrl_EMSis
task OBCS_Ctrl_EMSis

entry Start;
entry Stop;
entry Monitor;

endOBCS_Ctrl_EMS;
procedureStartrenames OBCS_Ctrl_EMS.Start;
procedureStop renamesOBCS_Ctrl_EMS.Stop;
procedure Monitor renames OBCS_Ctrl_EMS.Monitor;

end Ctrl_EMS;

with  Sensors;
with  Alarm;
with  Bargraphs;
with Timers_Driver;

package body Ctrl_EMSis
IT_1HZ_ADDRESS: constant :=Monitor’ADDRESS;
procedure Is_Value_out_of_Range;
procedure OPCS_Start is separate;
procedure OPCS_Stop is separate;
procedure OPCS_Monitor is separate;
task bodyOBCS_Ctrl_EMS is
begin

loop
select

accept Start;
OPCS_Start;

or accept Stop; -- empties Stop queue
OPCS_Stop;

or accept Monitor; -- empties Monitor queue
OPCS_Monitor;

end select;



Copyright 1995-96 by HOOD Users Group page 59

page -59
HOOD USER MANUAL 1.0 HUM-1.0

Figure 37 -  Ada Specification associated to EMS ODS (Continued)

procedureOPCS_Start is
begin

Timers_Driver.Create (MONITORING_TIMER,
MONITORING_FREQUENCY,
IT_1HZ_ADDRESS );

Alarm.Start;
Bargraphs.Init;
Sensors.Start;
Timers_Driver.Start ( MONITORING_TIMER );

endOPCS_Start;

procedure OPCS_Stop is
begin

Timers_Driver.Delete( MONITORING_TIMER );
Sensors.Stop;
Alarm.Stop;
Bargraphs.Switch_Off;

endOPCS_Stop;
procedure Is_Value_out_of_Range is

begin
null;
-- TBD

end Is_Value_out_of_Range;

procedure OPCS_Monitor is
begin

null;
-- TBD

end OPCS_Monitor;
endCtrl_EMS;  -- end body of package Ctrl_EMS



Copyright 1995-96 by HOOD Users Group page 60

page -60
HOOD USER MANUAL 1.0  by HUM Working Group



Copyright 1995 by HOOD User’s Group page 61

page -61
HOOD USER MANUAL 1.0 HUM-1.0

2 ADVANCED CONCEPTS

2.1 ARCHITECTURAL GUIDELINES

In this section we shall give some guidelines for identifying HOOD objects. There are however
no strong principles, if any, for finding objects straight away for a HOOD design.

The Basic design Step describes how the software requirements are reformulated and how one
can go towards an Informal Solution Strategy in informal natural language (e.g. English). From
this text, nouns may be identified as candidate objects, and verbs may be identified as corre-
sponding candidate operations. This process is repeated for each object that is decomposed.

The intent of an object is to represent a problem domain entity, either a real world object or a
data structure, and the object should act as a black box by hiding the data, and allowing access
only through operations - thus allowing easy testing, debugging and maintenance.

The principles of abstraction and information hiding provide the main guidelines for assessing
an object; thus a "good object" represents an encapsulation of a problem domain entity and hides
internally information that is likely to change if the implementation changes. One can define a
scale of abstraction ranging from the real world object to purely logistic objects as follows:

• Entity abstraction
represents a useful problem domain entity. Such an entity would be as concrete as a hard-
ware device or more abstract such as a compiler intermediate file.

• Action abstraction
a child object that represents the state of a parent object can be seen as an abstraction of the
actions of the parent object. This may have a State Transition Diagram, and may be Active
or Passive according to the type of the parent object.

• Logistic abstraction
an object that represents a data store that is used within the design, without an external in-
terface is a logistic abstraction.
Examples are stack, list and tables.

At the top level of the design, in decomposing the root object, candidate objects are generally
real world, problem domain objects (e.g. hardware devices, input devices that drive system ac-
tivity, output devices that respond to system activity), or are data (files as collections of input or
output data), either transient data such as messages or commands, or data stores, such as stacks,
lists or tables,etc ....
At lower levels of design decomposition, further general types of object may appear such as
states, data pools, data records,..... .

In the early time of HOOD, there has been numerous attempts to definewhat is a good object,
and we shall not try to do it again. Rather we shall recommend to define HOOD objects along
two main principles:

• identification of root objects from conceptual abstractions and HOOD parent-child re-
finement to reduce complexity

• identification of abstract data type implementations.



Copyright 1995 by HOOD User’s Group page 62

page -62
HOOD USER MANUAL 1.0  by HUM Working Group

Enforcing thesetwo guidelines in object identification is a good start, at our experience, to come

to “good solutions”1:

• the identification of objects based on conceptual modelling and abstraction allows to catch
thegood structure, i.e. one that is possibly invariant from one application to another in a giv-
en domain. (thus reusable for a similar project)

• the identification ofabstract data type implementations, is also a way to achieve good logical
grouping of data and related operation (with strong logical cohesion thus enforcing software
engineering principles) and going as well towards full object oriented structure: that is sys-

tems structured with only ADTs2..

Furthermore, we stress here again that HOOD emphasizes structuring through modules whose
interfaces can be mastered, subcontracted, rather than on inheritance structures which expresses
implementation factorising. At the worst (i.e. when two ADTs objects inherits from a third one,
and are allocated to different “work packagemodules”), it means thatallocation work should
be reconsidered, not the design!

Hence the importance of a phased approach in the development process, (see section 2.1.2 below)
where logical, conceptual design solutions are produced first, and physical, implementation
solutions, including work-package allocation are defined second.

2.1.1 STRUCTURING BASED ON ADTS

The definition of abstract data types is based on the principle of extending and building complex
types from primitives ones, directly supported by the target language. This technique allows a
designer to structure and enforce “type properties”  on complex data handled in a solution.

In HOOD an implementation of an abstract data type is defined through an object that encapsu-
late the definition of the type and associated operations. Such objects are just normal HOOD ob-
jects encapsulating all what is related to an abstract data or process type implementation, and in

order to distinguish them from non abstract data type support ones3we shall in the following refer
to such objects as HADT(HOODAbstractDataType) objects.

2.1.1.1 Object Abstraction

There are two ways for capturing abstractions: Abstract Object (ADO) and Abstract Data Types
(ADT). ADO  allows to define one (and only one) object at a time. This object has an internal
state which is represented by internal data. This data is not directly accessible by the user of the
object (it is hidden as stated in the previous section), but it can be manipulated in a correct way
thanks to the provided operations.
Note that HOOD graphical view only shows the provided operations (see figure 38), the rest of
the provided interface (types, constants and exceptions) are only appearing in the textual ODS
(see figure 39).

1.may not the best ones, but good ones.
2. (whether these ADTS belong to an inheritance hierarchy is rather a detailed design implementation aspect)
3.sorry not everything in a system can be modelled as an abstract data or process type implementation.



Copyright 1995 by HOOD User’s Group page 63

page -63
HOOD USER MANUAL 1.0 HUM-1.0

Figure 38 -  HOOD Diagram of a Bounded Stack

In order to illustrate the importance of the provided interface, which may give a lot of indirect
 information, let us try to understand what implicit assumptions may be contained in the provid-
ed interface of an example (see figure 39).

First, the presence of a provided constant indicates a static memory allocation scheme. The ex-
istence of the exceptionX_OverFlow  tends to corroborate this hypothesis.

Figure 39 -  Textual view of a Bounded Stack defined as an ADO
The two provided exceptions seem to be very similar in the sense that they are raised when the
use of the stack leads to violate its boundaries. But they differ fundamentally. An abstract stack
is infinite and theX_OverFlow  exception is raised when the concrete stack is not big enough
to simulate the abstract one, what is an implementation limit. TheX_UnderFlow  exception is
raised when the user tries topop  an empty stack, which is clearly an error in the implemented
algorithm. This exception can be useful during the debugging phase but has no more interest in
the final system where this error is not likely to appear.

Stack

Push(Item : in  Integer);
Pop (Item : out Integer);

A

OBJECT STACK is ACTIVE
DESCRIPTION

A protected integer stack as an abstract Data Object
IMPLEMENTATION_CONSTRAINTS
--| constraints |--
PROVIDED_INTERFACE

CONSTANTS
MAX_STACK_SIZE : constant := 100 ;

OPERATIONS
Push(Item :in  Integer) ;
Pop (Item :out Integer) ;

EXCEPTIONS
X_OverFlow raised_by Push;
X_UnderFlowraised_by Pop;

OBJECT_CONTROL_STRUCTURE
DESCRIPTION

pop and push are simple constrained operations
CONSTRAINED_OPERATIONS

PushCONSTRAINED  by HSER;
PopCONSTRAINED  by HSER;

INTERNALS
TYPES

Stack_Range is Integer range 1 .. MAX_STACK_SIZE;
Stack  is array ( Stack_Range) of Items;

DATA
Top       : Integer := 0 ;
The_Stack : Stack;

...



Copyright 1995 by HOOD User’s Group page 64

page -64
HOOD USER MANUAL 1.0  by HUM Working Group

Anyway, it could be still better not to use exceptions, except for predefined exceptions.
In the above example, a control parameter could be used forpop  andpush  operations as a return
parameter. This is a typical example of avoiding using exceptions.
An alternative to the bounded stack with no exception is given in figure 40.

Figure 40 -  An alternative to the previous stack
The next point concerns the provided operations: as it is defined, the interface is very small and
in particular there is no “access function”, i.e. there is no way to ask information about the state
of the object (“is the stack empty?”, “is the stack full?”, “what is the value on the top of the
stack?”,...). Such kind of operations is important for the reusability of the object but is less useful

in a concurrent context4.
The last point to mention  is the fact that operations are constrained. It can be in contradiction
with the exception declaration:pop  andpush  may be guarded by blocking conditions so that
the X_OverFlow and X_UnderFlow situations of the stack will never happen.

In any case, we have shown that the only formal information contained in the provided interface
is subject to multiple interpretations, the informal fields must be used to clarify the designer in-
tentions.

2.1.1.2 Abstract Data Type Abstraction

Defining an Abstract Data Type (ADT) is very similar to Object Abstraction as presented above
but, instead of designing a single object, a general model of similar objects is defined. In fact, at
least in its passive form, an ADO can be seen as an instance of an anonymous ADT. Instead of
only providing operations for manipulating internal hidden data, a private type is also provided
with the same set of operations. Each provided operation has an additional parameter describing
which object is manipulated. Internally, data is not directly declared, but the private type is pre-
cisely defined. This type will be used by clients to declare data of this type in their own context
(see figure 41). Implementation issues discussing the localization of data instances is further dis-
cussed in section 2.1.1.3 below.

4. imagine you want to pop the stack, you verify before proceeding that it is not empty but nobody can insure that another task
has not emptied the stack in between the call ofis_empty  and the call ofpop .

OBJECT UNBOUNDED_STACKis ACTIVE
DESCRIPTION

The stack is now unbounded, that is to say the constant MAX_STACK_SIZE disappears, as well
as the X_OverFlow exception |--

PROVIDED_INTERFACE
CONSTANTS

none
OPERATIONS

Push(Item :in  Integer) ;
Pop (Item :out Integer) ;
is_Empty return Boolean ;
is_on_the_Topreturn Integer ;

EXCEPTIONS
none

OBJECT_CONTROL_STRUCTURE
DESCRIPTION

Pop is constrained and protected by a guard condition so that it blocks a client when this one tries
to pop an empty stack

• • •



Copyright 1995 by HOOD User’s Group page 65

page -65
HOOD USER MANUAL 1.0 HUM-1.0

.The real “objects” derived from this definition are data values of the defined ADT. They are not
graphically represented on the HOOD diagrams. But they will appear as part (internal data) of
the terminal HOOD objects using this type.
As a matter of fact, objects encapsulating ADT are useful for defining the low-level objects of
the problem, those which are likely to be found at several places in the decomposition tree, and
those sufficiently general to be stored in reuse-libraries.

Figure 41 -  A bounded stack defined as an ADT

2.1.1.3 ADT implementations as HADT objects

 Two kind of implementations may be developed and are illustrated below:

• Implementation encapsulating data instances (Values of the type). This is where the provid-
ed interface of the module groups all operations manipulating the type, including a create
operation. Figure 42 -and Figure 43 - illustrate such a module for STACK. The provided
type T_STACK is not a type able to store full values of that type, but simply an identifier of
such value (in our case a stack object). Hence clients of such a module can require this type,
and may only instantiate identifier values on the type. Full type instances are then produced
by executing a STACK.create operation.

• Implementation encapsulating types only. Such an implementation is directly supported by
a number of target languages (especially Ada) and does not provide a create operation. The
associated module rather provides a type defining a data structure able to store values of the
type. Hence clients of such a module can require the type, and instantiate full data instances.
Figure 44 - and Figure 45 - illustrate such a HADT implementation.

The impacts of these implementation choices must be clearly expressed:

• encapsulating data instancesallows a strong grouping, easing test and integration with non
object oriented programming targets and with distributed development teams.

• non encapsulating data instancesleads to a grouping of common code to manipulate values

OBJECT STACKS is PASSIVE
DESCRIPTION

A simple integer stack as an abstract data type |--
IMPLEMENTATION_CONSTRAINTS

--| constraints |--
PROVIDED_INTERFACE

TYPES
T_Stack islimited private  ;

CONSTANTS
MAX_STACK_SIZE : constant := 100 ;

OPERATIONS
Push(Stack :in out T_Stack; Item :in  Integer) ;
Pop (Stack :in out T_Stack; Item :out Integer) ;

EXCEPTIONS
X_OverFlow ;
X_UnderFlow ;

INTERNALS
TYPES

Stack_Range isInteger range 1 .. MAX_STACK_SIZE;
Stack_Bodyis array ( Stack_Range) of Items;
T_Stack is record

Top  : Integer := 0;
Body : Stack_Body;

end record;
...



Copyright 1995 by HOOD User’s Group page 66

page -66
HOOD USER MANUAL 1.0  by HUM Working Group

of same type: it is an implementation of the object oriented class concept. This implemen-
tation is the preferred one especially when the target language is an object oriented one
like C++.
Since data instances (values of the type) are separated from the execution operation code,this
implementation must also be used each time the target is to be distributed across several
memory partitions, or is planned to evolve towards a distributed one.

When the type can furthermore be parameterized by other more primitive types, one can define
a HOOD class object (or GENERIC), whose instantiation will provide the final type.

2.1.1.3.a HADT Object encapsulating DATA INSTANCES

Figure 42 -  Graphical representation of object ADT_STACK
The description skeleton of a HOOD object implementing the abstract data type stack could be
the following:

Figure 43 -  Structure and ODS of HOOD object ADT_STACK encapsulating Data Instances
The declaration of a STACK object in the DATA field of a client ODS would then be the follow-
ing:
INTERNALS

DATA
STACK1: ADT_STACK.T_STACK; -- creates a STACK Identifier
--initialisation is done by calling ADT_STACK.CREATE(STACK1);
--all values of STACK1, will be located within the ADT_STACK memory_space.

ADT_STACK

PUSH
POP
STATUS

CREATE
DELETE

OBJECT ADT_STACK IS PASSIVE
DESCRIPTION

Implementation of an abstract Data Type STACK and provides all operations to manipulate values of that type,
creation included.

IMPLEMENTATION CONSTRAINTS
Dynamic heap memory is limited to 1 MB

PROVIDED_INTERFACE
TYPES

T_Statusis (BUSY, IDLE, UNDEFINED);-- definition of a type
T_STACK; -- the type structure is hidden to clients

OPERATIONS
CREATE (STACK:out T_STACK; Size :in integer); --constructor
PUSH (STACK:out T_STACK; Element: in T_Element);
POP(STACK:in T_STACK; Element:out T_Element);
STATUS (STACK:in T_STACK; Status:out T_Status);
DELETE (STACK:in T_STACK;); --destructor

EXCEPTIONS
X_OUT_OF_MEMORY;-- raised_by create when memory limits

REQUIRED_INTERFACE
OBJECT ADT_ELEMENT
TYPES
T_Element; -- ADT_STACK requires type T_Element, provided by the HADT object ADT_ELEMENT.

INTERNALS  -- hidden part of the object (not described here)
END_OBJECT ADT_STACK



Copyright 1995 by HOOD User’s Group page 67

page -67
HOOD USER MANUAL 1.0 HUM-1.0

Note: the implementation of HADT STACK groups both execution code and STACK values.

2.1.1.3.b HADT Object encapsulating no DATA INSTANCES

Figure 44 -  Graphical representation of object ADT_STACK
The description skeleton of a HOOD object implementing the abstract data type stack could be
the following:

Figure 45 -  Structure and ODS of object ADT_STACK

The declaration of a STACK object in the DATA field of a client ODS would then be the fol-
lowing:
INTERNALS

DATA
STACK1: ADT_STACK.T_STACK(200);
-- creates a STACK of 200 elements
-- STACK value will stored in the associated data structure within client’s memory space

.

Note: an implementation of the above ADT_STACK object groups common execution code all
type instances: it is an implementation of the object oriented class concept, grouping code and
class instances only, whereas object/data instances are declared in client module memory-space.

ADT_STACK

PUSH
POP
STATUS

OBJECT ADT_STACK IS PASSIVE
DESCRIPTION

Implementation of an abstract Data Type STACK and provides all operations to manipulate values of that type,
creation included.

IMPLEMENTATION CONSTRAINTS
Dynamic heap memory is limited to 1 MB

PROVIDED_INTERFACE
TYPES

T_Statusis (BUSY, IDLE, UNDEFINED);-- definition of a type
T_STACK; -- the type structure is hidden
is array (<>) of T_ELEMENT; -- or visible to clients

OPERATIONS
PUSH (STACK:out T_STACK; Element: in T_Element);
POP(STACK:in T_STACK; Element:out T_Element);
STATUS (STACK:in T_STACK; Status:out T_Status);
EXCEPTIONS

none;
REQUIRED_INTERFACE

OBJECT ADT_ELEMENT
TYPES
T_Element; -- requires type T_Element, provided by the HADT object ADT_ELEMENT.

INTERNALS  -- hidden part of the object (not described here)
END_OBJECT ADT_STACK



Copyright 1995 by HOOD User’s Group page 68

page -68
HOOD USER MANUAL 1.0  by HUM Working Group

2.1.1.4 Defining Logical Interfaces with ADT support

The use and definition of HADT object allows to define an object as the interface between two
others which exchange complex data.

Figure 46 -  Objects exchanging a complex data “Image”

The addition of this object can be made without any change in the object provided interface5 of
the two others, and thus is a technique of refinement of an initial HOOD model. Figure 47 -
below shows that the object ‘ADT_Image’ is the interface object associated to the exchanges of
image data between SYSTEM_1 and SYSTEM_2 objects
The object ‘ADT_Image’ can be defined as an implementation of an abstract data type “image”
and as environment object for the current hierarchy dealing with SYSTEM_1 and SYSTEM_2
objects.

Figure 47 -  interface_object “ADT image” associated to  data Image.

5.however changes have to be made in the Required Interfaces

SYSTEM_1 SYSTEM_2Image

Get (Image)

SYSTEM_1 SYSTEM_2

ADT_Image

Image

Image_Infos
Image_Infos

Read_image_infos

create

Update_image_infos

Get (Image)

ImageImage



Copyright 1995 by HOOD User’s Group page 69

page -69
HOOD USER MANUAL 1.0 HUM-1.0

2.1.1.5 ADT Refinement Techniques

Associating additional HADT objects to formalize the exchange of data between two ob-
jects of initial model is thus a technique of refinement, leaving the initial model invariant
from the point of view of its provided interfaces. Thus :

• logical initial architectural models can be expressed, and refined according to specific
project and target constraints,

• formal definition of interfaces can be achieved at a high level of abstraction.

Furthermore, the intensive use of this refinement technique allows to serialize the problems at-
tached to an implementation. Separate descriptions can be attached to different level of abstrac-
tions, and the definition of libraries of reusable objects (defining a high level abstract interface
and different implementations for different targets) is supported.

2.1.1.6 Deriving HADT objects from DataFlows

Figure 48 - Figure 49 -and  illustrate how a complex data (message) may be defined as a data
instance of an abstract data type. The associated type MESSAGE is either:

• provided by the BUFFER object or

• provided by one of its brother object. However such a solution would introduced additional
visibility relationships, achieving a less structured and maintainable code.

• provided by another HOOD environment object.

• provided by a HADT object defined as an object of the current hierarchy

• provided by a HADT object defined as an environment HADT, fully reusable from other hi-
erarchies and/or designs.

Figure 48 -  Objects of initial HOOD model exchanging a complex data “Message”

It is clear following software engineering principles that we shall favour the last HADT object
solution that defines a reusable module of high logical cohesion dealing only with message han-
dling operations/code (see Figure 50 -).

Start
Stop

Put
Get

BUFFER

Message
Message

C1

Start
Stop

ASER By Unix_Shell

LSER By P1

P1

Start
Stop



Copyright 1995 by HOOD User’s Group page 70

page -70
HOOD USER MANUAL 1.0  by HUM Working Group

Figure 49 -  HADT object ADT_MESSAGE   providing a MESSAGE class

Figure 50 -  ADT object ADT_MESSAGE providing a MESSAGE class

ADT_Message

Create
Build

Extract
Op1

.• • •

MessageInfos

P1 C1

Start
Stop

Start
Stop

Start
Stop

Put
Get

BUFFER

Message

Message

ASER By Unix_Shell

LSER By P1

Message

PARENT

Infos

ADT_Message

Infos

ADT_Message

Message
Infos

P1 C1
Start
Stop

Start
Stop

Start
Stop
Put
Get

BUFFER

Message

Message

ASER By Unix_Shell

Lser By P1

Message

PARENT



Copyright 1995 by HOOD User’s Group page 71

page -71
HOOD USER MANUAL 1.0 HUM-1.0

2.1.2 THE HOOD DESIGN PROCESS AS SEVEN DESIGN RULES

The HOOD decomposition approach may eventually be summarized into seven design rules,
where the system to design is first represented as an object related to its environment, and then
broken down into objects according to three refinement lines as represented in Figure 51 -
below :

Figure 51 -  HOOD Method of decomposition and refinement6

• modular decomposition line: this refinement line tries to find a modular structure in terms
of object/component exchanging data. For each level of parent/child decomposition, one ap-
plies standard decomposition criteria based on allocation of functions to objects and that de-
fine loosely coupled objects, with minimised provided interfaces.

• abstract data type refinement line: this refinement line tries to specify groupings of data ma-
nipulation operations, into associated HADT supporting objects. Each dataflow identified in
previous line can be implemented as an instance of an abstract data type (or a basic type of
the target language). The operations on the data are identified as the client objects are further
refined, thus this refinement is performed in parallel with the modular refinement. When an
HADT object provided interface is fully defined, it can, in turn, be designed following a
modular decomposition refinement and ADT refinement.

• logical to physical refinement line: this refinement line is not really a refinement, but rather
a “restructuring” of the logical objects into “groupings of objects” that fit and map into target
constraints. It corresponds to the distribution phase identified described in section 1.3.5
above. For example, a grouping of the logical objects is needed when the target system is

6.this figure shows the process for the decomposition of one root object, but for large projects, this process may be performed in
parallel on several root objects.

REFINEMENT of DATA throug h

MODULAR

ADT_Message

Infos

ADT_MessageE

Message

Infos

P1
Start
Stop

Message

ASER By
Unix_Shell

LSER By P1

Message

PARENT

ADT_Infos
ADT_DataREFINEM

ENT C1

Start
Stop
Put
Get

BUFFER

P1

P1

ORACLEE

REFINEMENT

OF LOGICAL M
ODEL

Abstract Data Type Definition



Copyright 1995 by HOOD User’s Group page 72

page -72
HOOD USER MANUAL 1.0  by HUM Working Group

distributed over two processors (or heavyweight processes/tasks[3]). In order to avoid net-
work communication bottlenecks, objects will be allocated to one or the other processor ac-
cording to the functions they support, and at the same time trying to avoid heavy remote
induced dataflow. This grouping can be formally stated through the definition of a physical
model in terms of HOOD virtual nodes, matching the target processors, and then allocating
objects from the logical model to these VNS. Hence the designer gains advantages of auto-
mated code generation, that have as principle not to modify the logical code of allocated ob-
jects.

According to the principles summarised above, on can identifyseven rules to find the objects,
which are as follows :

a Start defining the system-to-design as aninterface (set of provided and required services)
to its environment (possibly modelled as a partition of environment objects).

b Define the key objects abstracting invariants of the system. Such definition may be done ac-
cording to :

c functions allocated to the child objects of the system-to-design

d identification of associated dataflows between these objects (note that dataflows are related
to allocated functions)

e Define the implementation of the communication and dataflowsbetween these objects
and environment objects.

f For each data previously identified, define associated abstract data type as HADT ob-
jects (unless the data can be directly defined as an instance of a type of the target language).
It may happen, that operations that manipulate the data of the type are still vague (create, de-
lete, update), but this is not a problem at this stage. When the refinement of objects identified
in steps 2) and 3) is performed, new operations on the data will be found, and the provided

interface of the HADT object will then be updated in parallel.7.

g Resume the refinement of objects identified in 2) and 3) following the same principles un-
til they can be directly coded, and always trying to identify as much HADT objects as possi-
ble.

h Refine each HADT object(unless it is already terminal), by applying step 2) and 3) and
again identify new objects exchanging data, and possibly new HADT ones.

i Document  target language ODS fields, or resume HADT refinement using the specifics of
the target language

Since HADT objects can be directly implemented or refined into OOP target languages (see sec-
tion 2.12 below for details), the HOOD development approach allows thus to combine both a de-
sign representation target towards flat type structure and object oriented class structure. Whereas
several methods for identification of classes are based on analysis techniques that were mainly
derived from the Entity-Relationship model extended with inheritance, the HOOD design ap-
proach leads naturally to the identification of classes from the definition of logical interfaces and
applicative abstract data types. The resulting structure reflects the top down design trade off par-
tition of the software, rather than a bottom up approach derived from implementation data struc-
tures.
Taking into account both the natural client-server relationship between objects and classes, or-
thogonal to the composition relationships, this approach proves to be a powerful structuring tool.

7. Note that the refinement takes place on several hierarchies at the same time! This is one of the most noticeable

new feature of HOOD3.1 over the earlier definition HOOD3.0.



Copyright 1995 by HOOD User’s Group page 73

page -73
HOOD USER MANUAL 1.0 HUM-1.0

It appears today for us, as the only viable integration support for both modular and full object
oriented approaches Furthermore, by integrating both abstract data typing and process concepts
HOOD3.1 is the software engineering tool of choice, supporting the transition from classical de-
velopment practice into full object oriented one.

2.1.3 OTHER GUIDELINES FOR IDENTIFYING OBJECTS

Abstraction techniques are the basics for defining objects; however as designer’s experience
goes larger, other design patterns can be used for the early definition of a system architecture:
the top-level architecture is defined as a partition of HOOD objects which may abstract:

• a layered architecture model, possibly hierarchically structured or

• technological development criteria.

Furthermore, the refinement of the top-levels components are constrained by mapping into com-
munication and implementation models.

2.1.3.1 Structuring based on layered models

Every software can be seen as an implementation of a layered model in which the application
part are on the upper levels, whereas general purpose services and execution infrastructure serv-
ices (OS services, communication services) are located at the lower level of the model.

Figure 52 -  Typical Layered Model of a on board Application

2.1.3.2 Structuring based on Technological Components

HOOD modular decomposition principles may simultaneously be used to find a modular struc-
ture in terms of components exchanging data. These components should be first identified ac-
cording to the technology with which they are developed. For each level of parent/child
decomposition, one applies decomposition criteria based either on allocation of functions to
HOOD top-level objects or on component developed using a specific technology. Thus loosely
coupled modules, with minimised provided interfaces may be defined and interfaces between
the different development technologies will be highlighted.

APPLICATION LAYER

GENERAL SERVICES LAYER

TARGET SYSTEM
SERVICES  LAYER

THERMAL AOCS PAYLOAD

TIME TM TC

OBDH



Copyright 1995 by HOOD User’s Group page 74

page -74
HOOD USER MANUAL 1.0  by HUM Working Group

The partitioning of a software can thus be made according to development and technological cri-
teria. As a result a general architecture model of information systems can be defined at the top-
level comprising:

• a dedicated application part

• an MMI (Man Machine Interface)  part

• a DataBase or Storage interface part

• possibly a rule system interface part

Figure 53 - gives an example of a technology component decomposition defined for a large in-
formation system.

Figure 53 -  Typical System Information Model partitioned through Technological Components

Four objects are associated to four development lines and partition the system into technology
component objects that exchange data. The latter are again described through HADT objects rep-
resented as uncle objects and where:

• the access interface to a datum (with all services provided to its clients) is formalised by the

Applis_data

OtherSystem

ASER_by_IT UNIX_shell

INFORMATION _SYSTEM

Start
{Operator_Ops}

Start
{Put_Ops}
{Get_Ops}
{Mngt_Ops}

Start
{Put_Ops}
{Get_Ops}
{Mngt_Ops}}

Start
{Put_Ops}
{Get_Ops}
{Mngt_Ops}

X_init_data

Sgbd_items

Applis_data

Sql_data

Knowledge_data

DBMS_Items

Knowledge_Items

I_DBMS

MMI

I_ESG

APPLICATION

X_LIBRARIES

Applis_dataKnowledge_data DBMS_Items DBMS

Start



Copyright 1995 by HOOD User’s Group page 75

page -75
HOOD USER MANUAL 1.0 HUM-1.0

set of operations that manipulated the associated type(creation, update of a sub field, read,
delete, checks, etc....) in a HADT object,

• further refinement of those HADT may produce objects/classes, HADTs of less complexity
up to terminal specification directly rewritable in a target (possibly OO) language, is based
on the graphical extension and refinement rules(see below).

2.1.3.3 Structuring and Refinement

Once a top-level decomposition has been chosen, it is also necessary, for the architecture to be
detailed efficiently, to have a technique for refining the associated interfaces. By refining the in-
terfaces according to standard communication and implementation models, the designer can
achieve:

• the definition of reusable components with well established interfaces,

• the definition of generic architecture,

• the definition of application domain specific frameworks, possibly evolving towards stand-
ard ones.

The interfaces between the different subsystems or software layers associated to the develop-
ment activity lines can moreover be formalised as HADT objects that factor the exchanged data
and provide for a common representation whatever the activity and technology context.

The above concepts have been synthesized after feedback and trials on numerous projects, built
into principles and refinement techniques for integrating multiple technology developments.
These principles must be applied all together within a development and list as:

• Modular and ADT Refinement Principles

• Technology Component Architecture Principles

• General Refinement Approach for Complex Systems

2.1.3.4 Modular and ADT Refinement Principles

Break down rules associated to the HOOD include relationship have as principle to hold the
properties of the parent object with the ones of the child objects.Figure 54 - illustrate this mod-
ular refinement technique of a given parent object into child objects that exchange data.

2.1.3.4.a ADTs Identification and Interface Refinement

Once components and their data exchanges have been defined at one level, their interfaces can
be formally expressed through ADTs (seeFigure 55 -):

• operations of OBJECTS have parameters that implement dataflows

• dataflows may be seen as “ADT or instances”. Hence associated HADT define the data-
flows.



Copyright 1995 by HOOD User’s Group page 76

page -76
HOOD USER MANUAL 1.0  by HUM Working Group

Figure 54 - Modular and ADT Refinement

.

Figure 55 - Principle of specifying Interfaces through ADTs

Each dataflow identified in the decomposition may thus itself be implemented:

• either as an instance of a primitive type directly supported in the target language, or

• as an instance of an ADT (or a basic type of the target language). The operations on the data
are identified as the client objects are further refined, in parallel with the modular refinement.
When an ADT provided interface is fully defined, it can, in turn, be refined following a mod-
ular decomposition and/or be directly coded in a target language class. Figure 54 - below
summarizes these principles.

ADT_Infos
ADT_Data

Refinementt

P1
Start
Stop

Message

Aser By Unix_Shell

Lser By P1

Producer_Consumers

C1

Start
Stop
Put
Get

BUFFER

P1

P1Aser By Unix_Shell

Modular
Refinement

Start
Stop

Message

through ADTs

Data

TData

{TData_ops}
Obj_A

Obj_B



Copyright 1995 by HOOD User’s Group page 77

page -77
HOOD USER MANUAL 1.0 HUM-1.0

An ADT implementation is defined as an encapsulation in a HOOD object of operation working

on data of that type8. For best identification of the type on which the operation works, the receiv-
er of the operation is indicated by the reserver parameterme, allowing to distinguish the main
type from other parameters.
The difference between an ADT implementation and a target language class are the following:

• an ADT implementation is not necessarily terminal and may be easily broken down into
child object, possibly defining as many sub ADTs

• a class may inherit from another, or may be inherited, what is not the case of ADT imple-
mentations.

• a target language class is defined as a HOOD type. However a class may be refined by de-
fining/adding attributes, or by extending existing properties through inheritance. A class al-
lows thus, complex data structures to be defined step-wise, leaving possibly provided
interface frozen.

Figure 56 - Combining Modular with ADT Refinement

8.we mean the ADT

ADT_Infos
ADT_Data

P1
Start
Stop

Message

Aser By Unix_Shell

Lser By P1

Producer_Consumers

C1

Start
Stop
Put
Get

BUFFER

P1

P1Aser By Unix_Shell

Modular
Refinement

Start
Stop

Message

Refinement through
TYPES and ADTS

Class



Copyright 1995 by HOOD User’s Group page 78

page -78
HOOD USER MANUAL 1.0  by HUM Working Group

2.1.3.4.b Target Language Class Refinement through Attribution and Inheritance

In the detailed design or coding of HOOD object implementing an HADT three cases may show
up:

• either the HADT is a complex type, which operations are groupings of operations on «sub»
types, and which can thus be broken down in as many HADT objects.

• either a subset of these operations lead directly to a target language class identification

• either all provided operations of the HADT lead to a target language class definition

When a target language class is so identified, it is only defined as a HOOD type and through its
provided operations, and when the detail design is performed the designer may:

• use attribution for defining properties and data structures common for all instances of the
class

• use inheritance in order to factor attribute and operations declaration while sharing the asso-
ciated code with the inherited class.

2.1.3.4.c Implementation Refinement

This kind of refinement is as the modular refinement; we stress it here only to recall that the de-
signer may elaborate a logical solution that relies on software layers that isolate the system-to-
design from the specificities of the target infrastructure and OS. This kind of refinement is illus-
trated inFigure 57 -, is one way to take into account the non-functional constraints such as:

• reuse of software architecture or components elaborated project by project in a given appli-
cation domain.

• development with unclear requirement, or where full target requirement are not yet fixed at
the time of the design.



Copyright 1995 by HOOD User’s Group page 79

page -79
HOOD USER MANUAL 1.0 HUM-1.0

Figure 57 - Refinement Techniques of a HOOD model

Refinement
Implementation

ADT_Infos
ADT_Data

P1
Start
Stop

Message

Aser By Unix_Shell

Lser By P1

Producer_Consumers

C1

Start
Stop
Put
Get

BUFFER

P1

P1Aser By Unix_Shell

Modular
Refinement

Start

Stop

Message

Refinement through
TYPES and ADTS

ORACLE

ORACLE
UNIX_BIOS

E



Copyright 1995 by HOOD User’s Group page 80

page -80
HOOD USER MANUAL 1.0  by HUM Working Group

2.2 THE HOOD DESIGN DOCUMENTATION

In the following we give a description ofthe design documentationsuitable for describing and
checking HOOD designs. Be aware that this is a design documentation description, not to be con-
fused with a project documentationwhich may need additional documentation items depending
on the used documentation standard.

2.2.1 OBJECTIVES

The HOOD design documentation shall favour communication and explication of a solution
within a development team. Thus it shall describe the software at different levels of details and
abstraction. Also it shall allow QA teams to check that both HOOD approach and description
standards have been enforced during a development.

2.2.2 DOCUMENTATION CONCEPTS

HOOD models are represented through a data model where the ODS is the main structuring con-
cept.
 The ODS (Object Description Skeleton) is a standard grouping of the object’s characteristics
organised in structured fields. Informal textual descriptions are defined (Description, Interfaces,
Types, Data, Exceptions and Control Structures as well as associated semi formal descriptions
(Operations, Types, Exceptions, Data, Code of OBCS and OPCS).
Note that the ODS is a logical concept; a physical representation of an ODS is a piece of text
grouping the contents of the fields of an ODS into a human readable form. This latter may take
different layouts according to the documentation features of the HOOD toolsets and the purpose
of the documentation.The associated notations and formalisms can in fact be used for:

• informal verification (through author-reader cycles) of textual descriptions

• design verification (designs checks, pseudo-code)

• code generation for prototyping

• code generation for final products.

The SIF (StandardInterchangeFormat) is defined for design exchanges with other HOOD tool-
sets or development tools. It defines formally the layout in ASCII format of files containing ODS
representation in ASCII TEXTs. Hence a SIF representation of an ODS is a valid one, but may
not be a very readable document.

2.2.3 DOCUMENTATION MANAGEMENT

The HOOD documentation shall be structured as sets of ODSs, where all or part of the ODS
fields are present, depending on the type of document that is produced. For example a design doc-
umentation for an architectural document shall group together a set of ODSs, with text sections
associated to the basic design step activities included in the DESCRIPTION field of the ODS of
the OBJECTS under review. We recommend to structure parent ODS with their DESCRIPTION
field structured into H1,H2,and H3 text sections. H3 is a text comprising the textual description
of child objects and operations, that can also be taken again as the H1 texts of the ODS associated
to the child objects.



Copyright 1995 by HOOD User’s Group page 81

page -81
HOOD USER MANUAL 1.0 HUM-1.0

A HOOD documentation defines accordingly as:

• a set of ODS, each being unique in the documentation

• a structure that follows:

- the spaces defined by the object, class and VN hierarchies

- the parent-child hierarchical relationship

Figure 58 -   Relationships between parent and child ODS description sections

2.2.4 DOCUMENTATION ELABORATION

Three states may be distinguished in the ODS life-cycle (see figure below):

• ODS CHILD:  only ODS fields associated to the interface or user manual are documented.

• ODS PARENT: all fields of the ODS are completed. Internal parts only have description of
the “implemented_by” relationship between provided resources of the parent and the asso-
ciated ones of child objects.

• ODS TERMINAL : all fields of the ODS are completed and refined in details, especially the
fields of the internals that hold the pseudo code and code parts.

Figure 59 -  States in the ODS production life cycle

description Object
CHILD1

ODS Parent
DESCRIPTION

Section H1
Section H2
Section H3

description Object
CHILD2

ODS CHILD1 ODSCHILD2 ODS CHILD3

DESCRIPTION DESCRIPTION DESCRIPTION

Section H1 Section H1 Section H1

Parent
 ODS

STATE

STATE
(specifications
externals
defined)

Design step

design step

STATE
TERMINAL

CODE

UNITS

DETAILED
DESIGN
REFINEMENTS

Code Generation

Code Generation

Design Step
Verification

STEP VERIFICATION STEP VALIDATION

Detailed
Design
Verification

 CHILD

 PARENT



Copyright 1995 by HOOD User’s Group page 82

page -82
HOOD USER MANUAL 1.0  by HUM Working Group

2.3 EVALUATING A HOOD DESIGN

When the design activities have produced HOOD designs, (taking shape with associated docu-
mentation), verification activities shall take place toensure that “the design has been pro-
duced right”  (and hence is possibly the right design). Those verification activities have been to
our experience, the most troublesome issues so far in the HOOD projects. This is because the
HOOD design representation may cover several models, several objects, several system config-
uration, and are possibly constrained to be materialised in enormous linear paper documentation
mixing several textual and graphical formalisms.
In the following, we suggest a representation of the HOOD development process as a set of states,
where the transition from one state to another is triggered after a verification step.

2.3.1 DEFINITIONS

2.3.1.1 Goal of HOOD design verification

Verification activities take place after design activities and have both technical and organisation-
al goals:

• technical goals

- A HOOD design is a representation of a SYSTEM_TO_DESIGN which starts with a de-
scription of a PARENT “root” object with respect to its Environment and is refined into
successive descriptions of child objects. In order to ensure consistency of these successive
representations up to the detailed design architecture definitions, HOOD defines rules and
additional verification procedures may be ensured within each object's scope for each par-
ent-child decomposition step, and from step to step up to terminal objects are reached.

- Consistency of a HOOD model has to be checked throughout the HOOD process. HOOD
recommends reviews at the end of a basic design step, as well as at the end of a level (i.e;
when all branches of a tree have been decomposed).

- Moreover, when a HOOD model is produced, feasibility of the target implementation may
to be checked, traceability to requirements should be ensured and the overall quality of the
model should be estimated.

• organisational goals

- The work progress must be evaluated in order to help management of a project. The end
of design activities (through documentation delivery and/or reviews) at the end of notice-
able basic design steps provide candidate milestones for work progress evaluation

- We shall not take into account here other QA activities here. This is because QA activities’
goal is to verify that technical activities have been correctly executed. Depending on
projects (where QA procedures are defined and adapted in a QA plan), QA defines proce-
dure that constraint technical verification activities to produce traces of their activity (doc-
umentation, verification reports, tests results, etc).And QA procedures check activity by
examining these traces.



Copyright 1995 by HOOD User’s Group page 83

page -83
HOOD USER MANUAL 1.0 HUM-1.0

2.3.1.2 Means for HOOD design verification

Products associated to the design process and activities are of two kinds:

• formal documentation (graphical notations, and/or textual ones that compilable or executa-
ble: Ada, Petri nets, Finite State Automata, Esterel etc.)

• informal documentation (texts in natural language)

Evaluation techniques of these products are of two kinds: static verification and dynamic verifi-
cations, but are mainly informal techniques, and consists in the following activities:

• inspections (sampling of product or documentation pieces and evaluation with respect to
qualitative criteria)

• walk-throughs (assessment of technical contents with error underpinning),

• reader-writer cycles9 (formal checking of documentation against qualitative and technical
criteria with configuration management of errors, remarks, and modifications)

• reviews (checking of product submitted to review with respect to qualitative and technical
criteria).

• Automatic or semi-automatic checking can added to these manual means:

• use of design checkers and cross-reference tables that are part of most HOOD toolsets,

• compilation (syntactic checking) and/or execution of fields expressed with a formal nota-
tion.

Design validation and verification procedures in HOOD will be based on the separation, in
time, of the descriptions of first an external description of an object and then the description of
its implementation. Step verification and validation, ensuring consistency of one object decom-
position, at the end of a basic design step, is distinguished from level validation ensuring con-
sistency of a complete level decomposition(i.e. several objects together).

2.3.2 DOCUMENTATION FOR VERIFICATION AND REVIEWS

Documents for reviews may be buildby extracting information and texts from ODSs of con-
cern associated to the model under evaluation at a given date or for a visible point in the project.
Some HOOD toolsets allow to build document templates and associated outputs may be pro-
duced in PostScript and/or MIF, RTF formats and so, fed in text-processing systems for produc-
tion of quality documentation according to project documentation standards.(ESA or DOD2167)
Documents for specific development activities (Quality control, Unit test Definition, Pseudo
code reviews, code reviews,...) may be directly build with a HOOD toolset provided it allows to
select relevant ODS and relevant fields for inclusion in a given document.

2.3.2.1 Preliminary Design and Detailed Design Documents

Preliminary design document will only include ODSs in state “PARENT” and “CHILD”.
Detailed design documentation will at least comprise the set of ODS that went from state
“CHILD” to state “TERMINAL”. In order to simplify documentation management detailed de-

9.



Copyright 1995 by HOOD User’s Group page 84

page -84
HOOD USER MANUAL 1.0  by HUM Working Group

sign documents may also be defined as preliminary design documents where all ODS of state
CHILD” have been replaced by ODS in state “TERMINAL”.

2.3.2.2 Documentation for Verifications

Every document taken as input of a development activity should be in a significant state, i.e. con-
tain only the required information for the activity to be conducted. Also the document should be
consistent, that is information pieces contained shall be in consistent state one with each other.

• Documents for checking ODS consistency. If the object was decomposed, the check will
look for consistency between parent descriptions and child implementations. Information
items needed are:

- For a non refined object:

its ODS in state “CHILD”

- For a refined object:

its ODS in state “CHILD”.

its ODS in state “PARENT” if it was decomposed into child objects, otherwise its ODS in
state “TERMINAL”

- The contents of an ODS in state “CHILD” is given in appendix A4.1

- The contents of an ODS in state “PARENT” is given in appendix A4.2

- The contents of an ODS in state “TERMINAL” is given in appendix A4.3

• Documents for Design Step Checking. The goal here is to check consistency between the
child and parent descriptions of the decomposed object and between the parent descriptions
and child implementations. Thus the information items needed are:

- the two ODSs associated to the PARENT, i.e. the ODS in state “CHILD” and the same
ODS in state “PARENT”

- the ODSs in state “CHILD” of the child objects.

- If the verification addresses a set of N basic design steps, then a set of N such documents
would be reviewed.

• Documents for REVIEWS The goal here is for reviewers to gain an understanding of the
architecture, so that they are confident in the progress of the technical work. Thus the doc-
umentation should target the understanding of the system and provide support for the
checking of the object interfaces. (the level of confidence achieved after the review is such
that these are FROZEN and put under change control). Such a documentation may contain:

- the description of the system_configuration of concern

- for each system_configuration hierarchy:

- the description of the design tree

- for each object of the hierarchy

Problem definition (section H1.1)

graphical description of its environment (extracted from section H1.2.2 if the current ob-
ject is a root, otherwise from H3.4 of the parent of the current object)

decomposition into child objects and the textual description of how it works, if the current
object is non terminal (extracted from sections H2, H3.1, H3.2, H3.4 et H3.5)

its PROVIDED INTERFACE (extracted from ODS)



Copyright 1995 by HOOD User’s Group page 85

page -85
HOOD USER MANUAL 1.0 HUM-1.0

its input and outputs (DATAFLOWS et EXCEPTION_FLOWS extracted from ODS)

description of its dynamical behaviour (extracted from ODS OBCS fields).

- verification reports upon the design steps.

2.3.2.3 Summary on Documentation and Reviews

Figure 60 -   Design Step activities and associated documentation section

Figure 60 - above summarizes the activities of a basic design step and illustrates the associated
documentation sections to be produced and checked. We thing that the important things to recall
and to enforce (by quality assurance) are:

• good performance of the H1 activities,which allows then to a designer to both integrate
the requirements and to outline associated solutions (or parts of) strategies in its mind.

Note that the elaboration of H2 and H3 sections are not sequential activities, even if associ-
ated documentation sections are always presented as sequential ones. The description of a
solution strategy can be produced in parallel and/or after an elaboration of a graphical out-
line, and vice-versa. The refinement of textual descriptions of operations and/or objects in
section H3 allows to gain a better understanding of the solution, and hence and refinement
of the earlier solution strategy produced as H2.

• the central importance of an author-reader cycle at the end of H3 activities.At that
time, a textual and graphical description of the solution is available in a form that is
understandable by all project members.

• Experience on earlier HOOD projects has shown that author-reader cycles on more formal-
ized notations was almost useless, and thatshort author-reader cycles are mandatory, with

DEFINITION of Problem
 Design Requirement
Analysis

ELABORATION of
a SOLUTION
STRATEGY

FORMALISATION of
SOLUTION

Textual Description of Requirements
Functional model (SADT,DFD)
Behavioural model (STD, Petri-nets)
Structural model (E_A, MCDs)

textual Solution
Strategy

Textual Description
of OBJECTS
of OPERATIONS

HOOD DIAGRAM

•ODS PARENT
•ODSs Enfants

H1 text

H2 text

H3 text

Activity OutputsBasic Design Step Activities

READINGS,
Reviews, by
readers

FORMALISATION of
STRATEGY

ODSs



Copyright 1995 by HOOD User’s Group page 86

page -86
HOOD USER MANUAL 1.0  by HUM Working Group

a low volume of information to be checked10. The end of H3 is the ideal time11 for a effi-
cient reading of the solution.(later it will often be too late to impose changes in the solution)

• Moreover, the next phase of formalisation of the remaining fields of ODS is a work that will

require much more efforts, and which can only be checked by motivated people12 which are
specialized ones in the notations used (Ada, C, STDs, or C++)

• the importance of the understandibility of the texts produced in sections H2 and H3.Ex-
perience has shown a bad tendency for HOOD designers to produce cryptic H2 and/or H3
descriptions. (often because they do no really see why they have to produce these text sec-
tions, because they always think the important thing is the code.). We take her the opportu-
nity to recall that:

- “good design is something that reads clearly13”

- most of these texts may be extractedto setup a design documentfor a formal project
REVIEW , where people from different application areas may participate. In that case,
thesedescriptions in section Hi are primary elements for quality and complexity mas-
tering assessmentof the system under design.

2.3.3 DESIGN STEP VALIDATION

Verification is primarily fulfilled by informal quality assurance techniques such as inspections,
walk-throughs and reviews over HOOD documentation produced during a basic design step.
Since HOOD allows a designer to produce informal textual descriptions in natural language to-
gether with semi formal graphical descriptions, these can be easily reviewed through walk-
throughs author-reader cycles. Experience has shown that those informal parts of design descrip-
tions can be successfully reviewed before the formalisation into HOOD ODS and Ada_PDL be-
gins. ODS formalised descriptions are very difficult to review by human readers and must be
verified by specialized people with the help of design checking tools. Hence the verification
process onto HOOD designs must be carefully planned and must be performed all along the de-
sign process.

At the end of a basic design step, design evaluation and design metrics computation can be ap-
plied for evaluation of a design solution with respect to alternative ones (see [KAFURA] fan-in
and fan-out concepts, applied to the object model). Consistency checks can be performed with
the support of tools, ensuring verifiable transformations to the target language and allowing early
execution and testing of the solution model corresponding to a given parent. Within an Ada en-
vironment early verifications of interfaces is possible, especially parent-child signatures checks
can be performed, and the mappings of requirement behavioural models into object control struc-
ture descriptions can be traced.

10.otherwise, it is sure that reader will not have enough time to integrate the information and hence will not do an efficient job.
11.Author-reader cycles on H2 may help a designer, but are globally less efficient (because reader are involved in the elaboration
process). However the H2 section may be checked by all design team leaders (of a distributed team project) for the first top-level
decomposition.
12.for instance, people which will have to elaborate tests plans...
13.When a design is expressed textually in a clear, readable form by the designer, it often means a well mastered solution. cryptic,
non understandable texts shows complicated, non mastered solution in the mind of the designer.



Copyright 1995 by HOOD User’s Group page 87

page -87
HOOD USER MANUAL 1.0 HUM-1.0

2.3.4 DESIGN PROTOTYPING

Design prototyping can be performed at the end of a basic design step by producing executable
models of children, on behalf of their OBCS descriptions. By comparing the behaviour of the
parent upper-level prototype with the resulting one of current design step, and when applying
the same test cases, one can validate the current parent-child decomposition.

2.3.5 LEVEL VALIDATION

When all validation step of a given level have been performed, level validation may be per-
formed in order to check the consistency over several basic design steps together. This allows
early identification of possible common objects in different branches of the design process tree.
The definition of a design prototype by implementing each current terminal objects allows on
another hand, to set up a test and pre-integration environment for each object with respect to its
brothers

2.3.6 DESIGN VERIFICATION IN THE DEVELOPMENT

The above validation procedures enableefficient distribution of the design and development
since:

• The scope of a given design step is limited to its nearest levels of decomposition according
to the parent-child relationships. Each design steps produces specifications of objects which
define as much new problems, and can possibly be validated by prototyping against either a
behavioural requirement model and/or together with their brother's ones against their parent
behavioural model.

• Level validation prototype can be reused as test and pre-integration environment for
all the objects of a same level, i.e for all brothers of a same parent.

Production of validated specifications of both the objects and their test environment (i.e.the
brothers prototypes) allows to subcontract their design and development to other teams.



Copyright 1995 by HOOD User’s Group page 88

page -88
HOOD USER MANUAL 1.0  by HUM Working Group

2.4 REAL TIME

2.4.1 DEVELOPMENT APPROACHES

The classical development approach for Real-Time Systems (RTS) considers theprocess as the
unit of modularity . HOOD on the contrary considers the object (a grouping of services executed
by processes) as the unit of modularity! What are then the possible HOOD approaches when
faced with a development involving real Time constraints?

• CURRENT APPROACH

• The current approach models processes as HOOD objects and expresses classically a design
as a set of HOOD objects/processes which interact through OS communication and synchro-
nisation mechanisms. Figure 61 - below gives an example of a HOOD object modelling a real
time process.

Figure 61 -  Representations of tasks with HOOD

• ADVANCED APPROACH

• This approach tries to reconcile the structuring approach in terms of objects with the struc-
turing approach in terms of processes, by considering a system as a structured set ofheavy-
weightandlightweight processes, as suggested in [Ada9X and Mull90].

- Lightweight processes (threads in some targets see last revision of UNIX V) are imple-
mentations of logical processes that execute HOOD operations. Thus these processes are
used to implement light synchronization to access data, mutual exclusion or monitors.
Lightweight processes execute all in a same memory partition.

- Heavyweight processesare OS processes, that define a virtual machine, and can be seen
as defining a memory partition.with hardware protection on its boundaries (memory trap,
violation, or remote machines). Interrupt driven tasks are also heavyweight processes be-
cause their scheduling is constrained by real-time constraints.

• The granularity of heavyweight processes will be the concern of real-time architects and can
be supported efficiently by the concept of HOOD VNs. Hence the HOOD development ap-
proach for RTS should follow closely the phased approach recommended for complex sys-
tems with:

- logical definition and refinement phaseelaborating a logical solution (non partitioned) as
described above.

- allocation phase where Virtual Nodes are defined as grouping of objects by allocation de-
fining potential memory partitions[7]. The allocation process starts by defining a possible

PROC2

start
ASER_BY_IT OPCS_start

loop
[make the calculation]
sleep 0.01;
-- call to an OS service --

end loop
end_start;



Copyright 1995 by HOOD User’s Group page 89

page -89
HOOD USER MANUAL 1.0 HUM-1.0

target architecture of the RTS as a network of VNs.:

- either by modelling the physical architecture when processes/threads are numerous and
must be abstracted into less heavyweight ones according to the potential power of the
target (e.g. max =127 process schedulable, but only 40 allowed in order to reduce
scheduling load)

- either as a model of a planned architecture, if not yet defined (or available since feasi-
bility studies are still in progress) at that stage of the project,

- or as a representation of the (heavyweight) processes, or partitions [7] if the hardware
architecture was already frozen.This representation takes into, account efficiency re-
quirements such as high acquisition rate processes, computing time, asynchronous be-
haviours (MMI, DBMS, CENTRAL PROCESSS), high priority tasks, interfaces to
existing systems, interrupt-driven processes, etc.

- configuration phasewhere grouping and restructuring of VNs is done for allocating them
the chosen configuration of heavyweight processes

2.4.2 CURRENT DEVELOPMENT APPROACHES

2.4.2.1 Representing Common Real Time Mechanisms

Representing real time mechanisms was often a problem, since these mechanisms are not explic-
it in Ada, and are generally used as services provides by real time libraries. In order to have an
homogeneous representation of these mechanisms, whatever the target features, we recommend
to model them through HADT objects. These latter define a logical interface invariant from one
target to another, and from one project to another. Moreover these interfaces may directly map
those provided by standard executive service packages such as EXTRA or CIFO proposals.

2.4.2.1.a Tasks and Cyclic task

A task is an implementation of anabstract process typeproviding start, stop, create and delete
operations. Cyclic task may be represented through:

• either by a “ASER_BY_IT cycle duration” triggering the main activity operation

• either through a looping code that suspends itself on a timer

Figure 62 -  Representations of cyclic tasks;

PROC_1

compute
ASER_BY_IT 10 ms

OPCS_compute

[make the calculation]
end_compute;

PROC2

start
ASER_BY_IT

OPCS_start

loop
[make the calculation]
sleep 0.01;
-- call to an OS service --

end loop
end_start;



Copyright 1995 by HOOD User’s Group page 90

page -90
HOOD USER MANUAL 1.0  by HUM Working Group

2.4.2.1.b Semaphores

A semaphore will be represented as an environment HADT object providing the operations to
create, delete a semaphore, and to take a resource (P) or release a resource (V)

Figure 63 -  Representation of semaphores

2.4.2.1.c MAIL BOXES

A mail box will be represented as an environment HADT object providing the operations to cre-
ate, delete a mail box, and to take a message (GET) or put one (PUT).

Figure 64 -  Representation of mail boxes

2.4.2.1.d SHARED DATA

A shared data will be represented as an environment HADT object providing the operations to
create, delete a shared area, and to write (WRITE) or read information from that area (READ).

Figure 65 -  Representation of shared areas

SYSTEM_TO_DESIGN
Object ADT_SEM is

provided_interface

Type T_Sem is private
Create return T_Sem;
Delete (S: T_Sem);
P (S: T_Sem);
V (S: T_Sem);

................

E ADT_SEM

SYSTEM_TO_DESIGN

E ADT_MLBX

Object ADT_SEM is
provided_interface

Type T_MLBX is private
Create return T_MLBX;
Delete (B: T_MLBX);
Put (B: T_MLBX, into);
Get (S: T_MLBX, info);

................

SYSTEM_TO_DESIGN

E ADT_SHARED

Object ADT_SHARED is
provided_interface

Type T_SHARED is private
Create retur n T_SHARED;
Delete (S: T_SHARED);
READ (S: T_SHARED, info);
WRITE (S: T_SHARED, info);

................



Copyright 1995 by HOOD User’s Group page 91

page -91
HOOD USER MANUAL 1.0 HUM-1.0

2.4.2.1.e EVENT

An event will be represented as an environment HADT object providing the operations to create,
delete an event, and to set (SET) or reset (RESET) or wait for (WAITFOR) an event.

Figure 66 -  Representation of events

2.4.2.2 Establishing a Real Time architecture

Let us take an example of a system of a three process system (targeted say to the VMS OS). A
HOOD architecture can be established according to:

• the allocation of functionalities and activities logically related to a process.

• process definition depending on efficiency considerations (e.g fast acquisition process,
batch data processing, asynchronous MMI process, asynchronous Database servers, etc.).

Figure 67 -  Initial representation of a RT architecture
Figure 67 - gives an initial representation of a the HOOD architecture as a set three abstract proc-
ess implementations. One sees at once that data flowing between two objects, will effectively
flow through the inter-process communication mechanism, which is in our case implemented us-
ing the primitives IPC services of the VMS OS. In order to refine the definition of these com-
munication the next HOOD refinement should explicit the use of theses mechanisms, in order to

SYSTEM_TO_DESIGN

E ADT_EVENT

Object ADT_EVENT is
provided_interface

Type T_EVENT is private
Create return T_EVENT;
Delete (e: T_EVENT);
Set (e: T_EVENT);
Reset (e: T_EVENT);
Waitfor (e: T_EVENT);

................

A PROJECT

Start
Stop
Op

MMI

Start
Stop
Op

APPLI

Start
Stop
Op

ACQUISITIONdata

data

VMS



Copyright 1995 by HOOD User’s Group page 92

page -92
HOOD USER MANUAL 1.0  by HUM Working Group

better control these resources and adapt code generation.(e.g. if a mailbox MB was defined, two
objects may communicate data through HSER by MB protocol constrained operations).
Figure below illustrates the HOOD refinement making VMS IPC communication services and

tools explicit.
Figure 68 -  Explicating inter-process communications

From now on the initial objects can be refined and developed as in a classical real time develop-
ment. All interfaces are explicitly specified by means of ADT objects.

2.4.3 ADVANCED DEVELOPMENT APPROACHES

The main question here is “should a designer consider the software of a system to design a set of
task or as a set of OS processes (programs) first?” The answer is “it depends on the importance
of the non functional constraints” of the given projects:

•  If heavyweight process architecture can be easily established (only a few OS process, estab-
lished already from requirements analysis) then an initial architecture can be directly estab-
lished first.

• If however the requirements analysis identifies numerous tasks, whose grouping is not obvi-
ous, the VN architecture should only be established after a definition of a logical solution de-
fined as a set of HOOD objects.

2.4.3.1 Establishing a VN architecture

Let us take our example of a system of a three VMS process system. A HOOD VN architecture
can be established according to:

• the allocation of functionalities and activities logically related to a VN. (If a logical solution
has already be produced, activities are allocated to objects and can be mapped into a VN by
allocating the objects).

• the allocation of functionalities which are quite independent of others already mapped into

A PROJECT

A
Start
Stop
Op

MMI

A
Start
Stop
Op

APPLI

A
Start
Stop
Op

ACQUISITION

data

data

VMS

ADT_SHARE

ADT_SEMADT_MLBX

data



Copyright 1995 by HOOD User’s Group page 93

page -93
HOOD USER MANUAL 1.0 HUM-1.0

others VNs; this allows to define VNs as work-package for parallel developments.

• VNs definition depending on efficiency considerations (e.g fast acquisition process, batch
data processing, asynchronous MMI process, asynchronous Database servers, etc.).

Figure 69 -  initial representation of a VN architecture
Figure 69 - gives an initial representation of a VN Architecture. One sees at once that data flow-
ing between two VNs, will effectively flow through the inter-VN communication mechanism,
which is in our case VMS. There are two possibilities for refining the definition of these com-
munication:

• leave the code generator for VN do its work and generate appropriate code making use of
the VMS inter-process mechanism to implement protocol constraints attached to the VN/OS
processes

• explicit the use of theses mechanisms, in order to better control these resources and adapt
code generation of allocated HOOD objects onto VNs to effectively use these mechanisms
(e.g. if a mailbox MB was defined, two objects may communicate data through HSER by
MB protocol constrained operations).

Figure 70 -  Explicit inter-VN communications

V PROJECT
V

Start
Stop
Op

MMI

V
Start
Stop
Op

APPLI

V
Start
Stop
Op

ACQUISITIONdata

data

V PROJECT

V
Start
Stop
Op

MMI

V
Start
Stop
Op

APPLI

V
Start
Stop
Op

ACQUISITIONdata

data

VMS

ADT_SHARE

ADT_SEMADT_MLBX



Copyright 1995 by HOOD User’s Group page 94

page -94
HOOD USER MANUAL 1.0  by HUM Working Group

2.4.3.2 Implementing INTER-VNs communications

The implementation principle inter-VN/OS processes communication is based on leaving state
constraints implementation always within the server process executing a constrained operation.
Hence the code structure for a VN becomes:

Figure 71 -  Implementation of a VN

The figure above shows that all allocated objects, that required remote operations should in fact
require a VNCS.Message_in operation that communicates with remote VNS by means of
ADT_QUEUE

In case code generation is not fully automated in a given toolset or even not implemented, the
designer would have to explicit every VN in his VN architecture. This solution gives full control
(including over the generated code bases on standard HOOD objects) over the design of the com-
munication mechanism between VNs.

E ADT_QUEUE

V VN_Name

Start_Server

Stop_Server

ASER by host OS

ASER by host OS

VNCS

Allocated Objects

parameters

Start_Server
Stop_Server

Return_MessagesRemote_call_Messages

Remote_VN1

Remote_VN2

V

VMessage_In
ASER by Communication protocol Message_In

Inter_Vn dataflows

InterVn-Messages



Copyright 1995 by HOOD User’s Group page 95

page -95
HOOD USER MANUAL 1.0 HUM-1.0

2.4.4 EXPRESSING INTER-PROCESS COMMUNICATION WITH
OPERATION CONSTRAINTS

HOOD allows to expresses communication protocols upon service execution of objects by as-
signing protocol execution constraints to operations. HOOD has only defined the following log-
ical communication protocols:

• ASER: the client process is not suspended at all after a request

• HSER: the client process is suspended up to the end of requested service execution

• LSER: the client process is suspended up to the begin of requested service execution

• TOER: the clientwants to know if a request was executed within a time delay.

• ASER_BY_IT: the client is the hardware, and this is the way to model interrupts.

• PROTECTED14: the client executes in mutual exclusion

A designer must notice that these are basically logical communication schemes between two
processes, and that associated implementations (code generated) may furthermore use the most
common communication mechanisms available from the target host system:

• rendez-vous

• RPC

• semaphores

• mailboxes and queues

• signals

• shared areas.

How can a designer used to express inter-process communications with these mechanisms ex-
press them in HOOD? In fact there are two possibilities:

• expressing a HOOD design that directly reflects the implementation

• In this case, the used mechanisms should be represented as HADT objects

• expressing logical communication at HOOD level, knowing that:

- code generation of HSER,LSER may achieve the same effect as for example two object
communicating through a third one modelling a QUEUE.

- allocating objects on VN that define inter-VN communications, whose communication
mechanisms will be expressed with target communication mechanisms.

Depending on the target system chosen (either Ada tasking supported or not) and according to
the code generation principles, one can state the following rules.

14.such constraints are not in current HOOD definition, but are a proposal that came out from the Hard Real Time study funded
by ESA.



Copyright 1995 by HOOD User’s Group page 96

page -96
HOOD USER MANUAL 1.0  by HUM Working Group

2.4.4.1 Use of Ada tasking

• state constraint applied to an operation =>one task to ensure state constraints

• protocol constraint applied on a operation => 2 process at least implied.

- a client task performs a calls to the OBCS entry via the call to the OBJECT.Operation.

- an OBCS task server (or more if needed) that:

- accepts operation entry requests according to the protocol constraint15 and

- performs effective call to the an OPCS procedure named OPCS_<OP_Name> (that in-
cludes opcs-header handling possibly state constraints, and opcs_body with the core op-
eration). and

- return parameters within the accept statement

2.4.4.2 No use of Ada tasking

• state constraint applied to an operation =>

- one FSM to ensure check STD description, but

- possibly call to an OS semaphore to ensure protected access

- need to have an implementation of exceptions in language other than Ada

• protocol constraint applied on a operation => 2 process at least implied.

-  one FSM to ensure check STD description, but

- a client task performsan OP_ER procedure part commuting the message request and
decommuting the return parameters, and exception handling

- a server (or more if needed) that:

- consumes messages requests and

- performs effective call to the OPCS procedure (that includes opcs-header handling
possibly state constraints, and opcs_body with the core operation). and

• commutes return parameters in a MSG back to client task

15.Note that ASER constraints are badly supported in Ada83, and need additional server and consumer task to perform according
to the HOOD semantic.



Copyright 1995 by HOOD User’s Group page 97

page -97
HOOD USER MANUAL 1.0 HUM-1.0

2.5 DISTRIBUTED SYSTEMS

2.5.1 A DEVELOPMENT APPROACH

Putting the principles of the overall HOOD design process for complex systems into work for
the development of real time or distributed applications leads to a phased development approach
comprising three phases:

• Logical definition and refinement phaseelaborating a logical solution (non distributed) as
described above.

• allocation phase where Virtual Nodes are defined as grouping of objects by allocation de-
fining potential distributable units or memory partitions[7]. The allocation process starts by
defining a possible physical model:

- either by modelling the physical architecture when processors are numerous and must be
abstracted into processing nodes according to the characteristics of their communication
links,

- either as a model of a planned physical architecture, if not yet defined (or available) at that
stage of the project,

- or as a representation of the physical (heavyweight) processes, or partitions [7] if the hard-
ware architecture was already frozen.

• configuration phasewhere grouping and restructuring of VNs is done for allocating them
onto physical processors. The configuration must deal with network constraints and target
inter-processors links and communication features.

2.5.2 VN IMPLEMENTATION APPROACH

The implementation approach is based on principles enforcing the reuse of the code developed
in the logical model “as-is” (also called Post-Partitioning Approach in the literature). The latter
supports a stepwise development and integration approach, allowing functional testing, and final
integration leaving functionally tested code unchanged. Hence the execution of a remote opera-
tion can be implemented by defining:

• on the local node, a client operation stub that encodes the parameters into a network mes-
sage, say MSG, and waits operation parameters return according to the communication pro-
tocols defined between the two remote objects.

• on the remote node, a server will decode the network messages and perform the effective
call to the operation, and return parameters back through a special return_message network.
This return message is then processed by a message_server from the original calling node

and parameters are send back to the original client object1.

Figure 72 - below illustrates the principle of adding code to existing code (generated in a non
distributed or logical solution and functionally tested).
When an object is allocated to a VN, the generated code associated to the local OPCS consists e
OPCS_ER (Opcs_ExecutionRequest) code and performs the encoding of the request into the

1.This is done by having the associated process hold on a signal, which is sent as soon as the return param-
eters have been copied back to the client process memory.



Copyright 1995 by HOOD User’s Group page 98

page -98
HOOD USER MANUAL 1.0 by HUM Working Group

network message suitable for the communication system (either simple UNIX sockets or higher
level tools).
On the remote VN side, a local “server”, (the ServerObcs) tailored to each VN, recognizes the
messages that come from the network and performs the effective call to the operation code. When
the operation has executed, a “return-message” is sent back (through theServerObcs) to the call-
ing VN and object.
Three solutions may be used to achieve such an implementation, and leaving the original code
unchanged:

• using a HOOD toolset that supports fully the implementation for VN.

• generation of additional code outside from HOOD, and depending of the allocation of objects
onto VNs, and building of a suitable executable by doing the appropriate linking of the object
code.

• generation of additional code from a HOOD additional representation, that shows the allo-
cated objects in a «VN design». This solution will be further developed in section 2.6.1 below
as today no HOOD toolset supports fully VN code generation.

Figure 72 -  Principle of additional code to the logical model one in the physical model/

2.5.2.1 Implementing protocol constraints for VNs

Figure 73 - gives the principle of code generation for VN,reusing and leaving unchanged the
functional code generated of the logical model (with no protocol constrained operations).
The ClientStub object of Figure 72 - above is implemented as a set of objects (as many as   allo-
cated objects to the VN that require remote operations) and whose OPCS code contains only
OPCS_ER code as illustrated in Figure 74 - below. This implementation is heavily based on
FIFO queues, of which efficient implementations are now available for most targets. Queues al-
low to handle the problem of global time, network and process contention, synchronisation, etc..

VN1 VN2

Software/Communication mechanism

OPCS

local allocated Object

ClientStub

Message

Parameters Parameters

ServerStub Object

effective

remote OBJECT

 object

Message

OPCS_BODY



Copyright 1995 by HOOD User’s Group page 99

page -99
HOOD USER MANUAL 1.0 HUM-1.0

in the most modular way. Furthermore it allows to have a layered implementation decoupling
fully the HOOD application of any implementation infrastructure and communication software.

Figure 73 -  Execution Model for protocol constrained operations for VN

Figure 74 -  OPCS_ER code Sample for STACK.PUSH client stub operation

OP_ER
procedures

VN1 VN2
Local
allocated
OBJECTs

Remote

allocated OBJECTs

Parameters

MSG

VNCS

main
INSERT
REMOVE

MSG

MSG

E QUEUES

ClientOBJECT (stub)
OPCS_ER
procedures

Parameters

VNCS

main
INSERT
REMOVE

OP_ER
procedures

Server (stub)
OPCS_SER
procedures

ASER_by_IT
Ntwrk_MSG

procedure PUSH(item : in T_Item) is -- OPCS_ER code
MSG : IPCMSG.T_MSG;
begin

MSG=IPCMSG.create;  - initialise an IPC MSG data structure
MSG.sender=STACK;
MSG.OPERATION=PUSH;

MSG.CNSTRNT=HSER1;
MSG.INFO=Item;
ClientObcs.insert(MSG); -- insert in request queue
-- if firstimeCall queues are allocated
MSG:=ClientObcs.remove; -- remove return IPCMSG and process return parameters
if not (MSG.X=OK)then

EXCEPTIONS.raise(MSG.X); --raise exception according to Xvalue
else

EXCEPTIONS.LOG (“STACK.PUSH_ER”, “OK return from server”)
end if;
if not (MSG.CSTRNT=ASER) then

ClientObcs.FREE(MSG); -- deallocate MSG and queues after processing return parameters
end if;

exception
whenX_BAD_EXECUTION_REQUEST =>

EXCEPTIONS.LOG(“STACK.PUSH”, “X_BAD_EXECUTION_REQUEST”);
EXCEPTIONS.raise; -- so as to propagated to client

whenOthers =>
EXCEPTIONS.LOG(“STACK.PUSH”, “Others”);
EXCEPTIONS.raise;

endPUSH;
1.if the request is also TOER, then we would insert here a call to TIMER.SET(delay), as well  as a TIMER.TimeOut call

after return (MSG:=ClientObcs.remove; -- remove return IPCMSG



Copyright 1995 by HOOD User’s Group page 100

page -100
HOOD USER MANUAL 1.0 by HUM Working Group

The ServerStub object of Figure 72 - above is implemented as a set of objects (as many as   allo-
cated objects to the remote VN that are required by other remote VNs) and whose OPCS code
contains only OPCS_SER code as illustrated in Figure 75 - below.

Figure 75 -  OPCS_SER codefor STACK.PUSH  RB  operation

The communication software between the VNs in Figure 72 - is encapsulated within a VNCS
which is part of each VN. This allows to have OPCS-ER or OPCS_SER code that abstracts from
the specificities of different target OS or communication software. Since a VN may be both a
server and a Client the VN may be partitioned in at least two sub objects ClientObcs and
ServerObcs as illustrated in Figure 76 -

Figure 76 -  Architecture Principle of the VNCS software

procedurePUSH (MSG : in IPCMSG.T_MSG)is -- OPCS_SER code
Item : Items.T_Items;
begin

begin
item:= MSG.INFO;
MSG.X=OK;
if  MSG.CSTRNT=LSER|LSER_TOERthen

ServerObcs.insert(MSG);  -- insert in return queue
end if;
STACK_SERVER.PUSH (Item);

exception
whenX_BAD_EXECUTION_REQUEST =>

EXCEPTIONS.LOG(“STACK_SER.PUSH”, “X_BAD_EXECUTION_REQUEST”);
MSG.X= string (X_BAD_EXECUTION_REQUEST);

whenOthers =>
EXCEPTIONS.LOG(“STACK_SER.PUSH”, “Others”);
MSG.X= string (OTHERS);

end; -- of begin
if  MSG.CSTRNT=HSER|HSER_TOERthen

ServerObcs.insert(MSG); -- insert in return queue
end if;

end PUSH;

VNCS

Software/Communication mechanism

insert
remove

IPC_QUEUE

RTN_QUEUEs

ClientVNCS

ServerVNCS

alloc
free

insert
remove

insert
remove

insert
remove

Message_in
Netwrk_IT

MSG

RTN_MSG

MSG

MSG,parameters

MSG,parameters

possibly user defined

Message_in



Copyright 1995 by HOOD User’s Group page 101

page -101
HOOD USER MANUAL 1.0 HUM-1.0

The operation ClientObcs.Insert builds up the IPC MSG Structure (especially does themarshal-

ling2 converting the parameters structure into streams, allocates a RTNQUEUE and puts its
identification in the MSG, and is blocked on the return MSG by calling RTNQUEUE.remove
operation. Messages incoming through the communication software (possibly user defined and

provided) shall trigger3 a Message_in operation of:

• of the remote ServerOBCS which shall process the MSG and dispatch it to the appropriate
OPCS_SER operation.

• of the local ServerOBCS, which shall process the RTN_MSG and dispatch it(by calling RT-
NQ.insert) to the appropriate RTNqueue, thus releasing the blocked client process

.

Figure 77 -  Illustration of ServerVNCS.Message_in code

2.marshalling is the action of transforming remote subprogram parameters used a stream-oriented repre-
sentation which is suitable for transmission between remote processes.Unmarshalling is the reverse ac-
tion.ADA9X languages libraries shall provide two supporting type attribute functions for a type S, S’write
and S’read.In C++, classes to be exchanged should inherit from a virtual stream one, with two IO function
>> and <<.
3.Either the implementation is polling MSG events on I/O channel, either this procedure is «called_back»
directly by the communication software as a MSG was received from the network.

procedureMessage_In(MSG : in T_MSG) is -- ServerVNCS code illustration
begin
loop

caseMSG.typeis
whenRTN_MSG =>

MSG.RTNQ.insert(MSG); -- insert in RTNQ will release client
when IPC_MSG=>  -- just launch local OPCS_SER code

MSG.IPCQ.insert(MSG); -- insert inIPCQ will launch ServerOBCS of called Object
when others =>

EXCEPTIONS.LOG (“VN_ID.Message_IN”, “INCONSISTENT MSG type”
MSG.X=COMMUNICATION_ERROR;
Message_out(MSG); --send messageback

end case;
end loop
exception
whenOthers =>

EXCEPTIONS.LOG(«VN_ID.Message_In», “Others”);
endMessage_In;



Copyright 1995 by HOOD User’s Group page 102

page -102
HOOD USER MANUAL 1.0 by HUM Working Group

Figure 78 -  Illustration of ServerObcs code of an allocated object in a remote VN

procedureServerObcsis -- ServerObcs code illustration
MSG: IPCMSG.T_MSG;
begin
loop

ServerOBCS.remove(MSG); -- remove a message from a clientOBCS
if  MSG.CSTRNT=ASERthen

MSG.X=OK;  -- return OK EXCEPTION VALUE
VNCS.Message_oput(MSG)); --send MSG back

end if;
caseMSG.OPERATIONis
when start =>START; -- call procedure START of currentobject;
when stop =>STOP;-- parameters accessed through global MSG structure
when PUSH=>PUSH;
when POP =>POP;
when Status =>Status;
when others =>
EXCEPTIONS.LOG(MSGS.String(MSG;OBJECT)&»SERVER”, “INCONSISTENT OPERATION NAME”

MSG.X=COMMUNICATION_ERROR;
ServerObcs.insert(MSG); --release client process immediately

end case;
end loop

endServerObcs;



Copyright 1995 by HOOD User’s Group page 103

page -103
HOOD USER MANUAL 1.0 HUM-1.0

2.5.2.2 Managing VNS as HOOD OBJECTS

In the following we present an approach to define VN implementation according to the princi-
ples given above and allowing to use of the code generation defined for non Ada protocol con-
straint operations:
For users of toolsets not supporting VNs, the following steps should be performed:

• Elaboration of a logical model with associated code generation and execution.For this
create a SYSTEM_CONFIGURATION with relevant hierarchies of objects, that defines the
system_to_design with its environments objects. (objects common to those of STD hierar-
chies, as well as exiting and environmental software

• Elaboration of the implementation model(by allocating objects) with the following con-
straints:

- only terminal VN can have allocated objects.

- child objects are either the VNCS, the remote calling objects (generated with ERCODE),
or the remotely called objects (generated with SERCODE).

- Environment objects of this VN are either the local objects allocated or the remotely
called VNS
For this create a new SYSTEM_CONFIGURATION with its relevant hierarchies that de-
fine the system_to_design as a hierarchy of VNs. When the decomposition of VNs ap-

pears to be deep enough, allocate objects of the logical model to only terminal VNs4.
For each such terminal VN, create VNCS, ER and SER children and create environment
objects that correspond to remotely VNS.

• Finally create within the implementation SYSTEM_CONFIGURATION, root objects
associated to the previous environment objects through “copy to root” from objects of
the logical SYSTEM_CONFIGURATION.

• Use then an ODS editor and modify the OPCS code fields so as to implement the encoding
of operation request and associated parameters towards a network data structure and accord-
ing to OP_ER template code ensuring the good behaviour with respect to protocol con-
straints.

Such a design is represented in Figure 79 - below. The conventions for this representation are:

• objects allocated to the VN appear as:

- objects of same name but where all code generated shall be SERCODE

- Environment object of same name which generated code is the effective code.

- remotely called operations are highlighted by the implemented by links between VN op-
erations and allocated objects. Such operations are eventually called by the VNCS object.

• objects remotely called/required from the VN appear as:

- objects of same name but where all code generated shall be ERCODE. Such object even-
tually use the VNCS objects.

- objects requiring remote VN that appear as Environment VNS

4.Note: a VN object can exclusively be decomposed either in child VNs, or in HOOD objects.



Copyright 1995 by HOOD User’s Group page 104

page -104
HOOD USER MANUAL 1.0 by HUM Working Group

I

Figure 79 -  Illustration of the representation of the physical model at terminal level

V <NAME>_VN

    VNCS

{Op_OBJ1}
{Op_OBJ2}
{Op_Obj3}

{Op_Obj3}

{Op_Obj2}

{Op—Obj1}

Insert

VN_N1 VN_N6V V

remote_OBJ

remote_OBJ

remote_OBJ2

SOCKET/
TCP_IP

Messages
Objet3

Objet2

SObjet1

E

E

E

remote
required Vns

 Environment
object required

ASER BY UNIX
Shell

implemented_by links
that are resolved by the “local server”

dataflows
ease
understanding

remove

Message_in

SERCODE

SERCODE

ERCODE
{Op_Obj3}

Objet3

ERCODE

as effective code

Allocated OBJECTS

of the exchanges

not requiring remote operations



Copyright 1995 by HOOD User’s Group page 105

page -105
HOOD USER MANUAL 1.0 HUM-1.0

2.6 MAN MACHINE INTERFACES

2.6.1 DEVELOPMENT APPROACH FOR COMPLEX MMIS SYS-
TEMS

A common recommended approach for the development of Man Machine Interface (MMI) is to
define an architecture allowing:

• separated development of the interactive software (which is handled by specialized window-
ing systems such as X_WINDOWS, MOTIF) and the applicative software, in a way that is
independent of the technologies used for these developments. Moreover the interactive soft-
ware may itself be spitted in a static part (now more an more automatically generated from
MMI generator tools) and a dynamic part (mainly consisting in the code associated to the
callbacks triggered by the window gadgets).

• the use of ad hoc technologies, people and tools with the best efficiency and productivity.

Although numerous developments have tried to follow this goals, effective separation of appli-
cative and interactive parts has so far (to our knowledge) never or very few been performed;
hence the resulting software are complex and costly to maintain.
The reason is that the interface between a software and a windowing system comprises both stat-
ic, and dynamic entities and data, and, according to the two possible control strategies, (event
driven recommended by the MOTIF standard andapplication driven recommended for reliable
and critical systems) the associated code is distributed within the different objects/modules of
the applicative or interactive part and leading to high efforts in testing and maintenance.

HOOD allows to represent easily interactive programs as separated objects exchanging data (e.g.
APPLICATION and MMI objects) in an initial model. Those data may then be specified and re-
fined as abstract data instances described in other HOOD objects hierarchies (following princi-
ples described in section 2.1 above).The clear separation formulated in this initial model allows
to define three development lines:

• development of the application part by HOOD decomposition of object APPLICATION.
The associated refinement may also provide for identification of operations provided of ab-
stract data type objects associated to the data exchanged with the MMI part.The application
object should provide the operations defining an API (Application Programming Interface)
thus allowing to define application that can be interfaced either to other applications (batch,
network oriented IO) or any windowing system.

• development of man-machine part byusing suitable graphical interface generators and
prototyping tools, and by “re-engineering” some of the associated software (namely all user-
defined procedures associated to “call-backs”) into HOOD objects. A «call-back» is simply
represented in HOOD as an «ASER_by_IT» constrained operation.In order to manage the
code associated to window widgets call-backs, the designer can structure it into objects map-
ping either all the call-back of one widget hierarchy (e.g a window and all menus and at-
tached buttons) or one specific wet of widgets (one HOOD object for an whole editor
interface widgets).

• development of data representation supportby defining abstract data type HOOD objects
and target language type structures as the data and operations on those data are identified
through refinement of APPLICATION and MMI objects. The associated formal definition
of data allows to synchronize the development progress with the two other lines.



Copyright 1995 by HOOD User’s Group page 106

page -106
HOOD USER MANUAL 1.0 by HUM Working Group

A recommended HOOD development approach suggest the definition of a generic architecture
where these interfaces are clearly identified as illustrated in Figure 80 - hereafter. This architec-
ture is moreover in line with the so-called Seeheim model [PFA85] where :

• presentation software is implemented_by the Windowing-INTERFACE and MMI_DATAs
objects

• Application interface is implemented_by ADT_DATA

• DIALOG control is implemented_by DIALOG AUTOMATA objects

The Windowing_INTERFACE object handle all interactions between APPLICATION and the
target WINDOWING system including behavioural execution according to finite state automata
modelling the dialogue behaviour and states (that was defined in a requirement analysis or MMI
prototyping phase).The MMI part can then be entirely prototyped using an UIMS: User Interface
Management System.

Figure 80 -  Generic Architecture for MMIs
The DIALOG-AUTOMATA object should map the user-intercations modelled through a hierar-
chic state-transition diagram : the MMI interactions can be structured through states (e.g. log-
ging,identification, consultation, update, supervision, administration, etc..) where only specific
functions and widgets can be activated.

APPLICATION

Window_INTERFACE

WINDOWS & WIDGETs
generated by UIMS

MMI_DATA

ADT_DATA

X_Events
X_callbacks
init
get_action
get_widget
{curseur_ops}
{screen_ops}
{widget_ops}

UIMS generated
code

Applicative code
independent of the
WINDOWING
SYSTEM

UIMS
dependent code

ASER by X

ASER by X

E

E

X_WNDS

X_WNDS

DIALOG_AUTOMATA

start
Event

{Device_actions}

ASER by
Module_INterface



Copyright 1995 by HOOD User’s Group page 107

page -107
HOOD USER MANUAL 1.0 HUM-1.0

Such modelling and definition may be developed through prototypes or following a hierarchical
Dialog structure approach, and possibly together with the final user. However we consider this
modelling is part of the requirement analysis and should be available when the HOOD design is
started.
Also, the above generic architecture allows to develop a MMI prototype (not to be confused with
above one used for defining the user MMI interactions) where the animation may be thrown
away or reused for pre-integration testing, but where DIALOG_AUTOMATA and
Windowing_INTERFACE will be fully reused in the final software

Figure 81 -  Animation and prototyping of MMIs

The MMI development process should then comprise the following steps:

• analysis of OPERATOR behaviours and tasks, where requirements should be detailed
enough to become the user guide of the future system. Besides a prototype of the MMI may
be develop in order to get early feedback and acceptance by the user.

• establishment of associateddialogue and screen definitions by means of hierarchies of fi-
nite state automata. A HOOD toolset can be used be used to capture this states as HOOD
objects where (see Figure 82 - below):

- start would be the object to enter the initial state

- exit would make the object go back to the calling state& automata

- helpwould make launch a contextual help widget/object

- actions are applicative actions to be triggered by the Windowing-INTERFACE as the
user activates the widgets representing the actions allowed for the current object/state.

Window_INTERFACE

WINDOWS & WIDGETs
generated by UIMS

MMI_DATA

ADT_DATA

X_Events
X_callbacks
init
get_action
get_widget
{curseur_ops}
{screen_ops}
{widget_ops}

UIMS generated
code

UIMS
dependent code

ASER by X
ASER by X

E

E

X_WNDS

X_WNDS

start
Event

{Device_actions}

ASER by
Module_INterface

ANIMATION

DIALOG_AUTOMATA



Copyright 1995 by HOOD User’s Group page 108

page -108
HOOD USER MANUAL 1.0 by HUM Working Group

• design of screens and widgetsunder the UIMS

• in parallel HOOD design of the interface between the application using HADTS objects to
formalise the data structures and the interactions with the non MMI part.

• Prototyping and unit testing

• evaluation of the MMI, modifications

• integration testing.

Figure 82 -  Modelling DIALOG AUTOMATA with HOOD object

start
exit
{ Actions:

help

DIALOG

LOG_IN_SCREEN

start
exit
action1
action2
help

start
exit
action1
action2
help

FUNCT1_SCREEN
FUNCT2_SCREEN

Windowing_INTERFACEE

Start

   FUNCT2
    FUNCT2}



Copyright 1995 by HOOD User’s Group page 109

page -109
HOOD USER MANUAL 1.0 HUM-1.0

2.6.2 MODELLING INTERACTIONS WITH WINDOW MANAGERS

Graphical and interactive handling principles have been defined and summarized for implemen-
tation with windowing management systems (Sunview, Dialogue Manager, X-Windows and
MOTIF). These latter provide Graphical User Interface Management Services (GUIMS) (by
means of libraries of routines) allowing a client software to:

• manage graphical objects:   creation, external representation, attributes, behaviours, reac-
tions to operator stimuli of “WIDGETS” (contraction of “window gadget”, a graphical ob-
ject whose is fully handled by the GUIMS)

• triggering of “application software” on WIDGET events (associated to an [re]action at widg-
et). (these triggering are called “call-back” in the X_WINDOW system)

Thus the interaction logic between an application part and the window manager can be summa-
rized as:

• initialisation of graphical interface through calls to the window manager services

• management of events (mostly associated to user interactions)by the window-manager

• triggering of execution of applicative part through “call-back” which are represented as
HOOD “ASER_BY_IT” constrained operations.

Figure 83 -  HOOD Representation of callbacks
Figure 83 - above illustrates interactions between an applicative object and the X_WINDOWS
window manager represented as a HOOD environment object.

2.6.3 FACTORISING INTERACTIONS WITH WINDOW MANAG-
ERS

In order to structure and isolate the X_WINDOWS interface, thus rendering the architecture
more portable and independent from the window-manager, a general interface can be defined.
Such an architecture brings more control and flexibility on associated developments since the
application can be developed, tested and pre-integrated in parallel to the development of the
GUI.

Start
Widget1_Action
Widget2_Action
{Widget3_Actions}

INTERACTIVE_APPLICATION

Aser_by_It X_Call_Back

Aser_by_It X_Call_Back

ASER_by_UNIX_Shell

X_WINDOWS_LIBE

Aser_by_It X_Call_Back



Copyright 1995 by HOOD User’s Group page 110

page -110
HOOD USER MANUAL 1.0 by HUM Working Group

Figure 84 -  Isolating the application from GUIMS code

The object X_INTERACTIONS handles fully interactions with the GUIMS, and may almost be
fully developed within a GUI generator environment. Communication with the APPLICATION
object are performed according to functional protocols allowing to isolated it completely from
the GUI.

Aser_by_It X_INTERFACE

{X_CALL_BACKS}

INTERACTIVE_APPLICATION

ASER_by_UNIX_Shell

X_INTERFACEE

CTRL

X_INTERACTIONS

START

APPLICATION

{LOGICAL
OPERATIONS}

START
{X_CALL_BACKS}



Copyright 1995 by HOOD User’s Group page 111

page -111
HOOD USER MANUAL 1.0 HUM-1.0

2.7 INFORMATION SYSTEMS

Development of Information Systems (IS) may be categorized into:

• those dealingsolelywith the definition of a database.In this case the use of dedicated tools
(Data Base Management Systems (DBMS) development Environments, 4G languages) is
required, and the use of HOOD is not relevant.

• those dealing with the definition of an application on top of a DBMS with or without devel-
opment of the latter. In this case the development will obey to the separation principle of:

• the applicative part, defining the supporting architecture (interactions between the main
components, possibly developed with the most suitable tools& environments),

• the MMI part (often a key part in the system),

• the interface to the DBMS, and/or the DBPMS itself.

Using HOOD such a separation is easily supported by defining an initial model comprising, a
MMI object, an APPLICATION object and an DBMS_IF object which exchange data. Those
data should be implemented as instances of ADTs and defined in abstract data type support ob-
jects, according to principles of section 2.1 above.

2.7.1 PARALLEL DEVELOPMENT OF INFORMATION SYSTEMS

The separation between these three kinds of components can be formally expressed with HOOD
in the initial model, allows to develop in parallel:

• the applicative part through HOOD decomposition (see figure 5.3.2 below)

• the MMI part according to the principles outlined above(see section 3.5.2 above

• the interface to the DBMS: where several cases have to be handled:

- only informal descriptions upon a information / data model have beenestablished in
requirement analysis. The formalization of associated data structures must be performed

during the HOOD design (by means of E_R models5, typing features of the target lan-
guage and/or through HADT objects)

- a formal conceptual data model has been established and verified: the model has been
captured using a tool and/or notation such as Entity_Relationship (E_R) or OMT formal-
ism. The use of appropriate tools may provide for automatic generation of software for
access and management of the associated implementation model, in terms of modules, (as

implementations of abstract data types6). Otherwise, the associated software can also be
developed using HADT objects.

- In case a relational DBMS (RDBMS) is used, the implementation of the abstract data type
support HOOD object will use the SQL primitives to handle fine access to the data. In
case an Object Oriented DBMS (OODBMS) is used, the abstract data type implementa-
tions may directly be the classes associated to the object oriented database schema

An example of an IS initial HOOD model is given in Figure 85 - below

5.E_R Entity relationships models. Modern models support inheritance to factor relationships and description, see OMT for ex-
ample.
6.Some tools are now able to automatically generate C or C++ interface modules for manipulation of the schema and access data
associated to a MERISE or E_R data models extended with inheritance



Copyright 1995 by HOOD User’s Group page 112

page -112
HOOD USER MANUAL 1.0 by HUM Working Group

2.7.2 EXAMPLE OF A HOOD INITIAL INFORMATION SYSTEM
MODEL

Three objects associated to the three development lines, and exchange data which are implement-
ed by HADT [environment] objects.

Figure 85 -  Typical architecture of an Information System initial HOOD model

• the object I_DBMS provides a Start operation required by APPLICATION for initialisation.
Operation sets {Put_Ops} et {Get_Ops} define the interactions with APPLICATION and/or
MMI on readings and updating of informations stored in the DBMS.

• the object ADT_DBMS_DATA groups the definition of abstract data type support HOOD
objects associated to data exchanges between MMI and/or APPLICATION with the DBMS.

INFORMATION_SYSTEM

OTHER_SystemE

Application

MMI

start
{Put_OPs}
{Get_OPs}

start

start
{Operator_Ops} Applis_Datas

Data

start
{Put_OPs}
{Mngt_Ops}
{Get_OPs}

I_DBMS

Ext_data

ASER by Host_OS

ADT_Data_I

ADT_DBMS_dataE

E
Data, elem_data

Data

Aser by Host_OS

X_INTERFACEE

ADT_Applis_dataE

Applis_Data

E OO_DBMS E



Copyright 1995 by HOOD User’s Group page 113

page -113
HOOD USER MANUAL 1.0 HUM-1.0

2.8 FAULT TOLERANT SYSTEMS

In case where systems have additional fault tolerant constraints, a similar approach can be put
into work :

• first, by developinga logical solution where the fault-tolerance constraints are not taken into
account, but allowing validation of the essential properties of the solution.

• then, by refining this solution to tune, adapt ruggedizing it to handle specification or design
faults, supposing that for each HOOD object, its environment is fault-tolerant.

• finally by adapting andruggedizing this latter solution towards a physical solution where en-
vironment objects of all previously ruggedized objects are now considered non fault-toler-
ant.



Copyright 1995 by HOOD User’s Group page 114

page -114
HOOD USER MANUAL 1.0 by HUM Working Group



Copyright 1995-96 by HOOD Users Group page 115

page -115
HOOD USER MANUAL 1.0 HUM-1.0

2.9 ERROR AND EXCEPTIONS HANDLING

2.9.1 THE EXCEPTION CONCEPT

HOOD takes the exception concept from Ada at the design level. This concept allows to express
smartly and concisely "non nominal" behaviours. However it also presents a number of draw-
backs which lead us to advice very limited usage.

• First of all, the implementation of exceptions in target other than Ada sets problems of cor-
rectness and validation of the equivalent software behaviour

• Moreover, an exception describes an abnormal flow of control in reverse of the use relation-
ship. More precisely an exception is implemented as the asynchronous execution of the
exception_handler call within the client code instead of normal return after service call. Thus
exception execution means asynchronous executions, that render very difficult exhaustive
testing, and hence render difficult maintenance and mastering of all possible states of the
software under development.

Hence we recommend:

• use only HOOD exceptions when the target language is known to be Ada,

• limit as much as possible the use of EXCEPTIONS in the design,

• always treat the exceptions locally, in order to avoid propagation and side effects of asyn-
chronous processing.

2.9.2 ERRORS HANDLING

When developing large software, general principles of error handling must be applied and en-
forced, in order to standardize, modularize and reuse error handling code.
A basic principle is to handle errors locally (i.e as they are detected) since the error context is
then available.
Error handling may be centralized or distributed. However for ergonomic reasons, complexity
decrease, and reuse it is recommended to centralize error handling so as to have an homogeneous
and standardized treatment.
 Another advantage of this approach is a better maintainability, since the error handling object
should group together all recoveries operations.

2.9.3 SUGGESTED SOLUTION

A good strategy for error handling could be:

• Use of one unique object in the system providing logging services for errors and exceptions
and allowing to apply a minimal standard code to each error and or recovery processing. Fig-
ure 86 - below gives an example of a specialized object in the logging of error and exception
handling, either within files and/or and a dedicated screen window.

• Recovery strategy on a local priority basis



Copyright 1995-96 by HOOD Users Group page 116

page -116
HOOD USER MANUAL 1.0 by HUM Working Group

.

Figure 86 -  Dedicated Object to handle Error and exceptions

Init
Put(Sender_string,why_string)
Set_Logg(STDIO,FILE)

EXCEPTIONS

E X_LIB E FILE_IO



Copyright 1995-96 by HOOD Users Group page 117

page -117
HOOD USER MANUAL 1.0 HUM-1.0

2.10 REUSING HOOD DESIGNS

2.10.1 OVERVIEW

What is the exact meaning of reuse in our context? It can simply be stated that it is the ability to
pick up parts of previous designs in order to build a new one. Some work is supposed to have
already been done in an area more or less similar to those of the new project, and the problem is
to get this work back rather than redoing a similar job, giving similar results at an extra charge.
Two parts of the last sentences are of interest:

• “pick up parts of previous designs”, this implies the possibility to easily isolate parts of a de-
sign;

• “an area more or less similar”, the notion of similarity plays a extremely important role for
what concerns reuse.

First, let us speak about theses parts that shall be easily separated from their original context and
easily integrated in a new one. This is one of the definitions of “object”: a part of a software clear-
ly delimited which provides clear interfaces with the external world. The HOOD object orienta-
tion is the starting point of the whole reuse methodology.
Second, what about similarity? It does not mean equality, hence it seems clear that even if a cer-
tain number of objects may be picked up directly and reused as they are, it is not the general case,
and some others should be Adapted to their new context. There is mainly two different techniques
to achieve this purpose:

•  genericity: the object to be reused is generalized and transformed in a template which may
be instantiated for each specific context. This technique is covered by the Ada generics, the
C++ templates, the Eiffel parameterized classes and the HOOD3 Classes.

• inheritance: the object to be reused does not change, but the new Adapted object is defined
by means of enhancement of the former. It automatically inherits all its properties and oper-
ations, one has just to redefine the methods which differ from the original. This very powerful
mechanism is known as “inheritance” and is supported by most Object-Oriented program-
ming languages.

As the HOOD3 method does not support direct inheritance, only the first method will be present-
ed in this part. The reader shall be aware of the existence and the importance of the other tech-
nique which is known as the best reuse support technique at the programming level. Studies in
this direction are in progress in the context of ESPRIT/PROTEUS project, to allow the mapping
into C++, a language providing inheritance mechanisms (see part II of this document).

HOOD means Hierarchical Object-Oriented Design. We presented Object-Orientation as a key
point about the reusability. Curiously, the name of the method, in itself, contains all its advantag-
es and its drawbacks. From the reuse point of view, the Hierarchical aspect of the method is an
important hindering. The objects are distributed all over the design tree, and one may be led to
reuse a complete sub-tree whether a linear design would have led to reuse just a couple of inter-
related objects. Furthermore if a non-terminal object has to be Adapted, the modifications will be
propagated to lower-level objects, and the repercussions may be difficult to evaluate.

In order to achieve this goal, one must be aware of the fact that it is quite impossible to design
from scratch a perfect reusable object. The first version is often a draft, and further versions fol-
low with improvements and modifications. A real problem occurs with all the design documents:



Copyright 1995-96 by HOOD Users Group page 118

page -118
HOOD USER MANUAL 1.0 by HUM Working Group

is it possible, desirable to rewrite all the stuff at each new version? This document will show that
there are different kinds of designs, some of them are likely to change rapidly, some others may
be stabilized more rapidly. The first category does not need to be to much well-documented al-
though the second one is more ready to this work.

2.10.2 TOP-DOWN & BOTTOM-UP APPROACHES

Traditional software development methods enforce a top-down approach (see figure 87). This is
quite a natural way of thinking and has big advantages for building complex systems: it gives a
method for breaking down a system in smaller parts easier to tackle directly. When those parts
are still too big to be treated, they can be broken down again. Finally, this is a good way of build-
ing rapidly a solution of a given problem.

Figure 87 -  Classical Top-Down Approach

New development methods based on the object-oriented technology tend to renounce to this type
of approach and insist more on bottom-up processes (see figure 88). It consists in building simple
components, which are supposed to simplify problem definition, and then building more sophis-
ticated components on the top of them, until the solution appears as a trivial application of the
ultimately developed tools

root

child level 2

child level 3

child level 4

D
es

ig
n 

pr
oc

es
s



Copyright 1995-96 by HOOD Users Group page 119

page -119
HOOD USER MANUAL 1.0 HUM-1.0

Figure 88 -  Layered Bottom-Up Approach

At a first glance, the bottom-up method may look like risky, since nobody can insure that this
process actually leads to a correct solution. A great amount of time may be spent to develop com-
plex components that will never or very partially be used during the current project. On the other
hand, as components are developed more or less independently of the current project, they are
more naturally reusable for new projects. Hence, after a starting period, a great number of low-
level objects can be picked up from related projects formerly developed. As far as we are con-
cerned, this point is very important.
Another point is to be mentioned. The top-down approach has been presented as the fastest way
to elaborate the architecture of a system, provided that clear and unambiguous specifications of
the problem have been given. Unfortunately this is almost never the case, as specifications are
often not entirely clarified before the delivery of the project. The common case shows the client
needs evolving during the development process, even during the maintenance phase. Within a
top-down approach, a small modification in the specification of a high-level object may induce
a complete redesign of the internal objects.
As we have seen that both approaches have advantages and drawbacks, we suggest an interme-
diate path between these two opposite ways of thinking (see figure 89). Two activities can be led
in parallel: the first one is in charge of building the architectural design in a traditional top-down
manner, while the second one is in charge of the construction or enhancement of reusable librar-
ies.
The first activity shall not overcome a depth of 2 (or 3 for big projects) levels of decomposition.
Every object produced in this phase has a good chance to become a non-terminal object. Thus it
can be considered as a good design practice to design them as simple abstract objects”. For de-
scribing these objects, emphasis shall be put on the H2 (“Informal Solution Strategy”) and H3
(“Formalization of the strategy”) chapters of the HOOD Chapter Skeleton. The HOOD informal
graphical description takes all its sense at this level.
The second activity can lead to the creation of a lot of terminal objects. It is important, for the
feasibility of this phase, to rely on a good managing tool for libraries of reusable components.
However some possibilities of structuring the reusable objects by grouping them into non-termi-
nal objects will be explained later. This technique allows designers to organize a reuse activity at
different level of granularity.

low-level Objects

high-level Objects

Intermediate-level Objects
D

es
ig

n 
pr

oc
es

s



Copyright 1995-96 by HOOD Users Group page 120

page -120
HOOD USER MANUAL 1.0 by HUM Working Group

Figure 89 -  Mixed Approach

This mixed approach imposes some constraints in the development process.
First of all, the previous phases (requirements, analysis) have to be modified in order to provide
two types of information: as usual, the general requirements of the system as a whole in order to
achieve the architectural design; but also, another analysis of these requirements in order to iden-
tify the low-level objects constituting the environment of the system.
Note that the integration step can be tricky. It is recommended that the architectural design team
has a correct idea of what it can get from the reusable libraries, and on the other hand, even
through reusable components should be created as independent as possible, it is preferable that
the team in charge of it has a correct understanding of the context where they will be used.

2.10.3 GENERAL GUIDELINES

This section gives general guidelines for producing “good” HOOD design, i.e. designs encour-
aging reuse and making evolution easier.
It is a hard work to give a complete list of all the advice that can help a designer in charge of
building a highly reusable and evolutionary software. It is even harder to find a good way of pre-
senting it. One can either provide very general rules that give the spirit of design with reuse, or
offer a plethora of very precise guidelines, well-documented and easy to understand. The main
drawback of the first solution is its difficulty to be applied to a particular case. The last solution
implies some experience to know where and when to apply a precise guideline and a good mem-
ory to remember so many rules.
As these two ways form a well balanced whole, both are presented. In a first part, the very few
fundamental rules are expressed. They are taken up again, completed, detailed and exemplified
in a second part.
These guidelines are provided with the following template:

• advice: an advice number, e.g.advice i and a short sentence summarizing the advice

 Architectural Design

Integration

 Reusable components



Copyright 1995-96 by HOOD Users Group page 121

page -121
HOOD USER MANUAL 1.0 HUM-1.0

• comments: detailed comments on the advice, including an explanation of why giving the ad-
vice, details on how to apply it...

• example: if necessary, an example illustrating the advice

2.10.3.1 General design techniques

This section contains the fundamental statements designers must have in mind during all the de-
sign process.

Advice 1 Design objects as independent as possible from their context.

Comments:While creating a design, designers have in mind the specification of the problem to
be solved. One of the most common un-reusable and anti-evolutionary practice consists in
defining objects with operations that are not part of their own functionalities but those of the
system itself. Objects must be understood as servers or tools that help solving the problem but
that should not solve a part of the problem by themselves.

Example:Suppose that we want to count the occurrence of each word in a text. Objects as Text,
Word and Occurrence model the problem space. Then, we need an object Map in order to
associate the words with their running occurrence. The good design practice is to design (or to
reuse) a general map that associates the keys (here words), with their values (here words
occur rences) .  Opera t ions  can  be ,  fo r  i ns tance ,Add_a_new_key ,
Change_the_value_of_a_key , Retreive_a_value_from_a_key.  A less correct
design solution would have been to define a specific map that automatically increments the
va lue ,  each  t ime the  key  i s  used  w i th  opera t ions  l i keAdd_a_new_key ,
Increment_the_value_of_a_key . It would have been interesting (but not so much) in
the context of this particular problem but would have lost its generality, and then the opportunity
to be reused elsewhere. Furthermore the “increment ” operation is quite easy to implement by
a simple expression of the general set of operations:Change_the_value_of_a_key  by
the value Retrieved from_the_same_key  incremented by one.

Advice 2 Do not over-specify objects

Comments:In the opposite, a well-intended designer may want to create real reusable objects. He
can try to imagine every context where the object could be reused, find exceptional cases and try
to solve them, although it has nothing to do with his current system design. This is a risk to spend
too much time and energy on this object forgetting actual purposes, all the system design being
delayed for non-tangible future advantages. Furthermore, the object being created has good
chances to become a kind of monster, willing to do everything but doing nothing correctly.

Advice 3 Use Simple Abstract Objects for higher-level objects and active objects.

Comments:This is detailed in advice 27. The next section exemplified the fact that high-level
objects fit often better with Simple Abstract Objects.

Advice 4 Prefer Abstract Data Types for passive terminal objects.

Comments:This is detailed in advice 26.

Advice 5 Take care of the direction of the USE relationship between objects.



Copyright 1995-96 by HOOD Users Group page 122

page -122
HOOD USER MANUAL 1.0 by HUM Working Group

Comments:There is often a design choice consisting in deciding when two objects need to
communicate, which one will be the client and which one will be the server. It may be a difficult
choice and this decision has to be taken carefully (see advice 20 and advice 21).

Advice 6 Do not use more than three or four levels of INCLUDE relationships in the archi-
tectural design.

Comments:In general, two till three levels is enough for the architectural design when applying
the mixed bottom-up & top-down approach previously presented.

Advice 7 Define the most obvious reusable parts as independent designs or classes.

Comments:The mixed bottom-up & top-down approach leads to split designs where reusable
parts are designed independently, allowing a relatively low number of levels, as said in advice 6.

2.10.3.2 Classified guidelines for reuse and evolution

This section presents advice for professional HOOD designers. This advice is intended to enforce
the potential reuse of the object being designed. It is grouped by themes:

• understanding and clarity: how to follow a good naming strategy.

• robustness: how to design objects that can be used even under unexpected conditions.

• Adaptability: how to design objects so that evolutions are easy and as localized as possible.

Some of the following advice is inspired by a guide for Professional Ada Programmers  and
Adapted to the HOOD context.

2.10.3.2.a Understanding and Clarity

Advice 8 Select the least restrictive names possible for the reusable objects and their identi-
fiers

Comments:nobody really knows the context of future reuse.

Advice 9 Reserve the best name for the Instance Object and the second best name for the
Class itself

Comments:When there is an obvious choice for a simple and clear name for the reusable object,
it is a good idea to keep this name for the instance, choosing a longer, more descriptive name for
the class. Thus,GENERIC_STACK is a better name thanSTACK for the class, because it leaves
the simplest nameSTACK available to be used for an instantiation.

Advice 10 Do not use any abbreviations in reusable objects and their identifiers.

Comments:If the object is really reusable, nobody can ensure that an abbreviation makes sense
in any context of future reuse.

2.10.3.2.b Robustness

Advice 11 Use symbolic constants to allow multiple dependencies to be linked to a small
number of symbols.



Copyright 1995-96 by HOOD Users Group page 123

page -123
HOOD USER MANUAL 1.0 HUM-1.0

Comments:The evolution process often implies small changes in dependencies. The possibility
to map the new dependencies just by changing few constants greatly improves the ease of reuse
and greatly reduces the number of opportunities for errors.

Example: Figure 90 - is an example of using constants. Some of the symbols, those which are
likely to evolve and thus have to be changed in future systems may be declared and defined in
the provided interface. The other ones may only be declared in the provided interface and defined
in the internals. HOOD gives this possibility to enforce information hiding at the design level.

When implementing such a design, you may or may not have a direct mapping depending on the
target language you use. For example, Ada gives the possibility to define private types (even if
it forces the definition to be in the specification part). Other target languages (such as C, pascal,
Fortran,...)do not offer this possibility. But in any case, the principle remains the same at design
level.

Figure 90 -  Definition of a disk driver and its associate properties

Advice 12 Use unconstrained array types for formal parameters and array return value.

Advice 13 Make the size of the local variables depend on actual parameter size where appro-
priate.

OBJECT Disk_Driver is ACTIVE
DESCRIPTION

--| description |--
IMPLEMENTATION_CONSTRAINTS

--| constraints |--
PROVIDED_INTERFACE

TYPES
SectorRange ;
TrackRange ;
SurfaceRange ;
Track_Map         is array (Sector_Range)  of ...;
Surface_Map       is array (Track_Range)   of Track_Map;
Disk_Map          is array (Surface_Range) of Surface_Map;

CONSTANTS
Number_Sectors     : constant Integer := 4;
Number_Tracks      : constant Integer := 200;
Number_Surfaces    : constant Integer := 18;
Sector_Capacity    : constant Integer := 4096;
Track_Capacity;
Surface_Capacity;
Disk_Capacity;

...
INTERNALS

TYPES
SectorRange    is range 1 .. Number_Sectors ;
TrackRange     is range 1 .. Number_Tracks ;
SurfaceRange   is range 1 .. Number_Surfaces ;

CONSTANTS
Track_Capacity   : constant := Number_Sectors * Sector_Capacity ;
Surface_Capacity : constant := Number_Tracks * Track_Capacity ;
Disk_Capacity    : constant := Number_Surfaces * Surface_Capacity ;

provided & hidden types

provided & visible types

provided & visible constants

provided & hidden constants



Copyright 1995-96 by HOOD Users Group page 124

page -124
HOOD USER MANUAL 1.0 by HUM Working Group

Comments:This is the best way of defining reusable operations on arrays. The local variables are
correctly dimensioned in any case.

Example: Figure 91 - gives an example of defining an array.

Figure 91 -  defining an array

Advice 14 Be careful about overloading the names of provided operations in a HOOD Class

Example: Figure 92 - is an example of an INPUT_OUTPUT class. If this class is instantiated in
a IO_INTEGER object (see figure 93), the two Put operations have identical interfaces, and all
calls to Put are ambiguous. Therefore this class cannot be used with the type Integer (and its sub-
types).

Figure 92 -  two different put operations

Figure 93 -  instantiation ofINPUT-OUTPUT
In such a case, it is better to give unambiguous names to all operations.

Advice 15 Use exceptions carefully. Use exceptions only for uncontrolled errors and handle
anticipated errors specifically in the object.

Comments:There are problems in using freely exceptions. The first point is that using exceptions
is not fully compliant with the encapsulation principle. On another hand, using exceptions may
lead to problems while coding, depending on Ada comSTACKrs. There are two types of error
processing: uncontrolled and anticipated. Uncontrolled errors may be managed by using
exceptions. This include Ada predefined exceptions. Uncontrolled means errors can occur at any
moment and are not specific to an object. Anticipated exceptions are for instance the example of

INTERNALS
TYPES

Vector  is array (Index range <>)                 of Element ;
Matrix  is array (Index range <>, Index range <>) of Element ;

OPERATION_CONTROL_STRUCTURES
OPERATION Matrix_Op(A : in Matrix) IS

...
CODE

Workspace : Matrix(A'RANGE(1), A'RANGE(2));
TEMP_V    : Vector(A'FIRST(1) .. 2 * A'Last(1));

...

OBJECT INPUT_OUTPUT is CLASS PASSIVE
FORMAL_PARAMETERS

TYPES
Items is limited private;

PROVIDED_INTERFACE
OPERATIONS

Put(Item : in Integer);
Put(Item : in Items);

OBJECT IO_INTEGER is INSTANCE_OF  INPUT_OUTPUT
PARAMETERS

TYPES
Items => Integer;

...



Copyright 1995-96 by HOOD Users Group page 125

page -125
HOOD USER MANUAL 1.0 HUM-1.0

the stack with theis_empty  operation; they are “part of” the object. All which is specific to an
object has to be treated as an error processing specifically in the object, otherwise use (carefully)
exceptions.

Advice 16 Propagate exceptions out of reusable parts. Handle exceptions internally only when
you are certain that the handling is appropriate in any circumstance.

Advice 17 Always propagate exceptions raised by class formal operations.

Advice 18 Always come back to the last correct state of the object when raising an exception.

Advice 19 Always leave parameters unmodified when raising an exception.

Comments:When designing a reusable component, exception handling must be done carefully
and seriously. It is generally not possible to handle exceptions internally, because the
environment may vary a lot from one case to another, especially when it occurs during the
evaluation of a formal operation. So exceptions have to be propagated. But before propagating
the exceptions, designers must be sure that the object is left in a correct state.Figure 94 - shows
how to handle an exception in order the regenerate a correct state before propagating the error.

Figure 94 -  A generic stack providing a print operation

OBJECT PRINTABLE_STACKis CLASS PASSIVE
FORMAL_PARAMETERS

TYPES
Items is limited private;

CONSTANTS
SIZE: Integer;

OPERATIONS
Put   (Item: in Items);

PROVIDED_INTERFACE
OPERATIONS

Push (Item: in Items);
Pop   (Item: out Items);
Print;

EXCEPTIONS
X_Stack_full;

INTERNALS
TYPES

Stack_Range is Integer range 1.. SIZE;
Stack is array(Integer range <>) of Items;

DATA
Top: Integer := 0 ;
The_Stack : Stack(Stack_Range) ;

OPERATION_CONTROL_STRUCTURES
OPERATION  Print is
...

PROPAGATED_EXCEPTIONS
others ; --| all the exceptions raised during the formal operation "Put" are propagated |--
CODE

begin
...
begin

Put(The_Stack(i)) ;
exception
when others ==>

COME_BACK_TO_A_CORRECT_STATE;
raise ;  -- propagation outside

end ;



Copyright 1995-96 by HOOD Users Group page 126

page -126
HOOD USER MANUAL 1.0 by HUM Working Group

2.10.3.2.c Adaptability

Advice 20 Minimize the number of objects a reusable object uses.

Comments:A “good” reusable (stable) object is used by a lot of other objects but uses as few
other objects as possible. No object used is perfect but only applies to a limited type of objects.

Advice 21 Minimize the number of objects using objects that may vary.

Comments:this is similar to the previous advice. This is related to the principle of low coupling,
enforced by the notion of variabilities. The objective is to minimize the impact of changes
propagating following the USE relationship, by minimising the USE relationships to objects
which have been identified as potentially variant.

Example:a simulator simulates or is connected to a certain number of satellite sub-systems of
different types (for instance power subsystem, attitude and orbit control subsystem,...). One to N
specific objects of this type may be present in a Simulation object. In that case, it is good to
minimize the number of objects using this kind of Sub-systems objects; this avoids changing the
Required Interface in the object(s) using them.

Advice 22 Provide complete functionality in objects. Provide initialization, reset and termina-
tion operations when appropriate.

Comments:This is particularly important when designing an abstraction. The essence of Object-
Based Design is the design of complete abstraction even if it is not required in the current
application. When possible, an abstraction should be initialized automatically. Probing
operations may be provided to determine limit cases, so that the user can avoid causing
exceptions to be raised.

Advice 23 Use HOOD Classes to avoid code duplication

Advice 24 Parameterize Classes for maximum Adaptability

Advice 25 Use Classes to encapsulate algorithms independently of data type.

Example: Figure 95 - is an example of a class representing an object to sort data independently
of data type.



Copyright 1995-96 by HOOD Users Group page 127

page -127
HOOD USER MANUAL 1.0 HUM-1.0

Figure 95 -  an object to sort data

There can be different instances: an instance for sorting integers (see figure 96),

Figure 96 -  Instance for sorting integer
an instance for sorting strings (see figure 97),...

Figure 97 -  Instance for sorting string

Advice 26 For passive objects, use Abstract Data Types in preference to Abstract Data Ob-

OBJECT SORT_SERVER is CLASS PASSIVE
FORMAL_PARAMETERS

TYPES
Element is limited private ;
Data is array(Integer range <>) of Element;

OPERATIONS
"<"(Left : in Element; Right : in Element) return Boolean is <>;
Swap(Left : in out Element; Right : in out Element) ;

PROVIDED_INTERFACE
OPERATIONS

Sort(Data_to_Sort : in out Data);
INTERNALS

OPERATION_CONTROL_STRUCTURES
OPERATION Sort(Data_to_Sort : in out Data) IS
...
CODE
begin
...
for  I in  Data_to_Sort' range loop
...

if  Data_to_Sort(I) < Data_to_Sort(J) then
--| use of formal "<" |--
swap(Data_to_Sort(I), Data_to_Sort(J)) ;
--| use of formal "swap" |--

end if ;
...
end loop ;

OBJECT SORT_INTEGER is INSTANCE_OF  SORT_SERVER
PARAMETERS

TYPES
Element => Integer ;
Data    => UTIL_INTEGER.Table;

OPERATIONS
Swap    => UTIL_INTEGER.Swap ;

...

OBJECT SORT_STRING is INSTANCE_OF  SORT_SERVER
PARAMETERS

TYPES
Element => UTIL_STRING.Line ;
Data    => UTIL_STRING.Table_of_Line;

OPERATIONS
Swap    => UTIL_STRING.Swap_Line;

...



Copyright 1995-96 by HOOD Users Group page 128

page -128
HOOD USER MANUAL 1.0 by HUM Working Group

jects.

Comments:The biggest advantage of an ADT over an ADO is that the user can declare as many
objects as desired with an ADT. These objects can be used as part of other objects: they can be
declared as components of arrays or records. They can be used to instantiate classes with formal
type parameters. Finally, this is the only way to cope with a dynamic number of objects.

Advice 27 For active objects, use Abstract Data Objects in preference to Abstract Data Types.

Comments:The problem with ADT in HOOD is that there is only one “HOOD Object” defined
and visible in the design and maybe a lot of “real objects” instantiated from this ADT, hidden in
the internal part of terminal HOOD objects. Since the object is passive, this is not a real problem,
but as soon as the object becomes active it is not recommended. The Ada language allows the
building of correct concurrent ADT, but it is not a simple matter. Booch has proposed different
models for concurrent ADT in the famous[GON 90]: the guarded form, the concurrent form and
the multiple form. [GON 90] has proved that at least the concurrent form was erroneous because
it was depending on the parameter passing semantics which can differ from a compiler to another.
Finally [CAR 91] proposed a seemingly correct form for concurrent ADTs. This form relies on
a Task type hidden by a private type definition. Even if this model seems to be correct and
satisfactory, it is not easy to use it with the HOOD formalism. With HOOD, the principle of
active objects is that the behaviour is described within the OBCS and typically the OBCS is one
task. In any case, as explained in [CAR 90]the use of Abstract State Machine (i.e. Abstract Data
Object) is a good software engineering practice for concurrent components.

Advice 28 Use HOOD Classes to implement Abstract Data Types and Abstract Data Objects
independently of their component data type.

Comments:this is the standard way of generalizing ADT and ADO.

Example:The example of the bounded stack shows different means to represent the size
constraint of a bounded structure.

• a provided constant: inBOUNDED_STACK andBOUNDED_STACKS, MAX_STACK_SIZE
is a provided constant used in internals as the size of the array implementing the stack.

• a constant formal parameter: inBOUNDED_GENERIC_STACK (see figure 98),
MAX_STACK_SIZE is a formal constant parameter used in the same way.



Copyright 1995-96 by HOOD Users Group page 129

page -129
HOOD USER MANUAL 1.0 HUM-1.0

Figure 98 -  Generalization of the simple ADO BOUNDED_STACK

• a discriminant of a private type: inBOUNDED_GENERIC_STACKS (see figure 99),
MAX_STACK_SIZE is a discriminant used for constraining the array component of the in-
ternal stack record.

Figure 99 -  Generalization of the simple ADTBOUNDED_STACKS
These three cases imply to choose the actual size of the structure at different moments.

• in the first case, the decision is taken when designing the object itself. Changing this value
means changing the object and it may have important consequences (re-code generation, re-
compilation, re-validation etc.).

• in the second case, the decision is taken when instantiating the class.The class definition has

OBJECT BOUNDED_GENERIC_STACKis CLASS ACTIV E
DESCRIPTION

--| a protected stack as an abstract data object |--
FORMAL_PARAMETERS

TYPES
Elements is limited private;

CONSTANTS
MAX_STACK_SIZE : NATURAL  := 100;

OPERATIONS?
Assign(From : in Elements; To : out Elements);

PROVIDED_INTERFACE
OPERATIONS

Push(Item : in  Elements) ;
Pop (Item : out Elements) ;

EXCEPTIONS
X_OverFlow ;
X_UnderFlow ;

OBJECT BOUNDED_GENERIC_STACKSis CLASS PASSIVE
DESCRIPTION

--| a simple generic stack as an abstract data type |--
FORMAL_PARAMETERS

TYPES
Elements is limited private;

OPERATIONS
Assign(From : in Elements; To : out Elements);

PROVIDED_INTERFACE
TYPES

Stacks(MAX_STACK_SIZE: Natural := 100) is limited private ;
OPERATIONS

Push(Stack : in out Stacks; Item : in  Elements) ;
Pop (Stack : in out Stacks; Item : out Elements) ;

EXCEPTIONS
OverFlow ;
UnderFlow ;

INTERNALS
TYPES

Stack_Body  is array(Positive range <>) of Items;
Stacks(MAX_STACK_SIZE: Natural := 100) is record

Top  : Natural := 0;
Body : Stack_Body(1..MAX_STACK_SIZE);

end record;



Copyright 1995-96 by HOOD Users Group page 130

page -130
HOOD USER MANUAL 1.0 by HUM Working Group

not to be modified.

• in the third case, the decision is taken when designing the object using the stack, for examples
by declaring a value of the provided type. In particular, the actual size may only be known at
run-time, the same instance of the class is able to produce values of different sizes.

Advice 29 Use limited private types (not only private) for Class formal types parameters, ex-
plicitly importing assignment and equality operations if required.

Comments:For a class to be usable in as many contexts as possible, it should minimize the
assumptions that it makes about its environment and should make explicit any assumptions that
are necessary. A formal limited private type prevents the class from making any assumptions
about the structure of objects of the type, or about operations defined for such objects. A private
formal type (non limited) allows the assumption that assignment and equality are defined for the
type. Thus, a limited private type can not be specified as the actual parameter for a private formal
type.

Example: Figure 100 - is an example of what not to do, whereasFigure 101 - is an illustration
of the advice.

Figure 100 -  A class violating Advice 29

Figure 101 -  The same class respecting Advice 29

OBJECT H_LIST is CLASS PASSIVE
TYPES

Items is private;
Keys  is private;
OPERATIONS

Key_Of(Item : in Items) return Keys;
PROVIDED_INTERFACE

TYPES
Lists is limited private ;

OPERATIONS
Insert  (List : in out Lists; Item : in  Items);
Retrieve(List : in out Lists; Key : in Keys; Item : in out Items);

....

OBJECT H_LIST is CLASS PASSIVE
TYPES

Items is limited private;
Keys  is limited private;

OPERATIONS
Key_Of(Item : in Items) return Keys;
Assign(From : in Items; To    : in out Items);
“=”   (Left : in Keys ; Right : in      Keys) return boolean;

PROVIDED_INTERFACE
TYPES

Lists is limited private ;
OPERATIONS

Insert  (List : in out Lists; Item : in  Items);
Retrieve(List : in out Lists; Key : in Keys; Item : in out Items)

 ....



Copyright 1995-96 by HOOD Users Group page 131

page -131
HOOD USER MANUAL 1.0 HUM-1.0

Note that the first example implicitly defines equality and assignment for both formal types
items  andkeys  even though the second example only defines assignment foritems  and
equality forkeys  which is sufficient. Although the first example seems shorter, it makes too
much assumptions on its formal parameters and is then less reusable.

2.10.4 ADVANCED TECHNIQUES

This section contains details on HOOD specific advanced techniques which are to be known by
designers to build reusable and easily evolving designs. Among these techniques are the use of
classes and virtual nodes.

2.10.4.1 Transforming objects into HOOD3 classes

Coupling between objects has to be avoided as often as possible (principle of weak coupling),
and especially for reusable objects. A potential user is less ready to reuse an object if it requires
the use of other parts which seem unnecessary. This “extra luggage” wastes time and space. Cou-
pling between reusable parts should only occur when it provides a strong benefit perceptible to
the user.
A technique to postpone coupling is now presented. When a reusable object needs services from
some other ones, it is possible to transform the direct dependency (required interface) into gener-
ic parameters (class formal parameters).

Figure 102 -  an Object with explicit dependency
As shown inFigure 103 -, it is sufficient to move the required constants, types and operations
from the required interface (see figure 102) to the formal parameters(see figure 104).

OBJECT EXEMPLE is PASSIVE
...
REQUIRED_INTERFACE

OBJECT LIST
TYPES

Lists;
OPERATIONS

Insert(List : in out Lists; Item : in  Elements);
Remove(List : in out Lists; Item : out Elements);



Copyright 1995-96 by HOOD Users Group page 132

page -132
HOOD USER MANUAL 1.0 by HUM Working Group

Figure 103 -  de-coupling a reusable object

Figure 104 -  Transformation of the above Example into a class
This is not possible in any situation due to constraints on formal parameter format. But this kind
of practice is very easy when the required objects have an interface corresponding to standard
ADOs and ADTs (only private provided types and operations on them).
This technique, when correctly applied gives a lot of benefits. For instance, when the reusable
components library contains different forms of the same reusable object (bounded and unbound-
ed, protected and unprotected, managed and unmanaged list) you are not obliged to bind your
new reusable object with one particular form, the choice can be delayed until the reuse stage.
Moreover, it is a good way to reduce dependency between objects enabling to reuse in different
and unpredictable contexts: in the above example, only one insert and one remove operations
were required on a certain abstract type, thus whatever object providing this functionality may
be used to instantiate the class even when it has been designed for something absolutely different.

2.10.4.2 Using Virtual nodes

A feature of HOOD which should be more used is the concept of virtual node.
A virtual node is a collection of HOOD objects defining a unit of distribution. This unit of distri-
bution is allocated later onto a physical node. The activities of a virtual node consists of local
operations and communications as well as remote ones with other virtual nodes.

Object

operation1

class

operation1

instance :

operation1

coupled reusable object

not-coupled reusable
class

coupled reused instance

Object

Insert
Remove

Object

Insert
Remove

OBJECT EXEMPLE is CLASS PASSIVE
...
FORMAL_PARAMETERS

TYPES
Lists is limited private;

OPERATIONS
 Insert(List : in out Lists; Item : in  Elements);
Remove(List : in out Lists; Item : out Elements);

REQUIRED_INTERFACE
NONE

INTERNALS
--| Exactly the same a the coupled Objects unless that the dotted notation

shall not be used with Insert & Remove operations |--



Copyright 1995-96 by HOOD Users Group page 133

page -133
HOOD USER MANUAL 1.0 HUM-1.0

Figure 105 -  level decomposition of a terminal Virtual Node

A distributed application is structured into virtual nodes accordingly to HOOD model. Thus vir-
tual nodes are defined in a Virtual Node Tree where terminal virtual nodes are defined by allo-
cating HOOD objects from different HOOD Design Trees.
The interest of virtual nodes resides in the fact that they free the designer of the exact hardware
configuration while designing software. This very useful for reuse and evolution since the logical
architecture is independent of distribution choices.
Within a terminal virtual node, it is recommended to identify the different types of logical objects
and to separate them in separate levels:

• the applicative level contains objects defined according to functional requirements. They are
independent of physical implementation and communication means

• the basic level contains objects dealing with physical implementation and communication
means, independently of the application

• the intermediate levels contain objects allowing the two previous levels to communicate

An example of such an organisation is given inFigure 105 -. The applicative level is isolated in
Simulation_Application  which implements real services.TCP_IP_Interface  be-
longs to the basic levels and provides communication with the virtual node
Operator_Station . Operator_Station_Interface  is a virtual server object of the
intermediate level.Controller  manage the application and receive messages from
TCP_IP_Interface .

V Simulation_Unit

V Operator_Station

A Controller

Manage
ASER

Simulation_Application

Operator_Station_Interface

{Operator_Station_Services}

TCP_IP_Interface

S

{Real_Services}

{Real_Services}

Send
Receive



Copyright 1995-96 by HOOD Users Group page 134

page -134
HOOD USER MANUAL 1.0 by HUM Working Group

2.10.5 SUMMARY ON HOOD & REUSE

As a conclusion to this section, we shall summarize some of our conclusions based on our expe-
rience one reuse, and addressing the most important questions when wanting to go reuse:

• what is reusable?

• how do reusable?

2.10.5.1 What to Reuse?

From our experience, we have identified the following kind of reusable entities:

• applicative domain entities,where a number of reusable entities can be found, but their re-
use is never straight forward. For a domain likecompilation, one might for example find a
simple lexical analyser up-to the full Ada compiler, but a reuser will never find the right com-
ponent just suited to its last syntactic analysis problem. Briefly speaking, and according to
the domain, the reuser may often be in trouble for choosing some component:

- the one very suitable, but very difficult to Adapt in the target environment,

- the one possibly suitable, but whose properties are hard to find or not available,

- the one that his colleague has already flagged asbugged

- the one which is to be fully completed, but also a heavy piece for the job,

- the one easy to understand, but not flexible to support any extension

• utilities  and small programming utilities (such as data structure management modules, I/O
handling modules, iterator handling modules -possibly implementing abstract data types-)
which are always present in most software. These are components which can be fully mas-
tered by the reuser and should provide for merely direct selection, thanks to their low com-
plexity. However, (at least in the beginning of reuse) due to previous “reuse-blind-
development”, these components (when not properly designed as implementation of abstract
data types) require still too often a real Adaptation effort to make them work in their new use
environment.

• Lessons learned here are thatfor a component to be reusable, it should be designed as an
implementation of an ADT (Abstract Data Type), and possibly built on top of other ADT
implementations, as the only criteria which reduces significantly Adaptation effort, and at the
same time increasing testability.

• required environment entities (Documentation, tests, test sets). Besides the source code,
it appeared as important to be able to get access to a component required environment in or-
der to allow Adaptation. Although we could only get code components in our experimenta-
tion, we think this feature as most necessary for making reuse effective.

2.10.5.2 How to Do Reusable?

Practising reuse highlights problems related to:

• understandibility of potential components

• tuning work of a selected component within its new working environment



Copyright 1995-96 by HOOD Users Group page 135

page -135
HOOD USER MANUAL 1.0 HUM-1.0

It seems thatreusable components (and even reusable structures of any type)should have three
fundamental and orthogonal properties:

• modularity: components should be self-documented and “self-handable” entities whose de-
pendencies should be limited and/or systematically stated. As such, the concepts of object
orientation enforcing abstraction and encapsulation ofprovided interface, as well as specifi-
cation ofrequired interface are of primary importance. Their application can lead to better
understandibility of modules, hiding complexity and where consistency is still verifiable
through controlled dependency and visibility rules. Especially these rules should banish any
implicit visibility  what would increase the understanding effort.

• In any case the associated documentation must be “self content” and shall not have any for-
ward or aside references.

• invariance which characterises the ability of a structure to resemble an ideal one or/and a
standard one. It is easy to imagine that for an application domain where systems with similar
functionalities are developed, there exist, in theory, an ideal organisation and structures that
performs the best trends achieving the best properties. Such an architecture and associated
definition of its components can be progressively refined through capitalisation of the design
experience when the system is refined version after version. Also such an architecture could
be defined after a conceptual analysis into a logical/functional architecture which is
elaborated independently of any non functional and target constraints(that is by sup-
posing an ideal environment).

• An architecture that supports, e.g. structuring principles by grouping code implementing log-
ically related properties,especially by defining components as implementation of abstract
data types, allows thedefinition of interfaces that are invariant between some parts, say
applicative ones, and some others, say the target support environment. This latter may itself
be implemented as a set of implementations of abstract data types, whose properties define a
“virtual ideal machine”, anddefine formally the separation of the applicative part from
the underlying target system.

• independence with respect to environment and/or target systems allowing definition of port-
ablecomponents, or not dependent from target characteristics.One sees that such prop-
erty can be gained “by construction” if the architectural principles outlined above have
been satisfied.

• The availability of a number of basic components is a condition for the building of larger
scope components by using composition mechanisms according to the same architectural
principles. It is even possible in the future to come to a definition of components with high
abstraction and reuse value and still having these three fundamental properties.



Copyright 1995-96 by HOOD Users Group page 136

page -136
HOOD USER MANUAL 1.0 by HUM Working Group

2.11 HOOD AS A COMMON DEVELOPMENT
FRAMEWORK

A commonly agreed observation on software development projects is that a unique method can-
not cover all development activities. This is why HOOD has always to be put in work together
with different methods either in the upper or lower phases of the design activities. Some projects
came even to the conclusion that since the design activities are central in the development life-
cycle, HOOD could be used as the framework for integrating the different development activities
and methods.
Software development consists in fact in producing successive models of the future system using
methods and models at different levels of abstraction that are each time better suited to the goals
of a current development activity:

• conceptual analysis modelsare used in the upper phases and activities to describe the prob-
lem entities with terms, entities, abstractions that are from the domain, and in a way com-
pletely independent of any implementation choice.

• design or architecture models allow to describe the components of a solution that can be
associated to a problem description in terms of structures, abstractions and behaviours.

• implementation modelsallow to describe the mapping of previous functional components
onto an execution structure (that is tools and supporting services of the target system).

In order to produce all these models, a limited number of methods could be identified for a
project, where HOOD could a central method to capture the reference representation of the sys-
tem to be developed.

Figure 106 -  Models and Components of a complex software architecture

CONCEPTUAL
MODELLING

ARCHITECTURAL MODELLING IMPLEMENTATION
MODELLING

SADT

OOA, OOD

NIAM

AEF

E_A

OMT

Development activities of
KIS line

Development activities of
DBMS line

Development activities of
MMI line

Development activities of
APPLICATION line

Target MACHINES
distributed, parallel, specialized

Tools & Environments
KB Support Environment
C++,C,LISP

 OOP,C++
OSTORE

OOP,C,C++

REQUIREMENT
ANALYSIS
activities

V

V

V

V

Tools & Environments
RDBMS, O_DBMS

Tools & Environments
UIMS, MOTIF, X_WINDOW

Tools & Environments
OS, Distributed OS &
Services

REFINEMENT

KOD

with HOOD



Copyright 1995-96 by HOOD Users Group page 137

page -137
HOOD USER MANUAL 1.0 HUM-1.0

Figure 106 - above summarizes the modelling activities of a development classified in three
groups, each of which being supported by specific methods and tools:

• Conceptual modelling activities tent to grasp problem entities and try to give a formal mod-
el of them. In these activities one finds techniques and methods of requirement analysis and
engineering.

• Architectural modelling activities tent to formalize associated solutions items. In these ac-
tivities one finds design techniques and methods.

• Implementation modelling activities are refinement techniques leading to implementation
on specific targets. In these activities one finds coding techniques (manual or automated
through 4th generation tolls and languages)

All these different activities may be composed according to the understanding and the level of
mastering of the development. Activities are however chained and triggered according to the fol-
lowing principles:

• COMPLEXITY and PROBLEM SOLVING REFINEMENT going from conceptual models
towards implementation through design and architectural ones.

• TECHNOLOGICAL REFINEMENT along specialized lines of activities: the development
of a data processing system may involve

- an MMI development line focusing on the development of the Man Machine Inter-
face, that uses the technology of UIMS (User Interface Management System or Generator)
and windowing management standards.

- a DBMS development line focusing on the data handling and storing, possibly tied to
the knowledge that are manipulated. These activities are dealing with the definition of data
models, Database schemes and rely on Relational and Object DBMS tools.

- an APPLICATION development line concerned with the development of the core ap-
plication and interfaces that corresponds to classical software engineering activities and
which rely on host OS services and target system features.

- a KBS line when the system comprises a Knowledge System and Inference system asso-
ciated to the development of KBS

In Figure 106 -,the sequence of the different methods is not defined, but one can see that differ-
ent methods shall be used for the conceptual modelling of the requirements (SA methods were
intensively used, but now more and object oriented analysis methods jump in).
Using a standardized representation such as the HOOD one, allows the developer to have a per-
tinent representation of both the top-level decomposition of the system as well as for each of each
component. This is an important progress towards the full mastering of the development process,
because the actors of the development are now provided with a reference and communication
framework, that is independent of the use of a specific technologies.
Moreover HOOD representations can be used as the communication and synchronisation tool for
mastering the different development lines and ensuring proper final integration



Copyright 1995-96 by HOOD Users Group page 138

page -138
HOOD USER MANUAL 1.0 by HUM Working Group

2.11.1 INTEGRATION OF MULTIPLE-DEVELOPMENT TECHNOL-
OGIES

The modelling activity of an architecture is a main activity in the development of complex sys-
tems, and must allow a smooth transition from

• the conceptual models produced by the analysts,

• to the implementation models and associated constraints.

Such developments may in fact include several lines of activities, each of which is relying on a
different technical approach, but worked out and Adapted to the specific application domain. As
an example, the MMI (Man Machine Interfaces) are developed more and more using an UIMS
(User Interface Management System), and the data management systems, with the help of appli-
cation generators (or 4th generation tools).
Hence a development of such a system is rather a set of more or less parallel lines of technology
independent activities. These latter must bescheduled, synchronised, and interface mastered to
support the associated management activities in a life cycle framework.
The interfaces between the differentsubsystems (or sometimes software layers) associated to the
activity lines can be formalised as abstract data types that factor the exchanged data and provide
for a common representation whatever the activity context. The use of HOOD, as the common
representation formalism for the different lines jumps in naturally and brings several benefits:

• external representation (defining formally the interfaces of a component) standardised
through HADT concepts,

• use (for the internals of the component) of the best suited formalism according to the tech-
nology supported by each activity line; whereas the relationship towards the other external
technologies are always captured by HADT descriptions,

• definition of transformation rules from the common representation formalism towards an im-
plementation formalismallowing final code merging. (for example ADT towards Object pro-
gramming language, or ADT toward HOOD ODS and Ada, or ADT towards HOOD ODS
and a sequential language.)

Figure 107 - below illustrates such a model represented with HOOD graphical formalism. Four
objects associated to four development lines partition the system into technological modules that
exchange data, that are again described through HADT objects represented as uncle objects
where:

• the access interface to a datum (with all services provided to its clients) is formalised by the
set of operations that manipulated the associated type (creation, update of a sub field, read,
delete, checks, etc.) in a HADT object.

• further refinement of HADTS producing HADTS of less complexity up to terminal specifi-
cation directly implementable in a target OO language, is based on the graphical extension
and visibility restrictions outlined in section 4.3 above.

• ADT_Applis_DATAgroups the definition of HADT objects associated to data exchanges be-
tween MMI and/or APPLICATION.

• ADT_KNW_DATAgroups the definition of HADT objects associated to data exchanges be-
tween the inference system and the DBMS.

• ADT_DBMS_DATAgroups the definition of HADT objects associated to data exchanges be-
tween MMI and/or APPLICATION with the DBMS, where:

- either dataflows between DBMS and APPLICATION and/or MMI are direct instances of



Copyright 1995-96 by HOOD Users Group page 139

page -139
HOOD USER MANUAL 1.0 HUM-1.0

abstract data types associated to the definition of the data model supported by the DBMS.

- either dataflows are build from abstract data types and define formally the interface be-
tween APPLICATION and/or MMI and the DBMS

Figure 107 -  HOOD Architectural Model of a complex information system

Applis_data

herSystem

ASER_by_IT UNIX_shell

INFORMATION _SYSTEM

Start
{Operator_Ops}

Start
{Put_Ops}
{Get_Ops}
{Mngt_Ops}

Start
{Put_Ops}
{Get_Ops}
{Mngt_Ops}}

Start
{Put_Ops}
{Get_Ops}
{Mngt_Ops}

X_init_data

Sgbd_items

Applis_data

Sql_data

Knowledge_data

DBMS_Items

Knowledge_Items

I_DBMS

MMI

I_ESG

APPLICATION

X_LIBRARIES

Applis_dataKnowledge_data DBMS_Items DBMS

Start



Copyright 1995-96 by HOOD Users Group page 140

page -140
HOOD USER MANUAL 1.0 by HUM Working Group

2.11.2 CONCEPTUAL AND BEHAVIOURS MODELLING

The features and properties of HOOD3.1 designs allow the implementation of a phased develop-
ment approach relying on the following principles:

• definition of an initial solution model by abstracting away from implementation with well
separated descriptions associated to the different characteristics of the model:

- the structural properties are described in terms of HOOD objects and relationships within
the scope of a system-configuration

- the functional properties describing what a HOOD software does in terms of sequential
executions are described in OPCSs

- the dynamical properties describing the significant state transitions of a system within
OBCS of objects.

• Consistent refinement leaving initial models invariant
The invariance of an initial HOOD model is obtained through use and include relationship
properties:

- the include relationship allowsto refine a HOOD model by addition of new child objects,
leaving their parent external specifications unchanged.

- the use relationship allows to refine the implementation of internals OBCS and OPCs and
Types and Data by requiring services provided by Environment objects.

The consistency between different model descriptions at different levels of details is
ensured by:

- the formalization of the ODS into:

- external/public specifications and properties which are frozen as soon as the object is
identified as a child within its parent.

- internal properties, which can be refined without impacting on external specifications
and either as in an implementation of a child service or in a target language implemen-
tation description

- the ODS documentation concept whichintegrates the different characteristics of an object
within description fields, where natural language or more formal notations can be
used.The ODS into descriptions fields comprising:

- informal textual description parts allowing expression of characteristics allowing the
use of informal verification techniques.

- more formal description parts (PSEUDO_CODE, CODE) allowing the use of specific
notations to capture formally associated properties.

- code description parts which directly reflect the translation of the properties into a target
language.

The integration of object properties and supporting notations which is achieved in the ODS con-
cept, together with the unique properties of the include relationship provide HOOD with power-
ful modelling and design features.



Copyright 1995-96 by HOOD Users Group page 141

page -141
HOOD USER MANUAL 1.0 HUM-1.0

2.11.3 DYNAMIC BEHAVIOUR MODELLING

Dynamic behaviour modelling and evaluation is an important issue for real time and critical soft-
ware, especially when one knows that most of errors detected on such systems come for bad mas-
tering of dynamic behaviour.
The clear separation enforced by HOOD for the description of OBCS and OPCS structures makes
it possible to:

• use suitable notation to capture, possibly formally, the behaviour associated to states and
transitions defining the semantics of an object

• use classical sequential languages to describe the semantics associated to sequential process-
ing within the OPCss.
 Note however that formal notations can also be used, namely algebraic specifications or
mathematically based notations as illustrated using Z[GIOVA89]

• apply a development approach where the two lines of development are separated.

The separation of OBCS and OPCS parts can even be enforced down to the implementation into
a target languages and systems. The code generation rules defined in the HOOD Reference Man-
ual HRM[1]recommend to group the OBCS implementation associated to constrained operation
into a dedicated target unit:

• in case of an Ada target this unit is named <object_Name>.OBCS and may implement both
execution request and internal state constraints using the Ada tasking semantics.

• in case of non Ada targets (or when a non Ada executive is used) the unit
<object_Name>.OBCS may implement the operation constraints through calls to a real time
library or OS services providing the synchronization mechanisms needed (Semaphores,
mailboxes, wait-for event or wake-up event services

Figure 108 -  Target Code architecture associated to OBCS and OPCSs

OPCS_a

NAME

Required _NAME
a
b
c

NAME_BODY

OPCS_c

OPCS_b

OBCS_Implementation

OS_Services

a
b

NAME_SPEC

Implementation of OBCS
behaviour through
synchronisations on OBCS
entries and call to OS
services and calls to
OPCSs

Representation of a HOOD
OBJECT with constrained
operations

REPRESENTATION
of associated
target code units

a
b
c

OBCS Required_NAME



Copyright 1995-96 by HOOD Users Group page 142

page -142
HOOD USER MANUAL 1.0 by HUM Working Group

Figure 108 - gives a block diagram of such a target architecture. Target units may represent Ada
package specification and body units. Note that constrained operations are mapped into OBCS
entries and that non constrained operation are mapped directly into OPCS bodies.

2.11.3.1 Extended Object Execution Model

In the above section we gave the code generation principles for basic execution constraints at-
tached to operations. However the implementation of more complex execution requests associ-
ated to communication protocols must also be defined. InFigure 109 - below an extended
execution model in terms of HOOD objects, defines a standard architecture for implementation
of any execution constraints, where:

• I_INTERFACE defines a set of interface units tasked with handling the execution requests
(ASER,HSER,LSER,TOER) from clients, and to transmit these request to the OBCS as
standardized events(OP_execution request event or OP-execution with time-out)

• OBCS is a target unit implementing a state transition model and which allows to control the
triggering of OPCSs according to incoming requests and the internal state of the object as
defined by the designer.(and using a suitable notation/formalism)

• O_INTERFACE is a target unit tasked with handling the execution of OPCSs on OBCS “en-
able” signals, and to acknowledge back when OPCS has completed.

The three units define possible process spaces and in case data (such parameters) exchanges are
involved, we suggest to store and access it through an associated abstract data type implementa-
tion in a HOOD environment object. Such an implementation is either defined by the designer or
may be generated automatically by HOOD toolsets.

Figure 109 -  Extended Execution model for constrained operations



Copyright 1995-96 by HOOD Users Group page 143

page -143
HOOD USER MANUAL 1.0 HUM-1.0

Associated target models for the above units can be defined, in defining the OBCS as a synchro-
nous implementation of state-transition system, associated to a set or I_INTERFACE and
O_INTERFACE procedures:
• for an OBCS automata

Figure 110 -  Automata Code modelling an Object OBCS

Such a synchronous approach is supported by notations (ESTEREL, LUSTRE, SIG-
NAL[BERRY88]:) and can be an implementation approach for other notations and techniques
such as SDL and Petri nets

• for an I_INTERFACE procedure the implementation can be summarized as:

Figure 111 -  Principle of I_INTERFACE procedure Code

• for an O_INTERFACE procedure the implementation can be summarized as:

Figure 112 -  Principle of O_INTERFACE procedure Code

This model is only an illustration of implementation principles, but may easily be tuned accord-
ing to particular constraints of the target:

• active waiting strategy (polling), sleep or wake-ups on events for HSER, LSER or TOER.ex-
ecution requests

• step by step execution of the synchronous automata on event arrival or cyclic execution on
timer interrupts at a frequency which is compatible with the one of event processing;

• execution of procedure O_OPi by the 'OBCS' process, or autonomous execution by active
waiting processes, or execution triggered by event handling.

In the following we give the INTERFACE procedure for different protocol constraint operations

• HSER constraint: the client process must be blocked until end of operation execution, thus

loop
Capture and store EVTS --events handling since last step
Compute next STATE --
Execute associated actions --(execute OPCS, emit new signals)

end loop;

procedure I_OP_HSER is --call to a constrained operation
begin

SEMAPHORE.P ; -- lock for exclusive access
OBCS_AUTOMATA.Set_Event(Object_Name_OPname);
wait_for(Object_Name_End_OPname); --wait until End of Execution

SEMAPHORE.V; -- unlock
end I_OP;

procedure O_OP_HSER is--associated to the operation requested
begin

OPCS_OP_HSER;  -- OPCS described  in "standard HOOD"
OBCS_AUTOMATA.Set_Event(Object_Name_E_OPname);

end O_OP_HSER;



Copyright 1995-96 by HOOD Users Group page 144

page -144
HOOD USER MANUAL 1.0 by HUM Working Group

Figure 113 -  I_INTERFACE Code for HSER constraint
and

Figure 114 -  O_INTERFACE Code for HSER constraint

• LSER constraint: the client process must be blocked until begin of operation execution,
hence:

Figure 115 -  I_INTERFACE Code for LSER constraint
and

Figure 116 -  O_INTERFACE Code for LSER constraint

• ASER constraint: the client process must resume as soon as the requested operation has been
performed, hence:

Figure 117 -  I_INTERFACE Code for HSER constraint
and an associated O_OP_ASER procedure as for O_OP_LSER

• TOER_LSER constraint: the client process must resume on time-out overrun or on begin of

procedure I_OP_HSERis
begin

AUTOMATA.Set_Event(Object_OP);
wait_for(Object_End_OP) ; --suspends client until End of operation

end I_OP_HSER;

procedure O_OP_HSER is
begin

OBJECT.OP;  -- OPCS defined by a standard unconstrained operation
AUTOMATA.Set_Event(Object_End_OP);

end O_OP_HSER;;

procedure I_OP_LSERis
begin

AUTOMATA.Set_Event(Object_OP);
wait_for(Object_Begin_OP); --suspends client until Begin of operation

end I_OP_LSER;

procedure O_OP_LSER is
begin --no Set_event (Begin_Op), =>AUTOMATA sends it back to waitfor

OBJECT.OP;  -- OPCS defined by a same unconstrained operation
end O_OP_LSER;

procedure I_OP_ASER is
begin

AUTOMATA.Set_Event(Object_OP);
end I_OP_ASER;



Copyright 1995-96 by HOOD Users Group page 145

page -145
HOOD USER MANUAL 1.0 HUM-1.0

operation

Figure 118 -  I_INTERFACE Code for TOER_LSER constraint
and an associated O_OP_LSER procedure as for LSER without TOER

• TOER_HSER constraint: the client process must resume on time-out overrun or on comple-
tion of operation

Figure 119 -  I_INTERFACE Code for TOER_HSER constraint
and an associated O_OP_HSER procedure as for HSER without TOER

2.11.3.2 Requirements for selecting control expression notations

In the above section we have outlined an approach where a primary condition for use of a nota-
tion to express control was itsability to express State transitions. Note that a designer needs
only to define the behaviour of an object with respect to its internal functional semantics, using
possibly formal notations; the burden ofhandling execution requests processing can be sup-
ported through automatic code generationas illustrated below.
Although use of formal notations would help capture and verify unambiguously the semantics,
(namely by using associated environment and tools) it is also fundamental to be able to imple-
ment thissemantics straight down in the code. We have found only few notations and languag-
es supporting such features (ESTEREL, LUSTRE, SIGNAL), SDL, MCTL[HEI91]. However
synchronous code generation for Predicate-transitions Petri nets could be easily defined (seeFig-
ure 122 -).

procedure I_OP_LSER (time_out: in :=false) is
begin

TIMER.Set(Time_out_Value)); --sets a timer.
AUTOMATA.Set_Event(LSER_TOER_OP);
loop

if  AUTOMATA._Event(TO_OP)then -- time-out overrun event
timed_out := true;

exit;end if;
if  AUTOMATA._Event(Begin_OP_TOER_OP) then

timed_out := false;
exit;end if;

end loop;
TIMER.Reset;  -- resets timer.

end I_OP_LSER;

procedure I_OP_HSER (time_out : in :=false)is
begin

TIMER.Set(Time_out_Value));--sets a timer.
AUTOMATA.Set_Event(OP_HSER_TOER_OP);
loop

if  AUTOMATA._Event(HSER_TOER_OP) then--time-out overrun event
timed_out := true;

exit;end if;
if  AUTOMATA._Event(End_OP_HSER_TOER_OP)then

timed_out := false;
exit;end if;

end loop;
TIMER.Reset;-- resets timer.

end I_OP_HSER;



Copyright 1995-96 by HOOD Users Group page 146

page -146
HOOD USER MANUAL 1.0 by HUM Working Group

As more formal notations are used, we would like to rely directly on their formal basis to verify
directly the properties of the models produced (without generating code and testing). This re-
quires supporting tools for:

• checking consistency of one given model; the checks will rely on intrinsic properties de-
fined by the semantic definition of the notation and/or language use to model an OBCS.

• checking consistency of composition of models:as a full system behaviour is the compo-
sition of elementary object behaviours, the ability of composing OBCS would be useful.

• validation of behavioural descriptions against models from requirements analysis or models
produced at another level of description (e.g. equivalence of a model describing a HOOD
parent object would be checked against the composition of behaviours of its child objects).

• Validation is currently relying on simulation of behavioural descriptions and pragmatic com-
parison of equivalence through test scenarios. A formalism based on a strong mathematical
model of concurrence would allow toperform formal calculi  andproofs on the described
behaviours. Some notations such as synchronous languages (ESTEREL,SIGNAL) have now
tools to support such checks based on automata behavioural equivalence (using the INRIA
AUTO tool) and/or through temporal logic formula as described in [LECMP89]. Neverthe-
less such proof systems have exponential complexity for concurrent systems.
A.Heibig[HEI91] states that his compositional semantics of control machine have linear
complexity. Advances in the area of logic checkers and concurrent system evaluation tools
will strongly impact on the choice of formal notations for developing critical systems.

2.11.3.3 Defining an Associated Verification Process

Once the approach has been experimented, it can be automated and supported by a selected set
of toolsets. The verification process is, anyway, improved, and better quality and confidence in
the resulting software will be achieved.

• OBCS behavioural descriptions can be:

- produced,verified through simulation if notations used to express OBCS behaviours are
supported by simulation environments.

- verified through execution when code is generated. Test cases and scenarios elaborated
in previous development phases may be reused.

- developed and tested separately from the development of the sequential software. As a re-
sult of this separation,more verification and testing effort (in terms both of time spent
and skills of developers)can be allocatedto this critical part of the software.

• Integration will be based on three strategies:

- several synchronous automata working in parallel(seeFigure 120 - below).In this case
the development is conducted as usually down to the identification of terminal objects The
associated OBCSs are expressed in the chosen notation and the associated code contains
as many automata as terminal OBCSs. The final tuning must be done automata by autom-
ata, during integration activities.

- one unique synchronous automatadefined as the “code” composition of all the elemen-
tary ones.This is obtained bymerging all states and events of elementary automata into
one new set, thus reducing the minimal number of processes from N*3 to 3. The new au-
tomaton is not the product of the others but only the union allowing better mastering and
tuning of the units I_INTERFACE, O_INTERFACE and AUTOMATA.(a centralized



Copyright 1995-96 by HOOD Users Group page 147

page -147
HOOD USER MANUAL 1.0 HUM-1.0

strategy particularly suited to embedded cyclic systems)

- one unique synchronous automata defined as theformal composition of all the others.
This can only be done with very specific notations and under given hypothesis. For e.g ES-
TEREL is able to compute a compositional automata from several others; however one
must check that the 'synchronism hypothesis' is still valid. Also there is a lot of trouble to
expect due to combinatory explosions of states when doing the cartesian product of the el-
ementary automata. MCTL (Modular Control and Temporal Logic)[HEI91] is a promising
technique but with poor tool support and practically no “real case study” feedback. Petri
net based techniques are also promising, since composition of Petri nets is well mas-
tered.[GIOVA89][PALU90][VIEL89]

Figure 120 -  Integration based on several concurrent AUTOMATA

Figure 121 -  Integration based on merge of AUTOMATA

The advantage of such approaches is that the full system behaviour could be modelled, expressed
and verified formally, with HOOD bringing structure and decomposition support, and formal no-
tations a sound mathematical support.

Package associated to a
terminal object

AUTOMATA

Package associated to a
terminal object

AUTOMATA

Package associated to a
terminal object

AUTOMATA

I_Interface
O_Interface

I_Interface
O_Interface

I_Interface
O_Interface

Package associated to a
terminal object

Package associated to a
terminal object

Package associated to a
terminal object

Events
States

I_Interface
O_Interface

AUTOMATA



Copyright 1995-96 by HOOD Users Group page 148

page -148
HOOD USER MANUAL 1.0 by HUM Working Group

2.11.3.4 Synchronous Automata Code for Predicate Transition nets

Begin_ OP and End_OP variables are associated to places in order to store the number of tokens.
SET-EVENT procedures increment Begin_OP or End_OP variables as token are created.

The OBCS automata is implemented as one execution flow which examines all transitions of the
network, and eventually fires some of them. Interpreting is reduced to evaluation of the condi-
tions and execution of the operations associated to transitions.

 For each operation appearing on the transitions of the net, a procedure EXECUTE(B_OP) will
be defined in the AUTOMATA package associated to the object. (see Figure 122 -below). Also
for each condition associated to a transition, in the net, a function returning a boolean must be
associated.(see function Cond inFigure 122 - below)

Figure 122 -  Ada Code generation for PTN

package AUTOMATA is
    procedure SET_EVENT();
    procedure reset;
   procedure RUN; ...
end OBJET;

package body AUTOMATA is

   BO1, BO2, ..., EO1,EOk, ...: NATURAL;
   -- Declaration of net places
   ...
   function Cond return BOOLEAN is
    ..-- Implementation of predicates associated to transitions
   end Cond;

   ...
   procedure EXECUTE (B_OP) is -- associated to OP
     -- Implementation of operations associated to transitions
   end Op;
      ...
   procedure run is       ...
         if (BO1 /= 0) and... and (BOn /= 0) and Cond
         then
            BO1:= BO1 - 1;
            ...                          -- Marking input places
            BOn:= BOn - 1;
            EXECUTE(B_OP);   -- Execution of OPCS
            EO1:= EO1 + 1;
            ...                          -- Marking output places
            EOk:= EOk + 1;

(Cond; Op(...))T

BO1 BO2
...

...
EO1 EOk

PETRI-NET
OBCS



Copyright 1995-96 by HOOD Users Group page 149

page -149
HOOD USER MANUAL 1.0 HUM-1.0

2.11.4 PERFORMANCE EVALUATION

2.11.4.1 Annotating a HOOD design for “automatic” performance analysis

Our purpose is to define a method for inserting performance data into a HOOD design in order
to generate a performance model which can be used to check that the proposed design meets the
performance requirements. The description of this method is divided into 3 parts:

• description of the different kinds of performance related data which must be inserted into a
HOOD design,

• description of the way performance data can be inserted into a HOOD design,

• description of the techniques used to annotate with the different kinds of performance data.

2.11.4.2 Kinds of performance related data

The Figure 123 - describes entities used for performance specification, design modelling (includ-
ing hardware aspects) and performance evaluation together with relationships between these en-
tities.

Figure 123 -  : from performance requirements and design elements to performance model

Performance
Constraint

Duration

Constraint

Throughput

Constraint

Utilization

Rate

Constraint

Performance
Model

Performance
Requirements

Performance
Design

Elements

Design component

HOOD

hardware

Model Result

is modelled in

provides inputs for evaluating
verification of

runs on

Design

Component

produces

stores

 is modelled in

Scenario
is an input of

Execution profile

Annotation
Elements

constrains

constrains

constrains

impacts

impacts

impacts
component

hardware annotations

Perf. constraints

Evaluation
elements



Copyright 1995-96 by HOOD Users Group page 150

page -150
HOOD USER MANUAL 1.0 by HUM Working Group

TheFigure 123 - shows that two different kinds of data have to be inserted into HOOD design
components:

• It is interesting, for traceability reasons, to annotate HOOD design components with theper-
formance constraints which either “constrain” or “impact” them. The relationships “con-
strain” and “impact” are two different kinds of traceability links between performance
constraints and design components. To explain the difference between them we can say that
“constrain” identifies design components which are explicitly constrained (these components
implement the function which is identified in the performance constraint) and “impact” iden-
tifies components which may interact with the constrained ones.

• Execution profiles can be attached to HOOD design components for describing the way
software accesses hardware resources.

2.11.4.3 Inserting annotations into a HOOD design.

The simplest way of associating annotations with HOOD design components is to insert them in
HOOD object descriptions via structured comments.
A brief description of the Object Description Skeleton is provided below. We have emphasized
in this ODS description what parts of the ODS need to be identified before the insertion of anno-
tations.

2.11.4.4 Performance Annotations for a HOOD design

2.11.4.4.a Annotating a HOOD design with performance requirements.

• Annotation by duration and throughput constraints
For each HOOD operation constrained by a constraint, we propose to associate the con-
straint with the operation in the field IMPLEMENTATION_CONSTRAINTS of the corre-
sponding object description (see Figure 124 -)

.

Figure 124 -  : Annotation with performance constraints

 IMPLEMENTATION_OR_SYNCHRONIZATION_CONSTRAINTS
. . .
 -- $PERFORMANCE CONSTRAINTS
 -- One description of constraints for each operation impacted by one or several constraints

-- $OPERATION Name_op1
-- One constraint description for each constraint impacting the operation

 -- $DURATION_CONSTRAINT | THROUGHPUT CONSTRAINT  constraint_expression1

. . .
. . .

-- $ END_PERFORMANCE CONSTRAINTS

 . . .
1. informal expression or semi-formal expression based on the use of some attributes defined in the tax-
onomy of performance requirements



Copyright 1995-96 by HOOD Users Group page 151

page -151
HOOD USER MANUAL 1.0 HUM-1.0

• Annotation by utilization rate constraints
As these constraintsconstrainhardware components, it is not possible to associate them with
HOOD design components since the method only addresses software components; these an-
notations shall be associated with the description of the physical architecture which identifies
hardware components and connections between them.

2.11.4.4.b Annotating a HOOD design with execution profiles.

For each HOOD operation impacted by performance constraints, we propose to annotate the
DESCRIPTION field of the corresponding OPERATION CONTROL STRUCTURE with the
operation execution profile in the way described on Figure 125 -.

Figure 125 -  : Annotation with an execution profile.

Three kinds of statements may be used to describe an execution profile:

• Resource oriented statements: these statements describe resources consumption. Three
statements corresponding to three kinds of resources have been defined:
- $WCET statement: processing resource consumption in terms of worst case execution time

- $IO statement: I/O resource consumption

- $CALL1 statement: Communication resource consumption

• Control oriented statements: these statements describe control structures including se-
quences of resource-oriented statements. Three kinds of statements corresponding to the
more classical control structures have been defined:
- $LOOP statement to build a loop in the execution profile.

- $BRANCH to build a selection statement (similar to the “switch” statement of the C language).

- $WAIT statement to wait for a timer expiration.

• Measurement oriented statements: these statements are used to put measurement points in
an execution profile:
- $DURATION_MEASUREMENT_POINT to measure the execution duration of a software component.

- $THROUGHPUT_MEASUREMENT_POINT to measure the throughput at a particular point in an execu-
tion profile.

An example of such annotations is provided in Figure 130 -

1.We use call statements to describe communication resource consumption because data are always ex-
changed through use relations between operations.

OPERATION Name <| parameter part>
DESCRIPTION
-- $EXECUTION PROFILE
-- Structured annotations providing data needed to build performance models
. . .



Copyright 1995-96 by HOOD Users Group page 152

page -152
HOOD USER MANUAL 1.0 by HUM Working Group

2.11.4.5 Building a performance model from an annotated HOOD design.

The purpose of this chapter is to describe how an annotated HOOD design could be used to build
a performance model. The main steps of the derivation process are shown on Figure 127 -.

Figure 126 -  Estimating worst case execution time

Figure 127 -  : Generation of a performance model from an annotated HOOD design

Annotated HOOD Design Annotated Call trees Minimum operation durations

❶ ❷

1 2

3 1 1 2

5 3 4 10

“VN_allocated_objects”

Lists of objects allocated to each Virtual_Node:
(Virtual_Node_name, list of allocated objects,

“VN_mappings”

List of Virtual Nodes allocations:
(Virtual_Node_name, physical processor)

 Filtered HDT

“iO_mappings”

List of user-defined allocations:
(Logical unit name, physical unit name)

“Scenarios”

List of user-defined allocations:
(Operation_name, timing_parameter(1))

(1) timing_parameter = activation_rate or user_thinking_time

 Filtered VNT
 list of VN operations implementations by
operations of allocated objects)

“VN_operations_accesses”

List of VN_operations_ accesses:
(Operation_name, network_ name)

Generic
Performance

Model of
Software



Copyright 1995-96 by HOOD Users Group page 153

page -153
HOOD USER MANUAL 1.0 HUM-1.0

2.11.5 TIMING ESTIMATION AND SCHEDULABILITY ANALYSIS

A timing estimation approach may be used to verify the schedulability of an application and to
perform CPU time budget analysis via structured annotations within the HOOD design.

This approach is based on the HRT theory defined in[HRT]. The HRT theory implies an identifi-
cation of all threads and the definition of their execution constraints in terms of priority, dead-
lines,... From these information, it is possible to analyse the schedulability of the application
and / or to simulate it.

The idea is to annotate HOOD objects with timing estimations called worst case execution time
(WCET), schedulability informations (e.g. priority, deadlines,...) and to specify operation flow-
graphs based on nominal and selected critical operational scenarios. WCETs may latter on be
consolidated by real estimations based on the code inserted within the OPCSs. In such a case
special features of a compiler may used.
The operation flowgraphs defined in each objects are consolidated and reduced (i.e. via a max-
imisation of the different branches) depending of the overall operation calling tree.

These information may used both to generate CPU budgets by extraction of relevant informa-
tion from the ODSs and to perform schedulabity analysis by extraction and computation of exe-
cution skeletons to be provided to a Schedulability analyser.

Figure 128 - and Figure 129 - describe the process model of the building of the threads execu-
tion skeletons with estimations of worst case execution times to be used for schedulability anal-
ysis while Figure 130 - provides an example of an ODS with such annotations.

.

Figure 128 -  Timing estimations: Analysis of each HOOD object

Annotate HOOD
objects

HOOD objects

Annotation editor

Compile and
BuildAnnotated

compilation
unit

Compiler/Builder

Reduce flow graph/
Review reduced graphunbounded loops

Operation / Thread
Reduced flow graph

Operation or
thread flowgraph

Unrealistic reduction

Generate
code



Copyright 1995-96 by HOOD Users Group page 154

page -154
HOOD USER MANUAL 1.0 by HUM Working Group

Figure 129 -  Timing estimations: Build overall execution skeleton

Figure 130 -  Example of HOOD annotations for performance and timing estimations

Replace external calls
defined in conf. file

Develop and reduce
threads to obtain

thread exec. profile

Review of execution
skeleton

Supersede Operation
WCET

Reduced
flow graphs

Reduced flow
graphs

 Superseded
flow graphs

Execution skeleton

To schedulability analyser

OBJECT Objet1 IS ACTIVE
DESCRIPTION
-- ....
IMPLEMENTATION_OR_SYNCHRONIZATION_CONSTRAINTS
-.....
- - Annotation with performance constraints.
-- $DURATION_CONSTRAINT DC1 “The response time of Operation1 shall be less than 5 ms”
.....
OPERATION Operation1
DESCRIPTION

-- -- This field contains the description of the operation.
-- -- It may also contain an execution profile such as the following one:
-- $WCET(10 ms) [estimated or computed worst case execution time]
-- $IO(Read,File1,10 KB)
-- $LOOP(10)

-- $WCET(1 ms)
-- $CALL(Operation2, SEND 1 KB, GET 2 KB)

-- $END_LOOP
USED_OPERATIONS

......

...
END_OPERATION Operation1



Copyright 1995-96 by HOOD Users Group page 155

page -155
HOOD USER MANUAL 1.0 HUM-1.0

2.12 TARGET LANGUAGES

In  Appendix  1.1.6 of present document the general principles for code generation are given and
the current section will not present them again. However we shall bring here complementary in-
formation and illustrations.

2.12.1 HOOD TO TARGETS IMPLEMENTATION PRINCIPLES

HOOD ODSs are formatted texts, grouping object properties, including a number of target de-
pendent fields (directly entered as target code). HOOD code generation principles are then to
generate:

• a software architecture in terms of target modules/units:

- INCLUDE relationships are implemented by target encapsulation mechanisms if they ex-
ist, or by simple file inclusion

- USE relationships are implemented through target mechanims to control visibility intra
and inter units. For some targets an include strategy with EXTERN and REF clauses may
have to be defined.

• target code skeletons to implement associated visibility relationships from HOOD required
interface descriptions

• ODS code fields inserted in the associated code skeletons

Another principle is the one of preserving the identifiers used in the HOOD ODS descriptions
within the target code. This may raise some difficulties especially when the target is not Ada. In
order to limit these difficulties it is recommended to follow "project defined" coding standards
in documenting target dependent fields.

2.12.2 HOOD TO ADA CODE GENERATION

Since HOOD was initially developed for Ada targets, “doing Ada” within HOOD should not be
too troublesome. Difficulties however have been experienced:

• the implementation of provided TYPES of a parent object since there is no means for renam-
ing Ada types. The HOOD/Ada[HADA] study recommends to use as far as possible a trans-
lation scheme through derived types, or subtyping with automatic generation of “lost
declarations” when the former scheme is not possible.

• the standard schemes for active object support uses heavily tasking what is often felt as non
efficient, or even not possible when dynamic behaviour is to be supported by non Ada or RT
OS. The general principle is then to have a clear separation between the sequential code of
the OPCS and all additional code needed to implement state and protocol constraints. This
has major impacts on the way a system can be developed and tested since sequential devel-
opment can be conducted “in parallel” with the development of the dynamic architecture and
supporting code. In the following we shall illustrate application of such solutions both for full
Ada targets and for targets using “no Ada tasking”

• Finally due to the variety of targets and project constraints, a number of code generation
pragmas are often used to drive the code generation away from standard schemes. These
pragmas may be useful but care shall be taken to avoid destructuring of the code architecture



Copyright 1995-96 by HOOD Users Group page 156

page -156
HOOD USER MANUAL 1.0  by HUM Working Group

making it difficult if not impossible to maintain them from HOOD ODS or reverse back into
HOOD descriptions.

2.12.3 SEQUENTIAL LANGUAGES (C, C++, FORTRAN AND ASSEM-
BLERS)

2.12.3.1 Operation Signatures

A first convention has been adopted by all toolset builders in using the Ada syntax to describe
operations signatures whatever the target language; this greatly helped in the SIF definition
(Standard InterChange Format).
 In order to deal with syntactic specificities such as the C pointer marker ‘*’ or the C++ reference
marker ‘&’ we recommend however to use additional associated HOOD type definition and nam-
ing conventions.

In order to stress operation attached to an OOP class, an additional parameter of type the class
may be added in the operation signature(the name of this additional parameter isme in HOOD4)

Thanks to Ada syntax and semantics a HOOD code generator has then all information for gener-
ating highly reliable and readable code associated to operation signatures.

2.12.3.2 Exceptions

When the target language does not support exceptions we recommend first to limit the use of ex-
ceptions in those HOOD designs and to use a specific EXCEPTIONS module (of a HOOD RUN
TIME LIBRARY) to mimic the Ada exceptions handling.
An implementation of a “HOOD RUNTIME” module has been defined for C and C++ targets by
some projects, and have now been included in HOOD4 definition . One of such solution requires
a renaming (by means of C macros) of all operations able to propagate exceptions to their clients.

• Implementation of EXCEPTIONS.
For each HOOD exception declaration, an enumerated value is defined of type T_X_VALUE
which is provided by an environment object calledEXCEPTIONS.

- Raising an exception1 is by callingEXCEPTIONS.RAISE( X_EXCEPTION_NAME), an
operation that updates the exception current  (global) value.

- Testing an exception is done by a call toEXCEPTIONS.SET with a possible branching to
an exception handler byGOTO exception.

- In C these constraints may be transparent through use of predefined macros like the fol-
lowing:

≠define procedure() /* redefine a procedure name raising exceptions*/
EXCEPTIONS.Reset( );/* set current exceptions to OK*/
X_Procedure();  /* effective call renamed by prefixing  it  with “X_”
if  EXCEPTIONS.SET( ) goto exception; /*return test for branching to the exception handler

≠endef /*( if omitted an error will be detected by the C compilerr*/

Figure 131 -  Sample code of testing exceptions in client code

1.In C++, raise is replaced by athrow statement and testing by acatch statements.



Copyright 1995-96 by HOOD Users Group page 157

page -157
HOOD USER MANUAL 1.0 HUM-1.0

2.12.3.3 Generation rules for passive objects

Passive object implementation presents no difficulties, and the encapsulation mechanisms of the
languages will be extensively used (FORTRAN libraries, PASCAL module, C programs and
modules, assembler compilation units)

2.12.3.4 Generation rules for active objects

HOOD3.1 defines support of constrained operation by means of an OBCS unit (tone or several
tasks) that handle control and communication protocol between client and server threads.
When target with no ADA tasking are used, protocol constraint operation can only be implement-
ed by using a HOOD RUN TIME library that implements inter-process communications associ-
ated to the definition of HOOD protocol constraints.
Such implementation rules and illustrations can be found in Appendix  A3  of present document
and have been standardised through use ofHOOD runtime environments objects  such as OBCS,
FSM, and EXCEPTIONS, and proposed for inclusion in the HOOD4 definition.

2.12.3.5 Entity Naming

Since a number of target languages restrain the identifier size and do not support dotted notation
problems may come up about the naming of identifiers. The solution is a strict naming policy for

HOOD Designs targeting language other than Ada, e.g. Fortran2.

2.12.3.6 Conventions for C targets

C references to HOOD entities by dotted notation can be replaced by an appropriate “global
name”.One convention could be to replace each prefix of a dotted chain by “ObjectName__”  the
double ‘__’ avoiding conflicts with a C identifier including already one ‘_’.
The code architecture into C modules enforces the following rules:

• provided and exported resources to client modules, especially operation signatures are gen-
erated in .h files

• Associated implementation are specified in .c files.

• visibility relationships are implemented through “INCLUDE” clause that recall required re-
sources from associated .h files.

The only constraint for the HOOD designer will be to make explicit references to required oper-
ations in following these conventions. (at OPCS code level only)

2.12.3.7 Code generation for Environments objects

The following code generation rules shall apply for environment objects:

• for a code generation of a HDT no environment code should be generated

• Code generation for a full system, shall consist in generating code for all HDT or CDT of a
system configuration. No code associated to Environment object outside of the System con-

2.FORTRAN 90 is said to have made enormous progress in this fields.



Copyright 1995-96 by HOOD Users Group page 158

page -158
HOOD USER MANUAL 1.0  by HUM Working Group

figuration shall be generated.

• HOOD objects, modelling environmental software, shall have naming rules compatible with
the code identification or interface of the real code as provided by third parties.
For example all references to standard packages provided by the Ada development environ-
ments must enforce the naming associated to identification of provided services. Naming of
TEXT-IO is standard, but not the attributes of SYSTEM.

• When modelling OS interfaces, the HOOD naming scheme shall be the one of the existing
interface library (e.g. SYSTEM_CALLS).

2.12.4 OBJECT ORIENTED LANGUAGE TARGETS

OOPL languages can be introduced smoothly into current HOOD3.1 definition. HOOD can in-
tegrate OOP designs and implementations with minor extensions. In the following we first
present how to use OOP with current HOOD definition, and then the extension that has been pro-
posed to the HTG for HOOD4 definition.

2.12.4.1 Designing for OOPL implementation (HOOD3.1)

HOOD may first been used as a software partitioning tool defining module interfaces. These
modules may defineclass interfaces and their implementation and may be directly coded using
target OOPL (e.g C++, or Eiffel). These classes are seen as TYPES by other HOOD clients ob-
jects, which declare DATA INSTANCES of that classes/types in the DATA field of their ODS.
OPCSs are code including call to methods that apply on that HOOD DATA.

2.12.4.2 Other Conventions for C++

Naming conventions for HADT/C++ classes: we recommend to adopt a naming schema for
classes and types in order to distinguish between classes and types, e.g. the following naming
schema has been found useful in several projects:

• all class names are prefixed by "T"

• all type names are prefixed by "T_"

• all exception names are prefixed by "X_"

Exceptions support is similar as the one suggested for C.

2.12.4.3 Implementation of state constrained operations

An OOP class implementing sate constrained operations could be coded with an additional at-
tribute FSM as an instance of the class TFSM, handling a finite state machine for each instance
of that class. The construction of that class should initialize the machine states according to data
describing the allowed state transitions. See Appendix  A3.2.1 for a full illustration in Ada, and
note that it would be just a matter of rewriting that code in an OOP language.



Copyright 1995-96 by HOOD Users Group page 159

page -159
HOOD USER MANUAL 1.0 HUM-1.0

2.12.4.4 Implementation of protocol constrained operations

See Appendix  A3.2.2 for a full illustration in Ada of the implementation principles of protocol
constrained operation. Inter process communication primitives would also have to be provided
by means of a RUNTIME library for a given target system/host OS. Such a run time library is
already provided by some HOOD toolset vendors targeting C, and is now specified in the
HOOD4 definition.



Copyright 1995-96 by HOOD Users Group page 160

page -160
HOOD USER MANUAL 1.0  by HUM Working Group



Copyright 1995-96 by HOOD Users Group page 161

page -161
HOOD USER MANUAL 1.0 HUM-1.0

2.13 FULL ADA CODE ILLUSTRATION

2.13.1 TERMINAL PASSIVE OBJECT

Let us consider a simple terminal passive object that implements a STACK as an abstract data,
encapsulating the data that represent the stack and providing operations to manipulate them.

2.13.1.1 ODS Definition for passive STACK object

A passive STACK object, implementing an Abstract Data for a STACK, may be represented as
in Figure 132 -, with two operations PUSH and POP

Figure 132 -  Graphical representation for the object Stack
The ODS ofFigure 133 - shows the ODS declarations of provided and required types and oper-
ations and exceptions
.

OBJECT STACK IS PASSIVE -- l
DESCRIPTION  --Implementation of a abstract Data STACK with no encapsulation of associated data
IMPLEMENTATION_CONSTRAINT S -none
PROVIDED_INTERFACE

OPERATIONS
Push (Element :In  T_element);
Pop(Element :Out T_element);
Statusreturn  T_Status;

EXCEPTIONS
X_EMPTY raised by POP;
X_FULL raised by PUSH;

------------------------------------------------------- END OF STACKS USER MANUAL -----------------------------
REQUIRED_INTERFACE

OBJECT ADT_ELEMENT
TYPES
T_Element;--STACK requires type T_Element, provided by ADT_ELEMENT.

STACK

PUSH
POP
STATUS

E ADT_Element



Copyright 1995-96 by HOOD Users Group page 162

page -162
HOOD USER MANUAL 1.0  by HUM Working Group

INTERNALS  -- hidden part of the object:
OBJECTS None;  --NO CHILD OBJECTS
TYPES
type T_Statusis (BUSY, IDLE, UNDEFINED); -- definition of provided type to hold the status of the stack code.
type T_DATA is array(integer <>) of ADT_Element.T_Element; -- --data structure to hold values of the type
DATA

TOP  :integer:=1; -
SIZE: integer:=100;
DATA : T_DATA (1 .. SIZE);
STATUS: T_Status;

CONSTANTS None; -- no internal constants
OPERATIONS None; -- no internal operations

OPERATION CONTROL  STRUCTURES
OPERATION Statusreturn T_Status is  --OPCS of POP

DESCRIPTION
Get status of class STACK code
USED_OPERATIONSNone;-
PROPAGATED_EXCEPTIONS -- None;-

CODE-- in Ada
begin

return  STATUS;
END --of opcs STATUS

OPERATION POP is  --OPCS of POP
DESCRIPTION
Remove an Element from the data structure STACK_DATA
USED_OPERATIONSNone;--
PROPAGATED_EXCEPTIONS

X_STACK_UNDEFINED;
PSEUDO_CODE--

if  [the stack is full ] then
raise X_FULL;

else
[push the element on the stack]

end if;
CODE-- Ada

begin
if TOP>0 then

STATUS:=busy;  -- STACK code is BUSY
Element :=STACK_DATA(TOP);
TOP:=TOP-1;
STATUS:=idle;-- STACK code is IDLE

else
STATUS:=undefined;  --STACK code  UNDEFINED
raise X_EMPTY; --impossible case

end if;
END --of opcs POP

OPERATION   PUSHis  --OPCS of operationPUSH
DESCRIPTION
Put  an  élément onto STACK
USED_OPERATIONS None;--
PROPAGATED_EXCEPTIONS

X_STACK_UNDEFINED;;--
PSEUDO_CODE--none see the code
CODE -- (Ada)

begin
if  TOP<STACK.SIZEthen

STATUS:=busy;  --class code in BUSY state;
TOP:=TOP+1;
STACK_DATA(TOP):=Element
STATUS:=idle;--class code in IDLE state

else
STATUS:=undefined;  -class code in UNDEFINEDstate
raise X_FULL; --impossible case

end if;
END -- de l’OPCS de PUSH

END_OBJECT STACKS

Figure 133 -  ODS of  passive STACK  object



Copyright 1995-96 by HOOD Users Group page 163

page -163
HOOD USER MANUAL 1.0 HUM-1.0

2.13.1.2 Ada code generation for passive STACK object

2.13.1.2.a Ada Specification Unit

--REQUIRED OBJECTS
with ADT_ELEMENT; -- visibility on type T_Element
package STACK is

procedureStatus return T_Status;
procedure PUSH (Element :in T_Element);
procedure POP(Element :out T_Element);
X_FULL : exception;  --raised by PUSH
X_EMPTY : exception ; -- raised by POP

endSTACK;

Figure 134 -  Ada specification Unit for passive  object STACK1

We can note that the provided operations are translated into procedure or function specification
keeping the parameters and the return type unchanged; and provided exception declarations are
translated in exception declarations.

2.13.1.2.b Ada Body Unit

with  TEXT_IO;--USED OBJECTS
package bodySTACKS is
--internal Types

type T_Statusis (BUSY, IDLE, UNDEFINED);
type T_DATA is array(integer <>) of ADT_Element.T_Element;

--internal DATA
SIZE: integer:=100;
DATA : T_DATA (1 .. SIZE);
TOP: integer:=1; -
STATUS: T_Status ;

procedurePUSH( Element :in T_Element)is
begin
TOP := STACK'LAST;  -- use of  Ada Attribute functions
SIZE_STACK:=STACK'RANGE;

if  TOP<SIZE_STACKthen
STACK.STATUS:=busy;  -- STACKis used by some one ;
TOP:=TOP+1;
STACK.DATA(TOP):=Element ; -- put Element
STACK.STATUS:=idle;-- STACK code is idle;

else
STACK.STATUS:=undefined;  --STACK code is in undefined state
raise X_FULL;

end if;
endPUSH;

procedure POP (Element :out T_Element)is --similar to that of PUSH seen above

procedure Status return T_Status is
begin

return STATUS;
endSTATUS ;

endSTACK;

Figure 135 -  Ada body Unit for passive  object STACK

In this package body, we can see that the following translation rules have been applied :

• Internal types and constants are mixed together in the order of which they appear in the ODS,
allowing correct Ada references from each other.

• internal data are translated without any changes.
1.



Copyright 1995-96 by HOOD Users Group page 164

page -164
HOOD USER MANUAL 1.0  by HUM Working Group

• the OPCS of an operation is translated into a procedure of function body, as such. Note how-

ever that the user must supply the keyword begin2, but not the keyword end in the ODS code
section.

To see some more about translation rules, and especially about private typês, lets now modify the
previous example so as :

•  to design an object that implements a STACK abstract data type, and exporting the ots type
T_STACK

• using an external type T_Status defined in the environement object PROJECT_ENV

the associated ODS would be the following.

2.13.1.3 ODS Definition for passive STACKS

A passive STACKS object, implementing an Abstract Data Type for STACK data, may be rep-
resented as inFigure 136 -, with two operations PUSH and POP. We have added also an envi-
ronement object  PROJECT_ENV for providing the definition of the type T_Status.

Figure 136 -  Graphical representation for the active object Stacks

The ODS ofFigure 137 - shows the ODS declarations of provided and required types and oper-
ations and exceptions.

OBJECT STACKSIS PASSIVE -- l
DESCRIPTION --Implementation of a abstract Data Type STACK with no encapsulation of data instances
IMPLEMENTATION_CONSTRAINTS none
PROVIDED_INTERFACE

TYPES
type T_STACK(MAX: integer) is  private ; --definition of type T_STACK as private
OPERATIONS
Push (Stack :In Out  T_stack; Element :In  T_element);
Pop(Stack :In Out  T_stack; Element :Out T_element);
Status(STACK :in out T_STACK) return  T_Status;

EXCEPTIONS
X_EMPTY raised by POP;
X_FULL raised by PUSH;;

------------------------------------------------------- END OF STACKS USER MANUAL -----------------------------
REQUIRED_INTERFACE

OBJECT ADT_ELEMENT
TYPES

T_Element;--lSTACK requires type T_Element, provided by ADT_ELEMENT.
OBJECT PROJECT_ENV
TYPES

T_States;--STACK requires type T_STATES, provided byt PROJECT_ENV

2.because a procedure may declare local data, in which case a generator may not know it and may misplace
the begin statement.

STACKS

PUSH
POP
STATUS

E ADT_Element

PROJECT_ENVE



Copyright 1995-96 by HOOD Users Group page 165

page -165
HOOD USER MANUAL 1.0 HUM-1.0

INTERNALS  -- hidden part of the object:
OBJECTS None;  --NO CHILD OBJECTS
TYPES --private and  internal types
type T_DATA is array(integer <>) of ADT_Element.T_Element; -- --data structure to hold values of the type
type T_STACK(MAX: integer) is --definition of private  type T_STACK
record

DATA : T_DATA (1 .. MAX); -- only needed space is declared
TOP: integer:=1; -
SIZE: integer:=MAX;
STATUS: PROJECT_ENV.T_Status;

end record; -- a client declares stack objects asClient_Stack: T_STACK(150);

CONSTANTS None; -- no internal constants
DATA None; because this is an abstract type implementation with no data.
OPERATIONS None; -- no internal operations

OPERATION CONTROL  STRUCTURES
OPERATION Statusreturn T_Status is  --OPCS of POP

DESCRIPTION
Get status of class STACK code
USED_OPERATIONSNone;-
PROPAGATED_EXCEPTIONS -- None;-

CODE-- in Ada
begin

return  STATUS;
END --of opcs STATUS

OPERATION POP is  --OPCS of POP
DESCRIPTION
Remove an Element from the data structure STACK_DATA
USED_OPERATIONSNone;--
PROPAGATED_EXCEPTIONS

X_STACK_UNDEFINED;
PSEUDO_CODE--

none
CODE-- Ada

begin
if  STACK.TOP>0then

STATUS:=busy;  -- STACK code is BUSY
Element :=STACK_DATA(STACK.TOP);
STACK.TOP:=STACK.TOP-1;
STATUS:=idle;-- STACK code is IDLE

else
STATUS:=undefined;  --STACK code  UNDEFINED
raise X_EMPTY; --impossible case

end if;
END --of opcs POP

OPERATION   PUSHis  --OPCS of operationPUSH
DESCRIPTION
Put  an  élément onto STACK
USED_OPERATIONS None;--
PROPAGATED_EXCEPTIONS

X_STACK_UNDEFINED;;--
PSEUDO_CODE--

none
CODE -- t(Ada)

begin
if  STACK.TOP<STACK.SIZEthen

STATUS:=busy;  --class code in BUSY state;
STACK.TOP:=STACK.TOP+1;
STACK_DATA(STACK.TOP):=Element
STATUS:=idle;--class code in IDLE state

else
STATUS:=undefined;  -class code in UNDEFINEDstate
raise X_FULL; --impossible case

end if;
END -- de l’OPCS de PUSH

END_OBJECT STACKS

Figure 137 -  ODS of  passive STACK S.



Copyright 1995-96 by HOOD Users Group page 166

page -166
HOOD USER MANUAL 1.0  by HUM Working Group

In the above ODS , the type T_STACK is provided as a private type, whose full declaration is
only given in the INTERNALS.The associated package can be the following:

2.13.1.4 Ada code generation for passive  object  STACKS

2.13.1.4.a Ada Specification Unit

--REQUIRED OBJECTS
with ADT_ELEMENT; -- visibility on type T_Element
with PROJECT_ENV; -- visibility on type T_Status
package STACKsis

procedureStatus (STACK :in T_STACK) return T_Status;
procedure PUSH (STACK :out T_STACK; Element :in T_Element);
procedure POP(STACK :in T_STACK;Element :out T_Element);
X_FULL : exception;  --raised by PUSH
X_EMPTY : exception ; -- raised by POP

private
type T_DATA is array(integer <>) of ADT_Element.T_Element;
type T_STACK(MAX: integer) is
record

DATA : T_DATA (1 .. MAX);
TOP: integer:=1; -
SIZE: integer:=MAX;
STATUS: PROJECT_ENV.T_Status;

end record;
endSTACKS;

Figure 138 -  Ada specification Unit for passive STACKS3

2.13.1.4.b Ada Body Unit

with  TEXT_IO;--USED OBJECTS
package bodySTACKS is

procedurePUSH(STACK :in out T_STACK; Element :in T_Element)is
begin

TOP := STACK'LAST;  -- use of  Ada Attribute functions
if  TOP<STACK'RANGEthen

STACK.STATUS:=busy;  -- STACKis used by some one ;
TOP:=TOP+1;
STACK.DATA(TOP):=Element ; -- put Element
STACK.STATUS:=idle;-- STACK code is idle;

else
STACK.STATUS:=undefined;  --STACK code is in undefined state
raise X_FULL;

end if;
endPUSH;

procedure POP (STACK :in out T_STACK;Element :out T_Element)is
-- code as entered in the code section of the OPCS-------------------------------------------

--similar to that of PUSH seen above
endOPCS_POP;

procedure Status (STACK :in T_STACK) return T_Status is
begin

return STACK.STATUS;
endSTATUS ;

endSTACKS;

Figure 139 -  Ada body Unit for passive STACKS

The translation rules for the generation of the package body have not changed, except that the
declaration associatde to the private part of the type have not to appear in the package body.

3.



Copyright 1995-96 by HOOD Users Group page 167

page -167
HOOD USER MANUAL 1.0 HUM-1.0

So far we have seen how to translate provided interface, required interface and internals, let us
now introduce constraints on the operations PUSH and POP.

2.13.2 TERMINAL ACTIVE OBJECT

2.13.2.1 ODS Definition for active object STACKS

An active STACKS object, implementing an Abstract Data Type for STACK data, may be rep-
resented as inFigure 140 -, with operations PUSH and POPHSER andSTATE  constrained ,
thus enforcing :

• HSER : delegation of execution of the operations by a server thread, the client resuming its
execution only when PUSH or POP are completed by the server.

• operation PUSH and POP activation conditions according to the behaviour specified inFig-
ure 141 -

.

Figure 140 -  Graphical representation for the active object Stack

The STACKS object behaviour can be described by a state transition diagram as inFigure 141 -
, where transitions are exclusively associated to operation execution.

Figure 141 -  Object behaviour for STACK

STACK

PUSH
POP
STATUS

A

E ADT_Element

PROJECT_ENVE

HSER

HSER

not_empty

EMPTY

FULL

first PUSHlast POP

last PUSHPOP

POP
or
PUSH



Copyright 1995-96 by HOOD Users Group page 168

page -168
HOOD USER MANUAL 1.0  by HUM Working Group

The OBCS can be reduced in this case into one Ada task implementing both the HSER protocol
between the client thread and the server OBCS thread by means of rendez-vous entries, and the
state transition diagram ofFigure 142 - by means of guards computed from the state of the ob-
ject.

The associated Ada code could be:

Figure 142 -  Ada OBCS code for stack

In case no STATE constraints were associated to the operations, one would simply suppress the
guards in theaccept statements of the OBCS code.
In case we would only handle state constrained operations (with no HSER protocol) then :

• HOOD3 proposes a standard translation rules as with HSER constraint

• this was unacceptable by users, because of tasking overhead. That is why we have proposed
a solution "with no ADA tasking" using a simple finite state machine as detailed and illus-
trated in section 2.14.1 and in Appendix  A3.1.2.
This approach has been adopted by the HTG for the HOOD4 definition which now clearly

separates the state constraints4 from the protocol constraints.

The ODS below shows the declarations associated to the OBCS, and declarations of provided and
required types, where :

• the T_STACK is nomore declared private, thus illsutrating the T_STACK definition as ordi-
nary, with visible structure type.

• we also introduced two internal operations IS_FULL and IS_EMPTY checking the variable
TOP of the  T_STACK structure, and used for computing the state of the object and the as-
sociated the guards in the accept statements of the OBCS code parts.

4.HOOD3 had never distinguished between pure state constraint operations and protocol ones. This  ambi-
guity is now resolved in HOOD4.

task body OBCS is
begin
loop -- code OBCS Ada de STACK

select-- choice according to current state of the Stack given as parameter
when not (IS_EMPTY(Stack :In  T_Stack) ) =>
accept POP(Stack :In Out  T_Stack; An_Element :out T_Element)do-

OPCS_POP(Stack ,An_Element); --associated OPCS body
end POP;
or when not (IS_ FULL(Stack :In  T_Stack) ) =>

accept PUSH(Stack :In Out  T_Stack; An_Element :in T_Element)do
OPCS_PUSH(Stack, An_Element); -- associated OPCS body

end PUSH; -- release caller process
end select

end loop;
endOBCS;



Copyright 1995-96 by HOOD Users Group page 169

page -169
HOOD USER MANUAL 1.0 HUM-1.0

OBJECT STACKSIS ACTIVE -- l
DESCRIPTION --Implementation of an abstract data type STACK with no encapsulation of data instances
IMPLEMENTATION_CONSTRAINTS-- use of full Ada
PROVIDED_INTERFACE

TYPES
type T_DATA is array(integer <>) of ADT_Element.T_Element; -- --data structure to hold values of the type
type T_STACK(MAX: integer) is --definition of type T_STACK
record

DATA : T_DATA (1.. MAX); -- only needed space is declared
TOP: integer:=0; -
SIZE: integer:=MAX;
STATUS: PROJECT_ENV.T_Status;
STATE:
end record; -- a client declares stack objects asClient_Stack: T_STACK(150);

OPERATIONS
Push (Stack :In Out  T_stack; Element :In  T_element);
Pop(Stack :In Out  T_stack; Element :Out T_element);
Status(STACK :in out T_STACK) return  T_Status;

EXCEPTIONS
X_EMPTY raised by POP;
X_FULL raised by PUSH;

OBJECT CONTROL  STRUCTURE  -- visible part of OBCS
DESCRIPTION PUSH and POP operations should only be activated when the state of STACK is non(EMPTY) for POP or

non(FULL) for PUSH
CONSTRAINED_OPERATIONS
PUSH constrained by HSER;
POP constrained by HSER-

------------------------------------------------------- END OF STACKS USER MANUAL -----------------------------
REQUIRED_INTERFACE

OBJECT ADT_ELEMENT
TYPES

T_Element;--STACKS requires type T_Element, provided by ADT_ELEMENT.
OBJECT PROJECT_ENV
TYPES

T_Status;--STACK requires type T_Status, provided byt PROJECT_ENV

Figure 143 -  ODS Illustration  of  STACKS
The INTERNALS part of the STACKS ODS inFigure 144 - shows the declaration of internal
types, data and OBCS code.

INTERNALS  -- hidden part of the object:
OBJECTS None;  --NO CHILD OBJECTS, no internal types, constants or data
OPERATIONS

IS_FULL(STACK : in  T_STACK) return  boolean;
IS_EMPTYL(STACK :in T_STACK) return  boolean;

OBCS
PSEUDO_CODE
loop  -- ADA translateion of the state transition diagram inFigure 141 -

select
when not (IS_FULL) =>accept POP;

or when not (IS_EMPTY) =>accept PUSH
end select

end loop
CODE  --code of OBCS
task body OBCS is
begin
loop -- code OBCS Ada de STACK

select-- choice according to current state of the Stack given as parameter
when not (IS_EMPTY(Stack :In  T_Stack) ) =>
accept POP(Stack :In Out  T_Stack; An_Element :out T_Element)do-

OPCS_POP(Stack ,An_Element); --associated OPCS body
end POP;
or when not (IS_ FULL(Stack :In  T_Stack) ) =>
accept PUSH(Stack :In Out  T_Stack; An_Element :in T_Element)do

OPCS_PUSH(Stack, An_Element); -- associated OPCS body
end PUSH; -- release caller process

end select
end loop;
endOBCS;



Copyright 1995-96 by HOOD Users Group page 170

page -170
HOOD USER MANUAL 1.0  by HUM Working Group

OPERATION CONTROL  STRUCTURES

OPERATION IS_FULL return boolean is
DESCRIPTION check current object state
USED_OPERATIONSNone;-
PROPAGATED_EXCEPTIONS -- None;-

CODE-- in Ada
begin

if STACK.TOP=STACK.SIZEthen return true; else return false end if;
END --of opcs IS_FULL

OPERATION IS_EMPTY return boolean is
DESCRIPTION check current object state
USED_OPERATIONSNone;-
PROPAGATED_EXCEPTIONS -- None;-

CODE-- in Ada
begin

if STACK.TOP=othen return true; else return false end if;
END --of opcs IS_EMPTY

OPERATION Statusreturn T_Status is  --OPCS of POP
DESCRIPTION Get status of class STACK code
USED_OPERATIONSNone;-
PROPAGATED_EXCEPTIONS -- None;-

CODE-- in Ada
begin

return  STACK.STATUS;
END --of opcs STATUS

OPERATION POP is  --OPCS of POP
DESCRIPTION
Remove an Element from the data structure
USED_OPERATIONSNone;--
PROPAGATED_EXCEPTIONS

X_STACK_UNDEFINED;
PSEUDO_CODE--

if [ lhe STACK is not EMPTY]then
[put STACK in BUSY state]
[remove Element from STACK_DATA]
[put STACK in IDLE state]

else
raise X_EMPTY; [put STACK  in UNDEFINED state]

end if;
CODE-- Ada

begin
if  STACK.TOP>0then

STATUS:=busy;  -- STACK code is BUSY
Element :=STACK_DATA(STACK.TOP);
STACK.TOP:=STACK.TOP-1;
STATUS:=idle;-- STACK code is IDLE

else
STATUS:=undefined;  --STACK code  UNDEFINED
raise X_EMPTY; --impossible case

end if;
END --of opcs POP

OPERATION   PUSHis  --- code similar to that of POP
END_OBJECT STACKS

Figure 144 -  Internals of ODS  for active object STACKS
Note that this design could still be improved at the level of the OPCS code : since the operations
are constrained, state conditions should only be computed within the OBCS code (and the excep-

tions should be raised within the OBCS5 code); here we do the work twice!.

5.This may lead in troubles in ADA83 because an exception raised in an Ada task and not hanlded stops a task activity; thus OBCS
code should  have exception handlers by default in each accept statement and at the end of the task body! IT was not made here
since this makes the OBCS code highly unreadable.



Copyright 1995-96 by HOOD Users Group page 171

page -171
HOOD USER MANUAL 1.0 HUM-1.0

2.13.2.2 Ada code generation for ACTIVE OBJECT STACKS

2.13.2.2.a Ada Specification Unit

with ADT_ELEMENT; -- visibility on  type T_Element   --REQUIRED OBJECTS
with PROJECT_ENV; -- visibility on  type T_Status
package STACKsis

type T_DATA is array(integer <>) of ADT_Element.T_Element;
type T_STACK(MAX: integer) is
record

DATA : T_DATA (1 .. MAX);
TOP: integer:=1; -
SIZE: integer:=MAX;
STATUS: PROJECT_ENV.T_Status;

end record;
procedure Status (STACK :in T_STACK) return T_Status;
task OBCSis -- OBCS task handling active constraint operations entries

entry PUSH (STACK :in out T_STACK; Element :in T_Element);
entry POP(STACK :in out T_STACK;Element :out T_Element);

endOBCS;
procedure PUSH (STACK :out T_STACK; Element :in T_Element)renamesOBCS.PUSH;
procedure POP(STACK :in T_STACK;Element :out T_Element)renamesOBCS.POP;
X_FULL : exception;  --raised by PUSH
X_EMPTY : exception ; -- raised by POP

endSTACKS;

Figure 145 -   Ada specification Unit for active object STACKS
It has to be noted that an OBCS task has been introduced, that provides an entry for each con-
strained operation. Each such constrained operation is translated into a subprogram declaration
that renames that entry.

2.13.2.2.b Ada Body Unit

with  TEXT_IO;--USED OBJECTS
package bodySTACKS is

function IS_FULL(STACK : in T_STACK)° return boolean is
begin

if STACK.TOP=STACK.SIZEthen return true; else return false end if;
end;
function IS_EMPTY(STACK :in T_STACK)° return booleanis
begin

if STACK.TOP=0then return true; else return false end if;
end;
procedureOPCS_PUSH(STACK :in out T_STACK; Element :in T_Element)is
begin-- code as entered in the code section of the OPCS-------------------------------------------
TOP := STACK'LAST;  -- call to Attribute function

if  TOP<STACK'RANGEthen
STACK.STATUS:=busy;  -- STACKS code now busy;
TOP:=TOP+1;
STACK.DATA(TOP):=Element ; --push  Element
STACK.STATUS:=idle;-- STACKScode now idle again;

else
STATUS:=undefined;  --STACK code Status UNDEFINED
raise X_FULL; --impossible case

end if;
endOPCS_PUSH;
procedure OPCS_POP (STACK :in out T_STACK;Element :out T_Element)is --similar to that of PUSH seen above

procedure Status (STACK :in T_STACK) return T_Status is
begin

return STACK.STATUS;
endSTATUS ;
task bodyOBCS is separate;

endSTACKS;  --end package body

Figure 146 -  Ada Body Unit for Active STACKS



Copyright 1995-96 by HOOD Users Group page 172

page -172
HOOD USER MANUAL 1.0  by HUM Working Group

2.13.2.2.c Separated Units

separate (STACKS)  -- directement extrait de la section OBCS.CODE de l'ODS
task body OBCS is
begin
loop -- code OBCS Ada de STACK
select-- choice according to current state of the Stack given as parameter

when not (IS_EMPTY) =>
accept POP(Stack :In Out  T_stack; An_Element :out T_Element)do-

OPCS_POP(Stack ,An_Element); --associated OPCS body
end POP; -- release caller thread
or when not (IS_ FULL ) =>
accept PUSH(Stack :In Out  T_stack; An_Element :in T_Element)do

OPCS_PUSH(Stack, An_Element); -- associated OPCS body
end PUSH; -- release caller thread

end select
end loop;
endOBCS;

OBCS body associated to constraint support

It can be noted that the OPCS code of the constrained operations has been put into subprograms
names OPCS_op_name that have the same interface as the provided operations and which are
called from within the OBCS code.
We are thus also achieving separation between the core functional code of the operations and
the behavioural one at code level.

Note that the implementation of the protocol constraints (HSER, LSER, ASER) is performed ac-
cording to calls to the OPCS_op_namewithin or without the accept statement.



Copyright 1995-96 by HOOD Users Group page 173

page -173
HOOD USER MANUAL 1.0 HUM-1.0

2.14 "NO TASKING" ADA CODE  ILLUSTRATION

2.14.1 CODE FOR STATE CONSTRAINTS

Implementation rules for OBCS tasking code do not apply any more; instead the code of a HOOD
RUN TIME library appearing as environment objects EXCEPTIONS, FSM and OBCS shall be
used according to principles detailed in Appendix  A3.1 and illustrated in figure below.

Figure 147 -  Additional HEADER code to the OPCS for state constraint support with an FSM

Figure 148 - and Figure 149 - give the associated code.
with ADT_ELEMENT; -- visibility sur le type T_Element
with FSM; -- visibility on type T_Status defining all states of the FSM
package STACKsis

type T_Statusis (BUSY, IDLE, UNDEFINED);-- definition du type T_Status
type T_DATA is array(integer <>) of ADT_Element.T_Element; -- useful data
type T_STACK(MAX: integer) is
record

DATA : T_DATA (1 .. MAX);
TOP: integer:=1; -
SIZE: integer:=MAX;
STATUS: PROJECT_ENV.T_StatuS;

end record;
--OPERATIONS

procedure Status (STACK :in T_STACK) return T_Status;
--State CONSTRAINED OPERATIONS

procedure PUSH (STACK :out T_STACK; Element :in T_Element);
procedure POP(STACK :in T_STACK;Element :out T_Element);

endSTACKS;

Figure 148 -  Ada Specification Unit for  State Constrained Operations without tasking

EXECUTING CLIENT THREAD

FSM

OPCSs
HEADER

FIRE (Op)

begin

exception

end

FSM.FIRE (CurrentObject, OP_request);

when X_UNW=>-- unawaited  operation  trigger  in that state
   EXCEPTIONS.LOG('From FSM.FIRE', 'X_UNW'); --logging

raise;  --transmit to client
when others =>
   EXCEPTIONS.LOG('From FSM.FIRE', 'others');

raise;

OPCS HEADER code sample

BODY



Copyright 1995-96 by HOOD Users Group page 174

page -174
HOOD USER MANUAL 1.0 by HUM Working Group

When comparing to the standard generation scheme, ones sees that the additional code to call the
OBCS entries has disappeared in the specification unit. Instead we have now to reference an ad-
ditional package named OSTM (Object State Machine) holding the code supporting the state
transition diagram as defined in Appendix  A3.2  of present document gives a sample code for
the OSTM code implementing the state transition diagram defining the behaviour of the Object
as defined in Figure 140 -

with  TEXT_IO;-USED OBJECTS

with OSTM1; -- acces to code handling FSM
with EXCEPTIONS -- interface for exceptions
package bodySTACKS is

procedurePUSH (STACK : inout T_STACK; Element :in T_Element)is
begin --additional HEADER code to the OPCS body code to hanlde state conditions

FSM.FIRE(STACKS,PUSH); -- execution request for PUSH
exception
whenX_UNW =>

EXCEPTIONS.LOG(" appel  FSM.FIRE(STACK,PUSH)", "X_UNW"); --logg in an file exception events
raise;  -- transmit to caller

when others=> EXCEPTIONS.LOG("appel  FSM.FIRE(STACK,PUSH)","others"); logg event
raise;  -- -- transmit to caller

end;
----code as entered in the CODE Section of the ODS--------------------------------------------------------------
endPUSH;

procedure POP(STACK :in T_STACK;Element :out T_Element)is
begin

begin --additional HEADER code to the OPCS body code to hanlde state conditions
FSM.FIRE(STACKS,POP);--execution request for  POP
exception
whenX_UNW =>

EXCEPTIONS.LOG(" appel  FSM.FIRE(STACK,POP)", "X_UNW");--logg in an file exception events
raise;  -- transmit to caller

when others=> G_EXCEPTIONS.LOG("appel  FSM.FIRE(STACK,POP)", "others");
raise;  -- transmit to caller

end;
--code as entered in the CODE Section of the ODS
endPOP;

procedure Status (STACK :in T_STACK) return T_Status is
begin

return STACK.STATUS;
endSTATUS ;

endSTACKS;

Figure 149 -  Ada Body Unit for Constrained Operations without tasking

1.OSTM stands for Object State Machine



Copyright 1995-96 by HOOD Users Group page 175

page -175
HOOD USER MANUAL 1.0 HUM-1.0

2.14.2 CODE GENERATION FOR PROTOCOL CONSTRAINTS

Figure 151 - and Figure 152 - below give an example of Ada OBCS implementation code with
no tasking according to the principles detailed  in Appendix  A3.1.3 for protocol constrained op-
eration support.

with ADT_ELEMENT; -- visibility sur le type T_Element

with OSTM2; -- acces to code handling FSM
package STACKsis

type T_Statusis (BUSY, IDLE, UNDEFINED);-- définition du type T_Status
type T_DATA is array(integer <>) of ADT_Element.T_Element; -- données utiles
type T_STACK(MAX: integer) is
record

DATA : T_DATA (1 .. MAX);
TOP: integer:=1; -
SIZE: integer:=MAX;
STATUS: PROJECT_ENV.T_StatuS;

end record;
--OPERATIONS

procedure STATUS (STACK :in T_STACK) return T_Status;
-- STATE AND HSER CONSTRAINED OPERATIONS

procedure PUSH (STACK :out T_STACK; Element :in T_Element);
procedure POP(STACK :in T_STACK;Element :out T_Element);

endSTACKS;

Figure 150 -  Ada Specification Unit for Constrained Operations without tasking

Note that this specification is unchanged with respect to one associated to non constrained oper-
ations. Only the ADA body unit is affected. Such translation rules allow to fully:

•  separate the functional code from the behavioural one

• develop, test and integrate the "functional code", in parallel with the behavioural one.

2.OSTM stands for Object State Machine



Copyright 1995-96 by HOOD Users Group page 176

page -176
HOOD USER MANUAL 1.0 by HUM Working Group

with  TEXT_IO;--USED OBJECTS
with EXCEPTIONS -- visibility for  exceptions
package bodySTACKS is

procedure STATUS (STACK :in T_STACK) return T_Status is
begin

return STACK.STATUS;
endSTATUS ;

-- internal package  OBCS spécifique pour éviter conflits de noms avec autres objets actifs
with EXCEPTIONS -- interface standard pour la gestion des exceptions
with ADT_MSG ; -- Abstract Data Type defining INTER PROCESS MESSAGES ;
packageOBCSis separate; -- see sample code below
package body OBCSis separate; -- see sample code belown
procedure PUSH (STACK : in out T_STACK; Element :in T_Element)is    --  OPCS_ER code
MSG : ADT_MSG.T_MSG; -- local client MSG structure
begin

ADT_MSG.create(MSG); -- get acces to MSGs
MSG.SENDER = STACK;  -- update MSG fields
MSG.OPERATION:=PUSH; -- update MSG fields
ADT_MSG.WRITE(MSG,STACK);[build_MSG] -- according to parameter list
OBCS.INSERT(MSG); -- send in reque4st queue and wait for operation excution and return of parameters
case  MSG.X_VALUE is  -- analysis of return parametre, possibly with exceptions

when OK=>[Extract_MSGs]  -- according to parameter lists
when others==>EXCEPTIONS.Raise(MSG.X_FIELD);

end case;
if MSG.CSTRNT/=ASERthen OBCS.FREE(MSG);  --libération de la queueend if;

exception
when others =>EXCEPTIONS.LOG(" de Q_OP_PUSH", "Others");raise;

endPUSH;
procedure POP (STACK :in out T_STACK; Element :outT_Element)is--  --  OPCS_ER code
-- code very similar to the one of POP non described here

endSTACK;

Figure 151 -  Ada body code generation with no tasking - protocol constraints



Copyright 1995-96 by HOOD Users Group page 177

page -177
HOOD USER MANUAL 1.0 HUM-1.0

separate (STACK.OBCS)  --- Sample  OBCS Ada code  with noTasking
with EXCEPTIONS --access to EXCEPTIONShandling
with QUEUES ; --access to QUEUES  handled by the local OS
packageOBCS is --

procedureSTART;  -- MAIN procedure started at initialisation
procedure INSERT (MSG:in T_MSG);
procedure INIT_POOL(MAX : integer:=10); -- défaut = 10 pending calls
procedureALLOC(MSG:in T_MSG);
procedureFREE (MSG:in T_MSG);

end OBCS;

package bodyOBCSis --
type T_Pool_Statusis (FREE, ALLOCATED);-- --local types internal to the OBCS
type T_Datais array(integer <>) ofQUEUES.T_QUEUE;-- environmental QUEING library
type T_Pool(MAX: integer:=10) is recordData : T_Data (1..MAX);

Status : T_Pool_Status:=FREE;
end record;

POOLMAX : constant integer:=10;  -- 10 pending calls;
-- local data
R_Q: QUEUES.T_QUEUE;-- execution request queue
POOL : T_POOL(POOLMAX);

procedure Init_pool(Max :in integer:=10) is
begin

for i in 1 .. MAX loop
QUEUES.INITIALIZE(Pool.DATA(i), 1); --
Pool.status(i):=FREE;

end loop;
end init_pool;
procedureALLOC (MSG:in out T_MSG) is
begin

for i in 1 .. POOLMAX loop
if Pool.Status(i):=FREEthen

Pool.Status(i):=ALLOCATED; MSG.RTN_Q:=Pool.data(i);return;
end loop;
raiseX_OBCS_NOMORE_RTN_QUEUES;

endALLOC;
procedureFREE (MSG :in T_MSG) is --FREE a QUEUE
begin
for i in 1 .. POOLMAX loop

if Pool.Data(i):=MSG.RTN_Qthen Pool.Status(i):=FREE;return; end if;
end loop;
raiseX_OBCS_FREE_INCONSISTENT;

endFREE;

procedure INSERT (MSG:in T_MSG)is --insert Requests
begin

QUEUES.Insert(R_Q,MSG);  -- insert in Request QUEUE
OBCS.ALLOC(MSG) -- allocate a RETURN QUEUE access into MSG
QUEUES.Remove(MSG.RTN_Q,MSG); -- wait on return of operation executionr

exception   when others =>EXCEPTIONS.LOG(" de OBCS.INSERT", "Others");raise;
end INSERT;

procedureSerDispatcher(Name : T_Operation)is separate; -- dedicated procedure for each object



Copyright 1995-96 by HOOD Users Group page 178

page -178
HOOD USER MANUAL 1.0 by HUM Working Group

procedureSTART is -- MAIN OBCSServer process
MSG : ADT_MSG.T_MSG; -- local MSG data
begin
OBCS.INIT_POOL ;-- init of QUEUE pool
loop

QUEUES.Remove(R_Q,MSG);  --get a request from R_Q Queue
 case MSG.CSTRNTis  --process the MSG

when  HSER| HSER_TOER=>
SerDispatcher(MSG.OPERATION); -- execution du code concerné
QUEUES.Insert(MSG.RTN_Q,MSG); -- renvoi MSG au client

when LSER |LSER_TOER=>
QUEUES.Insert(MSG.RTN_Q,MSG); -- renvoi MSG au client
SerDispatcher(MSG.OPERATION); -- execution du code concerné

when ASER=> SerDispatcher(MSG.OPERATION); -- execution du code concerné
when others =>EXCEPTIONS.LOG(" STACK OBCS INIT PROCESS LOOP", "BAD constraints")

raiseX_MSG_INCONSISTENCY;
end case;

end loop;
exception  when others => EXCEPTIONS.LOG(" STACK OBCS INIT PROCESS LOOP", "EXCEPTION.NAME");

endSTART;
endOBCS;

Figure 152 -  OBCS body code  with no tasking - protocol constraints

separate (STACK.OBCS) -

procedure  OPCS_POP(STACK : in T_STACK;Element :out T_Element)is separate;--effective  STACK_server code
procedure  OPCS_PUSH(STACK : in T_STACK;Element :out T_Element)is separate;

procedureSerDispatcher(Name : T_Operation)is \---
-----------------------------------------------------------------------------------------------------------------------------------------------------
-- if we want CLIENT_SERVER code, then we would have to suppress the STACK object in the parametre list and
declare it here as a local data of the server

--Local _STACK: T_STACK; -- local Data for client-server code
-- such code generation schema could be triggered by a pragma--
-----------------------------------------------------------------------------------------------------------------------------------------------------

Local_Element : ADT_ELMENT.T_ELEMENT;
begin

case Nameis  --
when PUSH=>begin

ADT_MSG.READ(MSG,Local_STACK);--[Extract_MSG] unmarshall parametres
ADT_MSG.READ(MSG,Local_Element);
Opcs_PUSH(Local_STACK,Local_Element);--effective local server execution of the operation
MSG.X_VALUE=OK; -- set MSG return MSG info
exception
when •••=>MSG.X.VALUE=X_•••
whenX_UNW=> MSG.X_VALUE=X_UNW;
when others=>EXCEPTIONS.LOG("SerDispatcher, OPCS_PUSH", "Others");

MSG.X_VALUE=X_OTHERS;end ;
whenPOP=>begin

ADT_MSG.READ(MSG,Local_STACK);--[Extract_MSG]sunmarshall parametres
Opcs_POP(Local_STACK,Local_Element);--appel effectif
ADT_MSG.WRITE(MSG,Local_lement)---[build_MSG]marshall parametress
MSG.X_VALUE=OK;
exception
whenX_UNW=> MSG.X_VALUE=X_UNW;
when others=>EXCEPTIONS.LOG("SerDispatcher, OPCS_POP", "Others");

MSG.X_VALUE=X_OTHERS;end;
when others => EXCEPTIONS.LOG("  OBCS.OPCS.NAME", "NO SUCH NAME");

end case;
exception

when others => EXCEPTIONS.LOG(" OBCS.OPCS.NAME", "Others");raise:
endSerDispatcher;

Figure 153 -  Separate part of OBCS body code  containing the dedicated SerDispatcher code



Copyright 1995-96 by HOOD Users Group page 179

page -179
HOOD USER MANUAL 1.0 HUM-1.0

separate (STACK.OBCS.SerDispatcher)  -- STACK server code

procedure  OPCS_POP(STACK : in T_STACK;Element :out T_Element)is
-- same code as Figure 149 -

endOPCS_POP;

procedure  OPCS_PUSH(STACK : inout T_STACK; Element :in T_Element)is
-- same code as Figure 149 -

endOPCS_PUSH;

We can see that the principle of translating the code of protocol constrained operation OPCS in
to OPCS_op_Name still holds, in that most of the code OPCS_ER code can still be automatically
generated.
The OBCS implementation may slightly vary according to queuing inter-process queuing mech-
anisms available for the target.



Copyright 1995-96 by HOOD Users Group page 180

page -180
HOOD USER MANUAL 1.0 by HUM Working Group



Copyright 1995-96 by HOOD Users Group page 181

page -181
HOOD USER MANUAL 1.0 HUM-1.0

3 GETTING THROUGH

3.1 HANDLING DOCUMENTATION STANDARDS

TheHOOD method does not mandate any documentation standard neither for Architectural
Design Document (ADD) nor for Interface Control Document (ICD) nor for Detailed Design
Document (DDD).Two cases may take place:

• no mandated documentation standard for the project: the design documentation is sim-

ply defined around the ODS concept asa set of ODSs. An ODS is unique in a document1. A
design document is structured according to

- the three spaces of hierarchies; objects, classes and Virtual Nodes

- the parent-child relationships associated to each hierarchy

• a documentation standard for the project is mandated (DO2167, ESA...); the standard
documentation is produced from the HOOD one, and is defined according to the following
principles:

- Extraction of documentation part from ODS fields

- Tuning of the standard (in accordance with prime QA team) in order to avoidredun-
danciesin the documentation
Implementation of such approaches on industrial projects already exist (see HOOD and
DOD2167 standards [SEXTANT92]).

In order to build a complete documentation as defined by a standard2 it is necessary to add infor-
mation to the ODS, during the HOOD design process (such as “Justification of Design Choices“
part). That information may generally not be included in the ODS and HOOD tools handle it dif-
ferently.Each type of document (ADD, ICD, DDD) needs so to extract a sub-set of HOOD infor-
mation included or not in the ODS, related to the life-cycle phase to be documented.

A design document (particularly ADD) needs to explain the design and does not necessary in-
clude all information coming from the design process. For example an ADD does not include the
identification of nouns and verbs from the informal strategy text. In the same way, the process
defining a method to build the system first through the logical architecture and then through the
physical one, is also not present in the ADD. The ADD is seen as a result of this process. If need-
ed, intermediate results of the process may be traced in specific technical notes or in the sections
allowing to justify particular design choices.

Redundancies may be produced to ease readability of documentation. Those redundancies shall
be generated by tools in order to keep consistency. For example it could be interesting to print an
operation description in all places where that operation is referenced (Provided interface of the
server object and all Required interfaces of client objects).

At last, even if all objects are not completely identified across the architectural design phase, we
recommend to build an ADD which includes all objects and hierarchies. Thus, the ADD may
simply be updated after the detailed design phase in order to reflect the final whole system de-
1.Otherwise a reader would be confused!
2.This chapter does not describe parts of the design not covered by the HOOD method such as Database tables description, Dy-
namic architecture, etc...



Copyright 1995-96 by HOOD Users Group page 182

page -182
HOOD USER MANUAL 1.0  by HUM Working Group

sign.note also that a DDD should only include pseudo code and internal description of terminal
objects.
The following sections provide standards for each type of document. These are only examples
which will be customised according to the projects needs or standards, or even company internal
standards (ESA PSS-05, DOD 2167a...).

3.1.1 ADD STANDARD

3.1.1.1 Introduction

Before building a document standard, it is necessary to think about the reader. For an ADD, many
kinds of readers may have to review it: the specifier, the reviewer, the designer, the developer,
the maintainer... All those people need different design information. For example, a specifier
may be more interested by the global organisation and external interfaces even though a devel-
oper is interested by the complete ODS he has to develop.
Hence, we suggest to organise the ADD in order to answer to all those people: an ODS may be
put in appendix of the ADD and may not be provided to all readers. Nevertheless, it is always
possible to introduce ODS directly at the level where an object is defined (i.e. at the end of the
related section).

An ADD covers the whole system configuration or a part of it. If the ADD is related to a system,
it will includes the VNTs and all HDTs (and the related CDTs) allocated into terminal virtual
nodes. If an ADD is related to an object of a HDT, it will only describe the decomposition of that
object and the used environment objects.

Finally, in order to build a readable ADD, a table of contents is fundamental to retrieve objects.
Moreover, we recommend to add an index at the end of the ADD allowing to list objects, types,
operations and constants with, for each of them, pages where the element is defined and used.
This index will be very useful for integration phase and maintenance activity.

3.1.1.2 Example of ADD Contents

1. System/Software General Overview
1.1 Main Functions
This section introduces the main functions of the system or software to be designed, its aim and mission.
1.2 Overall Organisation
This section describes the general system organisation and gives some justification on it.
1.2.1 System Configuration
This section introduces all the design trees used to define the whole system (VNT, HDTs, CDTs) and links between them.
1.2.2. Applicative Environment
This section describes the HDTs and CDTs defining the Applicative environment.
1.2.3. Implementation Environment
This section describes the HDTs and CDTs defining the Implementation environment.
1.2.4. Justification of Organisation
This section gives some explanation about the project organisation.
1.3 Development Constraints
This section gives some particular development rules or constraints (i.e. the language, a real-time monitor...).
1.4 HOOD Tool
This section includes the used HOOD tool presentation.



Copyright 1995-96 by HOOD Users Group page 183

page -183
HOOD USER MANUAL 1.0 HUM-1.0

A chapter (2, X and Y) is dedicated to each design tree (from the VNT to the HDTs and the
CDTs) covered by the ADD:

2. <System> Design-- For the Virtual Node (if any) describing the system to be designed
This chapter describes the Virtual Node Tree (VNT) of the system.
2.1. Overview
2.2. Hardware/Physical Environment

This section defines the operational physical environment of the system to be designed in terms of processors, stations, etc...
on which the system will run.

2.3. Resources Allocation
This section defines the allocation of the Virtual Nodes to the Physical Nodes.

2.4. Software Environment
This section defines the operational software environment, that means all software in communication with the system to be
designed.

2.4.1. Overview
2.4.2. Functioning

This section explains the following graphical description in terms of data handling through operations of the different virtual
nodes.

2.4.3. Graphical Description
This section gives a context diagram of the root virtual node defining the system to be designed. It is defined with a HOOD
diagram including the system virtual node and all other virtual nodes communicating with the system.

2.5. Dynamic Architecture
This section describes general principles of the dynamic architecture such as time management, tasks or process organisa-
tion and synchronisation between them, performance principles, software starting, etc...

2.6. Static Design
This section gives the static decomposition of the system first in virtual nodes and then into objects allocated in the terminal
virtual nodes.

2.6.1. Overview
2.6.2. Design Tree
This section gives a synthetic view of the virtual nodes hierarchy from the root until allocated objects.
For each Virtual Node or allocated Object of the Virtual Node Tree:
2.6.x. <Virtual Node> Virtual Node | <Object> Object
2.6.x.1. Overview

This section gives a presentation of the virtual node (or object) corresponding to the related ODS description part. When
virtual node, it could be an output of the “Statement of the Problem“ part of the HOOD design step.
It may also include a synthesis of the requirements covered by that virtual node (or object). In that sense, it is an output of
the ”Analysis and Structuring of the Requirements Data“ part of the HOOD design step.
When virtual node, it may also include particular design principles followed in the decomposition of that virtual node.

2.6.x.2. Functioning-- Only for Virtual Node
This section explains the following graphical description in terms of data handling through operations of the different child
virtual nodes or allocated objects. It is an output of the “Informal Solution Strategy“ part of the HOOD design step.

2.6.x.3. Graphical Description-- Only for Virtual Node
This section gives the HOOD diagram of the current virtual node defining the decomposition of that node into virtual nodes
or into allocated objects.

2.6.x.4. Justification of Design Choices-- Only for Virtual Node
This section (facultative) includes the set of design decisions made for the current decomposition. It may include reason of
particular choices, rejected choices, etc... It is an output of the “Justification of Design Decisions“ part of the HOOD design
step.

-- When object is an instance of a class it could be interesting to explain the reason of that choice (reusability, similar objects...).



Copyright 1995-96 by HOOD Users Group page 184

page -184
HOOD USER MANUAL 1.0  by HUM Working Group

For each decomposed Object allocated in the previous Virtual Node Tree or the Object to be de-
signed:

X. <Object> Object Design
This chapter describes the Design Tree of the object.
X.1. Overview
X.2. Environment
This section defines the object environment, that means all environment objects used by the object to be designed.
X.2.1. Overview
X 2.2. Functioning
This section explains the following graphical description in terms of data handling through operations of the different objects.
X.2.3. Graphical Description
This section gives a context diagram of the root object. It is defined with a HOOD diagram including the object to be designed

and all used environment objects.
X.3. Static Design
This section gives the static decomposition of the object into child objects (include relationship) until terminal objects.
X.3.1. Overview
X.3.2. Design Tree
This section gives a synthetic view of the objects hierarchy from the root object until terminal objects.For each Object or Object

Instance of the Design Tree:

X.3.x. <Object> Object
X.3.x.1. Overview

This section gives a presentation of the current object corresponding to the related ODS description part. When non terminal
object, it could be an output of the “Statement of the Problem“ part of the HOOD design step.
-- It may also include a synthesis of the requirements covered by that object. In that sense, it is an output of the ”Analysis
and Structuring of the Requirements Data“ part of the HOOD design step.
-- When non terminal object, it may also include particular design principles followed in the decomposition of that object
(such as portability, reusability, etc...).

X.3.x.2. Functioning-- Only for Non Terminal Object
This section explains the following graphical description in terms of data handling through operations of the different child
objects. It is an output of the “Informal Solution Strategy“ part of the HOOD design step.

X.3.x.3. Graphical Description-- Only for Non Terminal Object
This section gives the HOOD diagram of the current object defining the decomposition of it into child objects.

X.3.x.4. Justification of Design Choices-- Only for Non Terminal Object
-- See above (2.6.x.4)

For each non decomposed object of the Virtual Node Tree or Environment object of the previous
design trees:

Y. <Object> Environment Object
Y.1. Overview
This part explains the reason why that object is external to the system to be designed.
It may also include a synthesis of the requirements covered by that object.
Y.2. Object Description
This section gives the ODS of the current environment object.



Copyright 1995-96 by HOOD Users Group page 185

page -185
HOOD USER MANUAL 1.0 HUM-1.0

For each Class instanciated into the Design or Class Trees:
Y. <Class> Class Design
This chapter describes the Design Tree of the class.
Y.1. Overview
Y.2. Environment
This section defines the class environment, that means all environment objects used by the class to be designed.
Y.2.1. Overview
Y.2.2. Functioning
This section explains the following graphical description in terms of data handling through operations of the class and the used

environment objects.
Y.2.3. Graphical Description
This section gives a context diagram of the class. It is defined with a HOOD diagram including the class to be designed and all

used environment objects.
Y.3. Static Design
This section gives the static decomposition of the class into child objects (include relationship) until terminal objects.
Y.3.1. Overview
Y.3.2. Design Tree
This section gives a synthetic view of the class hierarchy from the class until terminal objects.

For each class, object or object instance of the Design Tree:

Y.4.x. <Object> Object
X.4.y.1. Overview
-- See above (X.3.x.1).
Y.4.x.2. Functioning-- Only for Non Terminal Object
-- See above (X.3.x.2).
Y.4.x.3. Graphical Description-- Only for Non Terminal Object
This section gives the HOOD diagram of the current object defining the decomposition of it into child objects. It particularly

highlights use links with formal parameters.
Y.4.x.4. Justification of Design Choices-- Only for Non Terminal Object
-- See above (2.6.x.4).

APPENDIX A. Textual Descriptions of Objects
For each Virtual Node, Object or Class defined in the previous chapters, this appendix gives the
related ODS. We suggest to classify all those ODS in alphabetic order.

A.x. <Virtual Node> Virtual Node ODS | <Object> Object ODS | <Class> Class ODS
-- ODS are complete for non terminal objects, virtual node and class.
-- ODS for terminal objects and OP_control only include the visible part. Indeed, the ADD does not include information about

pseudo code and code.

APPENDIX B. Traceability Matrix with SRD
This matrix traces each requirement of the SRD by an object of the design.



Copyright 1995-96 by HOOD Users Group page 186

page -186
HOOD USER MANUAL 1.0  by HUM Working Group

3.1.2 DDD STANDARD

3.1.2.1 Introduction

According to the suggested standard one DDD is required for the whole ADD or for each object
of the ADD. For simplicity reasons, we recommend to have one DDD for each ADD.

3.1.2.2 Example of DDD Contents

1. System/Software General Overview
This chapter introduces the main functions of the system or software to be designed, its aim and mission. It may also include
a HOOD tool presentation and give particular development constraints. See section 3.1.1.2.

For each hierarchy (HDTs and CDTs) defined in the ADD:

X. <Root Object> Design Tree
This chapter includes all ODS of terminal objectsand OP_control. ODS of other objects are of no interest for they are de-
scribed in the ADD and redundancies between those two documents is not recommended.

X.1 Design Tree
This section gives an overview of the current object decomposition. This representation allows to easily identify location of
objects.

For each terminal object or OP_control of the current design tree (may by classified in alphabetic order):

X.x. <Object> ODS
-- OD Sshall not include code fields for OPCS and OBCS.



Copyright 1995-96 by HOOD Users Group page 187

page -187
HOOD USER MANUAL 1.0 HUM-1.0

3.2 MAINTENAINING CONSISTENCY BETWEEN
DESIGN AND CODE

A particular problem of consistency arises from descriptions elaborated during detailed design
phase within the HOOD ODS and the generated target code units, which may have to be modified
after generation according to debugging and target specific constraints.

3.2.1 PROBLEM DEFINITION

HOOD3.1 defines ODS CODE FIELDS that are copied into an architecture of target code units
skeletons, and that are correctly related according to HOOD required and provided interfaces re-
lationships. When target code is generated from a full system configuration two cases may hap-
pen:

• the generated code is correct and compiles. - fine

• the generated code is not correct, and must be modified. Either is it due to syntactic errors,
or has the code to be adapted to the specific target, or it is due to an error in the code gener-
ation from the toolset.

3.2.2 MASTERING THE RELATIONSHIP BETWEEN ODS AND
CODE FILES

According to our experience on earlier HOOD projects, where a complete separation was en-
forced between code and the ODS descriptions, we think that ODS code descriptions fields must
be managed in configuration together with the final code. Otherwise, a gap always exists between
HOOD ODS descriptions and the final code, and developers tend to rely only on the code:con-
sequently the goal of HOOD to achieve reliable high level descriptions of less complexity and
volume than code is missed.

We may distinguish two types of code:

• Code corresponding to architectural concepts (such as modules (in C) or packages (in Ada),
WITH clause (in Ada) or Include (in C), provided types, constants, etc...),

• Code defining control structures of operations, algorithms.., corresponding to detailed design
and coding activities.

Any modification on the first point relies from an Architectural Design activity and modification
of operations internal code relies from a Coding activity.
Thus, an important rule is that modification performed directly in the source code shall not im-
pact the design (no modification at the interface level for example).

Two methods may be defined for handling code consistency with design descriptions. Each of
them requires particular procedures as detailed in sections below.



Copyright 1995-96 by HOOD Users Group page 188

page -188
HOOD USER MANUAL 1.0  by HUM Working Group

3.2.2.1 Maintaining Code definition within the ODS:

When the development is terminating ( end of integration or unit testing) and before putting the
product under configuration management andbefore each design modification:

• Generate code from ODSs with the HOOD toolset and save previous code versions,

• Modify that code (only the one associated to ODS internal fields), during coding and unit
testing, using the full power of usual development environment (code editors, browsers, de-
buggers).

• Update terminal ODS fields from achieved actual target code.
Such update requires using particular sofwatre which can defined:

- using UNIX tools such as diff andsed andawkfor example.

- using a dedicated software program and commenting rules that would analyze the fianl-
ized target code, recognize code include from ods fields, and rewite that code back in the
HOOD ODSs database. Such a practice was used in several projects using a HOOD tool
having an simple ODS database schema based on UNIX file system.

• In case target code modificationswould have impacted the design architecture,two updates

must be performed (one before the other according to the scope of the modifications3:

- updating the architecture by updateing the ODS «provided fields»

- updating the code fields of the ODS

• Set the ODS under configuration.

3.2.2.2 Maintaining consistency between Code and ODSs

When the development is terminating ( end of integration or unit testing) and before putting the
product under configuration management andafter a design modification:

• Generate code from ODSs with the HOOD toolset and save previous code versions,

• Modify that code (only the one associated to ODS internal fields), during coding and unit
testing, using the full power of usual development environment (code editors, browsers, de-
buggers).

• Update terminal ODS fields from achieved actual targt code.
Such update requires using particular sofwatre which can defined:

- using UNIX tools such as diff andsed andawkfor example.

- using a dedicated software program and commenting rules that would analyze the fianl-
ized target code, recognize code include from ods fields, and rewite that code back in the
HOOD ODSs database. Such a practice was used in several projects using a HOOD tool
having an simple ODS database schema based on UNIX file system.

• Set the ODS under configuration.

3.for example if an operation has been added in an HOOD object, one should firts modify the design, and
then the ODS code field updates.



Copyright 1995-96 by HOOD Users Group page 189

page -189
HOOD USER MANUAL 1.0 HUM-1.0

3.3 REUSING ENVIRONMENTAL SOFTWARE
(NON HOOD-CODE)

Environmental code should be specified (when used from within a HOOD design tree) as HOOD
Environments objects, what requires modelling all resources used or reused as provided items of
such a HOOD object. A problem might occur if one has to reuse “global data” since those data
are not allowed in provided interfaces of HOOD objects: the solution is then simply to model
such data as a HOOD object with two operations (readata and writedata).
A HOOD toolset will thus ne able to check interfaces with reused code, and the effective module
may simply replace the associated “body part” generated by the HOOD toolset.



Copyright 1995-96 by HOOD Users Group page 190

page -190
HOOD USER MANUAL 1.0  by HUM Working Group

3.4 MANAGING HOOD PROJECTS

3.4.1 OVERVIEW

HOOD is a design methodallowing to produce modular and hierarchical descriptions of soft-
ware, as a set of interconnected objects. The specifics of a HOOD development is that the refine-
ment of such a model is performed along through two kind of activities:

• refinement by adding more details to object descriptions: the activity proceeds by enrich-
ing the descriptions of an object by adding more details to an existing description, using
“step-wise refinement techniques” within the INTERNALS framework of an ODS (Object
Description Skeleton).

• refinement by decomposition: according to the properties of the include relationship, a
HOOD model can be refined by adding more objects to an initial model. Thus the description
of the initial model is left unchanged during the remaining refinement activity.

This concept of initial invariant model development is fundamental and specific to HOOD: a de-
velopment step will thus be a step allowing to freeze, prototype and validate a model refinement,
still consistent and equivalent to a initial one. Figure 154 - and Figure 155 -hereafter illustrate
this process with:

• a first level of description elaborated at a date say T1, is composed of three objects and rep-
resented by a design tree (that’s 4 objects)

Figure 154 -  Example of a HOOD initial model at level1 of decomposition
• a second level of description more refined and detailed in Figure 155 -, elaborated at a date

T2 (T2>T1) is described as design tree with 9 objects.

Figure 155 -  Example of Refinement of initial HOOD model

ROOT
OBJECT

OBJECT
B OBJECT

D
OBJECT

C

LEVEL 1, DATE T1

ROOT
OBJECT

OBJET H

OBJECT
B OBJECT

D
OBJECT

C

OBJET L OBJET J OBJET GOBJET I

LEVEL 1, DATE T1

LEVEL 2, DATE T2



Copyright 1995-96 by HOOD Users Group page 191

page -191
HOOD USER MANUAL 1.0 HUM-1.0

Putting into work such an approach for a full project leads into technical activities organized ac-
cording to an incremental life-cycle, whereas current development standards generally consider
only the classical waterfall model or “V” life-cycle. Hence definition of architectural and detailed
design activities became difficult with HOOD.

A first-shot technical categorization of design activities following HOOD properties may how-
ever be achieved in considering the object as a unit of configuration, thus:

• architectural design: is a set of refinement activities by decomposition.

• detailed design: is a set of refinement activities by enrichment of descriptions of termi-
nal.objects using step-wise refinement on pseudo-code and/or code descriptions. (A parent
object is fully defined by its children. If all children are specified, then the parent is also de-
fined).

However, the definition of an architectural design review (ADR) still has to apply to a model
where the architectural definition choices have been made and been validated. ADR should only
be applied to significant HOOD models, i.e. where some validation has been performed.

Moreoverafter a ADR, more objects may still be added,even this leads to an update of the
ADD, an possibly to another treview of the ADD!

Figure 156 - hereafter illustrates several design trees associated to a HOOD development, and a
“significant one” l reviewed at ADR.

Figure 156 -  HOOD Design trees states in the development life-cycle

Initial design tree and

 decomposition level
Final design treesDesign trees at ADR



Copyright 1995-96 by HOOD Users Group page 192

page -192
HOOD USER MANUAL 1.0  by HUM Working Group

3.4.2 SUBCONTRACTING

As development activities associated to a HOOD development will be spread over several devel-
opment teams, the management of these activities shall be tuned, and adapted to the HOOD mod-
els and development approach .
The process of defining the work breakdown and the allocation to subcontractors is complex, de-
pends on multiple factors, as well as on the industrial organisation defined to support a project.
However the task definition work will generally include one or several of the following activities:

• Elaboration of a HOOD initial model. Child objects of the top-level system define as much
subsystems that can be developed in parallel. Elaboration of the HOOD initial model may
correspond itself to a sub project and depending of the validation effort, may consume from
30% to 40% of the project resources.

• Definition of HOOD system_configurations associated to subcontracted objects.The
development contexts of each subcontractor are defined, enforcing whenever needed confi-
dentiality constraints.

• Definition of the VN architecture. This task is performed either in parallel or in the follow-
up of the elaboration of the initial model. The architecture which is set-up (and possibly pro-
totyped) should be compliant in terms of performances, target system, and eventually to a do-
main application generic model (extracted through capitalisation of the know how in the
domain).

• Allocation of objects onto Vns. This task allows grouping objects of the initial model ac-
cording to physical and/or organisational constraints.

• Elaboration of associated technical Requirement Specifications(STB) eventually extract-
ing information from the HOOD documentation associated with the initial model

• Definition and contractual allocation of development tasks for subcontractors.accord-
ing to the work breakdown established above.

• Level validation allowing development factorisation of common resources through for-
mal reviews.Such reviews are only mandatory for developments that produce new objects
in their refinements.

• Pre-integration and integration of object/subsystems subcontracted.Subcontractors can
start pre-integration on their own sites, if they can access to the prototypes developed by their
prime.(on its own site or not)

• Final Integration and validation. This task is mandatory performed on the prime site

During all the development, consistency and configuration management of the global HOOD
model can nevetheless be ensured thanks to the concepts of environment objects and system-con-
figurations. Two concepts shall be distinguished: (see Figure 157 - below)

• the globalsystem_configuration of the project at prime level. Such a configuration shall be
handled at HOOD level and shall define the configuration of the project by integrating all ob-
ject and class hierarchies.

• the localsystem_configuration of a subcontractor.Such a configuration is at least the one de-
fining the context of the hierarchy associated to the local development. The subcontractor
will enrich it with new environment objects and classes, as he progress in refinement his ob-
ject/subsystem hierarchies.



Copyright 1995-96 by HOOD Users Group page 193

page -193
HOOD USER MANUAL 1.0 HUM-1.0

3.4.2.1 Allocation of objects to subcontractors

Allocating objects to subcontractors shall make trade-offs between constraints induced by:

• a fine breakdown of the technical model at several decomposition levels. Such a breakdown
should not have a too fine granularity (there are serious risks of doing the work of the sub-
contractors) but at the same time should be significant enough to allow a trusty evaluation of
the effort, and further allocation without impacting changes to the initial model.

• the allocation of associated resources for the definition of the breakdown .

The more the initial breakdown is fine, the more the resources necessary. Moreover the allocation
of resources is often made, before the effort needed to do the system is really known!!!

3.4.2.2 Managing the consistency

The prime shall foresee a number of reviews in order to synchronise the parallel developments
by its subcontractors. The system configuration of the subcontractors will be updated at the time
of these reviews, since root objects of each local system configuration are likely to be common
resources at the global system configuration level.
Thus, early identification of common resources is a matter of efficiency and of resource optimi-
zation. Figure 157 - below tries to illustrate the relationships between local and global
system_configuration.

Figure 157 -  Consistency of multi System-Configurations

SYSTEM_CONFIGURATION IS

ROOT OBJECTS

CLASS OBJECTS

END

A, B, X,... UNIX, SS1, SS2, SS3

ADT_Message, Stack, List_Mngt

GLOBAL

SYSTEM_CONFIGURATION IS

ROOT OBJECTS

CLASS OBJECTS

END

A, B, X,... UNIX, SS1, SS3

ADT_Message, Stack, List_Mngt

SS2

,SS2,SA,SB,SC

,Queues, Windows, TLMs,....

SYSTEM_CONFIGURATION IS

ROOT OBJECTS

CLASS OBJECTS

END

A, B, X,... UNIX, SS1, SS3

ADT_Message, Stack, List_Mngt

SS3

,SS2,SA,SB,SC

SYSTEM_CONFIGURATION IS

ROOT OBJECTS

CLASS OBJECTS

END

A, B, X,... UNIX, SS1, SS3

ADT_Message, Stack, List_Mngt

SA

,SS2,SA,SB,SC

,Queues, Windows, TLMs,....

PRIME LEVEL

SUBCONTRACTOR2 LEVEL

SUBCONTRACTOR1 LEVEL

LOCAL1

LOCAL2

LOCAL3



Copyright 1995-96 by HOOD Users Group page 194

page -194
HOOD USER MANUAL 1.0  by HUM Working Group

3.4.3 CONFIGURATION MANAGEMENT

3.4.3.1 Principles

The principles of configuration management are to master the definition of components of a
product. Within a HOOD development, the ODS is the primary unit of configuration and, at any
moment, the configuration of a HOOD development is defined by the associated ODSs.

If we admit that the code is generated directly from a HOOD toolset, (with possibly a few addi-
tional modification procedures), all additional procedures (shell/sed/make) for building the exe-
cutable programs should also be configuration items.

Moreover we have seen that the “SYSTEM_CONFIGURATION” must be associated to a given
hierarchy of objects, hence the “SYSTEM_CONFIGURATION” is also a configuration item.

Finally the choice of the granularity of the configuration items (of lower granularity than the
ODS or not ) will depend of the constraints and means of a project.

In all what follows and to simplify, we illustrate this principles with the hypothesis of the ODS
as the basic unit of configuration.

3.4.3.2 Configuration of a Development

The ODS is a set of text sections that contain all information needed by the developer, including
the code. One can define specific development states according to two point of views:. technical
and organisational.

• From the technical point of view the development states correspond to the three states of
ODS: CHILD state, PARENT state and TERMINAL state as defined in section 2.2.4.

• From the organisational point of view, the states correspond to project milestones: the end of
the architectural design phase, the end of the detailed design phase, the end of the coding
phase.

The first configuration of a project may be defined at the end of the architectural design phase; it
corresponds to the definition (and optionally to the prototyping) of an initial HOOD model de-
fining a contractual reference state. From this configuration on, test specification and plan will
be derived as well as traceability activities.
Such a configuration is defined asone system configuration defining a set of objects and class hi-
erarchies and described by:

• ODSs in state CHILD

• ODSs in state PARENT

• possibly some ODS in state TERMINAL, (namely those associated to a prototype;).

3.4.3.3 Configuration Management of Code- versus -ODS

HOOD3.1 integrates in the ODSs CODE description fields, which are “copied as is” in target unit
modules. When code is generated from the ODS information two cases may take place:



Copyright 1995-96 by HOOD Users Group page 195

page -195
HOOD USER MANUAL 1.0 HUM-1.0

• code is correct

• code is incorrect :

- either because of a bug in the code generator of the HOOD toolsets used,

- either because the developer had to bring modifications in the generated code to adapt it
to particular target constraints (add of Ada pragmas such as pragma in-line,
SUPPRESS_CHECKS, representation clauses, etc..).

From the feedback of early HOOD projects where there was a separation between ODS and tar-
get code, we think that ODSs must handled in configuration with the target code.This can be im-
plemented by adding modification procedures upon generated code(MPUGC). Such MPUGCs
may be stored as additional description fields of a given ODS (pragma HOOD ODS) (e.g as a
subset of the “IMPLEMENTATION_CONSTRAINTS” field). As a result additional operational
constraints are brought to the project :

• Code generation from the ODS using a standard HOOD toolset
For each object generated code is modified by executing the modification procedure
MPUGC( if any) extracted from the ODS,

• Target Code Evolution.
During coding and unit testing this code may evolve as the developer uses the full features
of the development environment (Editiors, Browsers, Compilers, Debuggers, TestBenche-
setc). However it will have to keep a list of all modifications he made on the generated code

• Archive and [re]setting configuration.
The developer must now update the target code (and possibly associated generation proce-
dures) according to the list of traet code modifications since the last stable state. For this he
will (either manually or using a dedicated tool):

- Update CODE fields of ODSs.

- Update code modification procedures. Such procedures may be a set of the batch editor
commands such as SED under UNIX environments.

- Regenerate for validation.

3.4.3.4 Evolution of the Project Configurations

A configuration definition at the end of the detailed design does not seem to be needed: the evo-
lution with respect to the first configuration definition may be performed in terms of added
HOOD objects and states (transitions from CHILD state to TERMINAL state).

Moreover experience showed that the state obtained at the end of the detailed design is often not
to much stable, what has also leaded to the suppression of formal Detailed Design Review.

We suggest rather to handle a second configuration, at the end of the coding and unit testing
phase. Such configuration may be thoroughly reviewed (inspections, authors-reader cycles) and
more formally by automated generation of target code.
From that point only , the design will be put under change control and every code modification
shall lead to a change within an ODS, and a regeneration, with replay of test to validate the mod-
ification.



Copyright 1995-96 by HOOD Users Group page 196

page -196
HOOD USER MANUAL 1.0  by HUM Working Group

3.4.4 REVIEWING A HOOD DESIGN

3.4.4.1 Warning

When one has to evaluate a design one may face with two figures:

• All verification et validation recommended by HOOD, as described in section 2.3, werereg-
ularly performed during the development and can be traced through validation reports and
minutes.
In this case, a documentation is provided allowing to check that the solution works properly
and implements the requirements. Such documentation can be summarized as:

- a description of the system_configuration

- for each hierarchy of the system_configuration:

• the design tree

• for each object or class its description (sections H1, H2, H3), its provided interface, its
dataflows and its behaviour.

• a validation report about verification along the design process

• Only a minimal verifications have been preformed, or no validation trace is available.
In this second case, all validation activities have to be done as the design is evaluated.

In the following we set up such an hypothesis. Hence all validation activities must be performed
and the documentation delivered must be a full documentation.

3.4.4.2 Documentation Structure

Evaluation a design goes through the reading of ODSs describing fully the architecture. The or-
ganisation and layout of these ODSs is important and should try to ease the reading and the un-
derstanding of the design.

The set of ODSs associated to a design is generally presented as a top-level hierarchy of objects.If
the designer has chosen to present the design tree in a vertical way, branch after branch, one may
find the ODS of a child of the root object of the system-to-design at page 3000 of the document.!
Hence we recommend to have a presentation of ODSs following an horizontal organisation, level
by level.

Furthermore it is important that in a same document submitted to a review, an ODS appears only
once, otherwise the reader would be very confused abou which ODS to be considered as a «ref-
erence»

3.4.4.3 Starting reading a Design

3.4.4.3.a Navigation

Although a HOOD documentation tends to produce “auto-sufficient documents for an object”,
references to required objects lead often a reader to navigate in the different associated ODS.



Copyright 1995-96 by HOOD Users Group page 197

page -197
HOOD USER MANUAL 1.0 HUM-1.0

hence it is always necessary to have a «map» of the object organisation: the system-configuration
allows thus to define the context and the scope of that verification.

3.4.4.3.b “System_configuration”

A root object is defined by its interface with its environment. The latter should itself be defined
as a partition of environment objects in the “system_configuration”. Such environment objects
may themselves be hierarchies. This allows:

• to factor the objects commons to several hierarchies as objects/environment hierarchies -
common software, environmental software, preexisting to the system-to-design are thus
modelled and integrated in the HOOD model-.

• represent the different subsystem of a subsystem at homogeneous abstraction levels, through
different hierarchies. - a hierarchy representing a «view point» being selected, other related
entities are defined as environment objects/hierarchies.

It is thus important to start the analysis and review of a design by the “system_configuration”. It
allows a first understanding of the partitioning of an architecture of system and of its environe-
ment.The system-to-design being itself described through several hierarchies.

3.4.4.3.c The Design Tree

For each hierarchy of objects or classes, the design tree represents the break down of the root ob-
ject in child objects, on a variable number of decomposition levels.

The analysis of the tree structure gives thus a global view point on an architecture.
A design reviewer shall always have in mind the design tree in order to follow, its own navigation
philosophy. We recommend to navigate «horizontally», level by level down to a level near the
terminal objects.

At that time, it may be suitable to finish by «vertical navigation», since low level objects have
very little to do one with another if they belong to distinct hierarchies.

Moreover it may be interesting to look globally at subsystems: in certain designs, subsystems are
highly related and it may useful to shift on vertical navigation.

The analysis of the design tree may also highlight some problems with respect to the quality of
the design. One may observe for example that some similar objects have been developed several
times: they could have be «shifted» to an upper level as common objects or defined as environ-
ment objects of the current tree.

Also errors in understanding the HOOD method can be detected such as useless objects or de-
composition levels.(décomposition of an object into a sole object or into only OP_CONTROL
ones).

Finally examining the structure of a design tree may highlight a very strange partitioning, that
needs for the least a well justified design decisions.



Copyright 1995-96 by HOOD Users Group page 198

page -198
HOOD USER MANUAL 1.0  by HUM Working Group

3.4.4.4 ODSs Readings

When reading an ODS, some simple rules may be applied :

• ODS analysis should be done tree by tree.

• the evaluation should start at level 0.

• an evaluation should first check the implementation of a parent specifications into child ob-
jects.

• an evaluation shall than trace requirement support child by child

It is also recommended to check the REQUIRED_INTERFACE since this allows also to detect
inconsistencies in the use of the HOOD method, such as e.g.the call by a parent object of an op-
eration provided by a child.

3.4.4.5 Redundancy Management

When reading a HOOD documentation, one may have some difficulties due some time to redun-
dant parts between the descriptions appearing in the parent ODS and the ones appearing in child
ODSs.
Such redundancy may rather add volume to the documentation to read, understand or to evaluate.
One acceptable compromise may be to allow within a child ODS field to make references (in-
stead of copy) to a parent ODS field thus avoiding duplicated textual descriptions.
However such referencing shall not be systematic: it should only be allowed for the parent infor-
mation which is not distributed among several children. Moreover it should not be used between
several level of decomposition since this would render the reading of a child at level4 very un-
comfortable.
Knowing that the information contained in the fields of a parent ODS is generally distributed in
some child ODS fields(such type of redundancy is unavoidable), it is necessary to check its con-
sistency:

• If the text elaborated in the parent ODS fields is refined in the child ODS fields and is no
more consistent/compatible with the parent ones, it has to be pointed and correct the infor-
mation in the parent ODS.

• if the text elaborated in the parent ODS fields refers to the child ODS fields, this indicates in
general that the documentation of the parent object has been produced after the one of the
child ODSs: such a documentation should not be accepted since:

- it indicates that the method has generally not be applied in the top-down way (may be even
that the code was produced first!)

- the documentation has been purely produced because it was requested, but it was for no
help in the elaboration of the design. (and hence we do not need to spend any time in
checking it)



Copyright 1995-96 by HOOD Users Group page 199

page -199
HOOD USER MANUAL 1.0 HUM-1.0

3.4.4.6 Evaluation Process

The general evaluation process follows roughly the three following steps:

• check consistency of decomposition (are parent-child descriptions consistent?),

• check traceability (have all requirements been taken into account and where?),

• evaluate the design with respect to software engineering quality criteria (do we have a e
“good design”?).

According to the background of the reader, the way these steps are performed may vary. A meth-
od consultant will primarily check for errors in understanding the method and with regard to soft-
ware engineering quality criteria.

The customer will first check out requirements implementation and support and testability.

Finally quality control people will first check the consistency of parent-child descriptions.

But it is clear that a customer should also validate the quality of the design which is delivered to
him. Based on the three steps described above, we suggest and recommend an approach like the
following:

• Evaluate the design through “successive validation steps”, i.e. by checking one after another
the decompositions of parent objects into child ones, level after level. Although it is not al-
ways the case, at a given level, the abstraction «power» used is the same.

• Before going in the next level of decomposition and for the such prevalidated ODSs check
the traceability analyses.

• Finally evaluate the decompositions through quality criteria (reuse, testability, Software En-
gineering quality, HOOD rules...)

All these activities may be done in a collaborative way by people having different backgrounds.
But all must have some knowledge of the HOOD method (rather high for people evaluating de-
sign quality) as well as a good knowledge of the requirements and its environment (rather high
for people checking traceability).

3.4.4.7 Managing Author-Reader Cycles

Author-readers cycles have always been a problem due to schedule constraints and delays. A
HOOD document should be submitted to a reader with comments given backs within a given
week. Otherwise the delay is too important and the process may hinder the design elaboration.
The idea here is also that:

• when trying to apply strong author-reader cycles to all sub sections of an ODS DESCRIP-
TION field, one may hinder the creative process and responsibilities of the designer.

• when receiving ODS parts on which you, as a reader, almost fully agree, you may not even
respond.

Such regulating rules tend to reduce dramatically the exchange rate of design documentation for
author-reader cycles and rendering globally to a better process.

Moreover as experience becomes larger there are some particular sections of the ODS which are
highly important for readers (namely the informal strategy and the operations descriptions).A



Copyright 1995-96 by HOOD Users Group page 200

page -200
HOOD USER MANUAL 1.0  by HUM Working Group

project should thus organize and plan the author-reader cycles so that the readers go prepared to
give their best effort according to a planned delivery of these sections:

• either they receive continuous information from the writers and they may foresee when the
real thing will be ready for review

• either they have to be ready to respond as soon as they receive the important sections.

3.4.5 TUTORING

Tutoring is supporting «on-line» a project team just trained in a new technology:

• by looking over their shoulders to check that the new technology is well used and applied

• by providing thus additional support and training at points where it is needed

Tutoring should be applied to HOOD projects, especially when the team is new or has very few
HOOD practice.

When launching a HOOD project, it is mandatory to allocate a recognized HOOD tutor to the
team: experience has shown that trying to correct errors late (e.g. at the time of the ADR) may
cost very more and has fewer chance of success.

It thus important that the tutor is available right at the elaboration of the top-level design and that
he injects back all its experience to the new team. Area of expertise where the tutor may jump in
may vary:

• launching the project, configuring the HOOD toolsets, development environment

• defining the project approach

• author-reader cycles on the first informal strategies

etc...



Copyright 1995-96 by HOOD Users Group page 201

page -201
HOOD USER MANUAL 1.0 HUM-1.0

4 METHOD SUPPORT AND EVOLU-
TION

4.1 THE HOOD USER GROUP

Early HOOD users have founded the HOOD User Group [4] which has as objectives exchanges
of experience, data and method requirements repository, and evolution control of the HOOD
method, thus:

• warranting the method stability,

• taking into account users needs,

• warranting method output and user design perenniality

• taking into account technological and standards evolution

The HUG means are the set-up of HOOD Working Groups and a technical committee (HOOD
Technical Group) which validates and agrees on the HWG recommendations and technical doc-
uments such as:

• definition of textual and graphical formalism, code generation rules and Standard Inter-
change Format in the reference manual [1]

• definition of a Method User Manual[5] released in 1994.

• definition of method evolution (draft HOOD revision 4 integrating inheritance currently pro-
totyped)

4.2 THE STANDARD INTERCHANGE FORMAT

The HOOD Reference Manual [1] defines a standard exchange format for the design description
associated to HOOD design models and called SIF (Standard Interchange Format). This format,
now supported by the HOOD toolsets benefits to HOOD users as

• a standardised ASCII exchange format for HOOD designs which is supported by HOOD
toolsets.

• a mean of reuse and preserve the investment in producing a HOOD design: since HOOD de-
scriptions will be able to be processed by current tools or by future tools

• a communication vehicle and exchange mean for the different teams in a large project. Teams
may not have the same tools and still share their designs.

• a bridge towards a variety of other development tools (performance evaluation, traceability,
analysis, documentation or reuse tools[6])



Copyright 1995-96 by HOOD Users Group page 202

page -202
HOOD USER MANUAL 1.0  by HUM Working Group

4.3 TOOLSETS

The tools supporting the method should enable graphical representation, textual edition, docu-
mentation edition and management, design checking and automatic production of code and test
unit skeletons. There are now several toolsets available, which support more or less all these
functions. Some tools also offer cross-reference generation, documentation configuration ac-
cording to standards (ESA, COLUMBUS, DOD2167).
For a potential user, and a part from the user interface which is more or less going to standardise
according to MOTIF standards, an important evaluation criteria is the support of the HOOD 3.1
and especially:

• generation of object descriptions in SIF format,

• import of object descriptions in SIF format This enables a user to change toolsets, without
losing a database of designs produced with the old toolset. Also a user may work and develop
with the toolset of his choice, and finally integrate and deliver on customer HOOD tool.

• Support ofSystem-Configurationallowing easy reuse of existing designs and classes, and
definition of the scope of the design checking space.



Copyright 1995-96 by HOOD Users Group page 203

page -203
HOOD USER MANUAL 1.0 HUM-1.0

5 CONCLUSIONS

We have shown that the possibilities of the HOOD method allow to set up development strategies
with improved support for the production, decomposition, refinement, test and reuse of models.

Today HOOD offers thus several advantages in terms of contribution to productivity and quality,
especially when used with integrated tools such as CASE (Computer Aided Software Engineer-
ing) environments.

Productivity is improved thanks to a hierarchical decomposition approach, allowing the progres-
sive development of objects by modelling, and their decomposition into software objects and ab-
stract data types.

Although some HOOD users already push for new improvements (such as refinement of links
between objects as new HOOD objects, or integration of inheritance), the HOOD 3.1 will be sta-
ble until the industrial spreading of Ada 9X and the publication of a standard for C++[9]. In the
meantime HOOD extensions, prototyping and experimentation rely on the SIF.

The main extension work conducted so far is aiming at:

• defining methodological approaches for integrating different notations and methods, espe-
cially Object Oriented Languages such as C++ and Ada9X. A HOOD4 proposal was widely
under discussion and adopted by the HUG.

• extending HOOD application towardssystem design where more formal representation of in-
terfaces and behaviour for simulation and evaluation are strong requirements.

The HOOD development approach allows to combine both a design representation target to-
wards flat type structure and object oriented class structure. Whereas several methods for identi-
fication of classes are based on analysis techniques that were mainly derived from the Entity-
Relationship model extended with inheritance, the HOOD design approach leads naturally to the
identification of class structures from the definition of logical interfaces and applicative abstract
data types. The resulting structure reflects the top down design trade off partition of the software,
rather than a bottom up approach derived from implementation data structures.

Taking into account both the natural client-server relationship between objects and classes, or-
thogonal to the composition relationships, this approach proves to be a powerful structuring tool.
It appears today for us, as the only viable integration support for both modular and full object
oriented approaches
Furthermore, by integrating both abstract data typing and process concepts HOOD3.1 is the soft-
ware engineering tool of choice, supporting a smooth transition from classical development prac-
tice into full object oriented one.



Copyright 1995-96 by HOOD Users Group page 204

page -204
HOOD USER MANUAL 1.0  by HUM Working Group

6 BIBLIOGRAPHY

6.1 REFERENCES

[1]

HOOD Technical Group, B.DELATTE, M.HEITZ, JF MULLER editors,
“HOOD Reference Manual”,Prentice Hall and Masson, 1993.

[2]

M.HEITZ / Cisi-Ingenierie, “Towards more formal developments through inte-
gration of behaviour expression notations and methods within HOOD develop-
ments” inProceedings of 5th International Conference on Software Engineering,
Toulouse, December 1992, Editions EC2

[3]

S.Mullender, “Distributed Systems”, ACM PRESS,ADDISON WESLEY 1991

[4]

“HOOD USERs GROUP” C/O SPACEBEL INFORMATIQUE, 111, rue Colo-
nel BOURG, B-1140 BRUSSELS, BELGIUM Tel(32).2.730.46.50 fax (32)
2.726.85.13

[5]

HOOD Technical Group, B.DELATTE, M.HEITZ, JF MULLER editors,
“HOOD User Manual”, HUG, C/O SPACEBEL INFORMATIQUE, 111, rue
Colonel BOURG, B-1140 BRUSSELS, BELGIUM Tel(32).2.730.46.50 fax (32)
2.726.85.13

[6]

B.DELATTE,M.HEITZ,“Experimenting Reuse with HOOD and Ada” in
Proceedings of Ada- Aerospace Conference, BRUSSELS, November 1993.

[7]

ISO/IEC JTC1/SC22 N1451 Ada9X Reference MANUAL, Version 4.0, Septem-
ber 1993

[8]

ISO/IEC JTC1/SC22 N1382 Draft Standard for EXTensions for Real-Time Ada
version 3.0, october 1993

[9]

ANSI X3/J16 Draft proposal for the programming language C++, AT&T, June
1993

[ACM89]:

Davis: A Comparison of Techniques for the specification of external System Be-
havior, Communications of the ACM, Vol. 31 n9, 1989



Copyright 1995-96 by HOOD Users Group page 205

page -205
HOOD USER MANUAL 1.0 HUM-1.0

AQS91]

“Ada Quality and Style ; Guidelines froProfessional Ada Programmers” , Ver-
sion 02, Software Productivity Consortium, 1991

[ASX94]:

Schmidt D, ASX (‘1994): An Object-Oriented Framework for Developping Dis-
tributed Applications, Proceedings of the 6th USENIX C++ Conference, Cam-
bridge, MA, April 1994

[BERARD85]

Ed.Berard , “Object Oriented Design Handbook for Ada Software”, EVB
document1985

[BERRY88]:

G. Berry, Ph Couronne, G Gonthier: Synchronous Programming of Reactive Sys-
tems: an introduction to Esterel, INRIA Report 647 1988

[BOO 87]

G.Booch , “Software Componenet with Ada, Structures, Tools and Subsystems”,
The Benjamin/Cummings Publishing Company, 1987

[BOO86]

Booch Grady, Object-Oriented Development, IEEE Transactions on Software
Engineering Vol SE-12, February 86

[BOO 83]

G.Booch , “Software Engineering with Ada”, The Benjamin/Cummings Publish-
ing Company, 1983

[CAR 91]

JR. Carter, “Concurrent Reusable Abstract Data Types”, ACM Ada Letters Vol
XI, Number 1, jan 1991

[CAR 90]

JR. Carter, “The Form of Reusable Ada Componenets for Concurrent Use”,
ACM Ada Letters Vol X, Number 1, jan 1990

[CCITT89]

CCITT (International Telecommunication Union), Instructions for SDL Users,
Recommendation Z 100 - Annex D, Vol. X, Fasc. X.2, Geneva 1989

[Clark86]

E.M. Clarke, E.A. Emerson and A.P. Sistla, Automatic verification of finite state
concurrent systems using temporal logic specifications, ACM Trans. Prog. Lang.
Syst. 8 (1986) 244-263

[GIOVA89]

R. Di Giovanni, P.L. Iachini, HOOD and Z for the development of Complex Soft-
ware Systems, Lecture Notes in Computer Science, n° 428, ' VDM'90, VDM and
Z, FORMAL METHODS in SOFTWARE DEVELOPMENTS.

[GON 90]

D.W.Gonzalez, “Multi Tasking Software Components”, ACM Ada Letters Vol
X, Number 1, jan 1990



Copyright 1995-96 by HOOD Users Group page 206

page -206
HOOD USER MANUAL 1.0  by HUM Working Group

[Harel85]

D. Harel and A. Pnueli, On the development of reactive system, in: K.R. Apt,
ED., Logics and Models of Concurrent Systems (Springer, New York, 1985) 477-
498

[HEI91]

A.G. Heibig, Control Machines: a new model of parallelism for compositional
specifications and their effective compilation, Theoretical Computer Science, El-
sevier 1991 43-80

[HRM91]

HOOD Reference Manual (issue 3.1) - HOOD User Group -edited by MASSON
and PRENTICE HALL available December1992.

[HUG91]

HOOD USER GROUP - HUG C/O SPACEBEL INFORMATIQUE, Chaussée
de la Hulpe , B-1140 BRUSSELS, BELGIUM Tel(32).2.730.46.50 fax (32)
2.726.85.13

[HRT]

ESA/ESTEC, “ Hard Real-Time Operating System Kernal Study”,Task1 - Over-
view and Selection of Hard real Time Scheduling Model, ESTEC conttract
n9198/90/NL/SF, also on the HOOD WEB site

[LECMP89]

V. Lecompte: Verification Automatique de Programmes Esterel, Thèse de doc-
torat de l'Université de Paris 7 - Juin 1989

[MHIS90]

M. Heitz, I. Sneed: HOOD-Esterel: A Methodology for Formal Design and De-
velopment of Real-Time Systems, Proceedings of EuroSpace Conference Barce-
lona december 1990.

[Mic 91]

M. Micouin, Objets et automates : un essai de mise en œuvre de Grafcet en con-
ception HOOD, Conférence LIANA 1991 “Pratique et outils logiciels d'aide à la
conception de systèmes d'information”, Nantes

[Mull89]

S. Mullender, Distributed Systems, ACM PRESS, ADDISON WESLEY 1991

[MEYER90]

Meyer B,(1990)“Object Oriented Software Construction” in ISBN 0-8053-0091,
Benjamin Cummings

[OMG91

OMG,(1991)The Common Object request Broker : Architecture and Specifica-
tion , OMG doc.

[PALU90]

Vallette, Paludetto et Courvoisier, LAAS, Generation de code Ada en conception
orientée Objects HOOD/Réseaux de Petri, Proceedings des Journées Internation-
ales “Le Génie Logiciel et ses Applications”, Toulouse, Décembre 90.



Copyright 1995-96 by HOOD Users Group page 207

page -207
HOOD USER MANUAL 1.0 HUM-1.0

[Reisig85]

W. Reisig, Petri Nets: An Introduction (Springer, Berlin, 1985)

[SCHMIDT95]:

Schmidt D,Stephenson P(1995)  Using Design Patterns to Evolve System Soft-
ware from Unix to WIndows NTC++ Report, 1995 March 1995

[SOUROU95]:

Sourouille JL, H Lecoeuche(1995), Integrating State in an OO Concurrent Mod-
el, Proceedings of TOOLS EUROPE95 Conference, Prentice HAll

[STROUS91]

Strousoup B(1991)The Annoted C++ Reference Manual,  Addison-Wesley
Press

[VIEL89]

P. Vielcanet: HOOD Design Method and Control Command Techniques for the
Development of Real-Time Software, Proceedings of ADA Conference, Wash-
ington, June

[VINO93]

Vinoski S(1993) Distributed Object Computing with CORBA,C++ Report, vol
5,

[VINO95]

Vinoski S, Schmidt D(1995) Comparing Alternative Client_Side Distributed
Programming Techniques,C++ Report, 1995 May/June 1995 issues

[PFA85]

G.E. Pfaff "User Interface Management Systems" (Seeheim 1983), Springer-
Verlag



Copyright 1995-96 by HOOD Users Group page 208

page -208
HOOD USER MANUAL 1.0  by HUM Working Group

6.2 HOOD BIBLIOGRAPHY

6.2.1 ARTICLES AND PAPERS PUBLISHED IN 1995

[MH95b] Achieving Reusable and Reliable Client-Server Code using HOOD automated
code generation for ADA95 and C++ targets,M.HEITZ, Lecture Notes In Com-
puter Science - SPRINGER VERLAG, Proceedings of the Ada-Eurospace Con-
ference, Frankfurt, October 1995

[MH95a] Automated Client_Server Code Generation from HOOD4 Object Oriented
Desigsn , M.HEITZ, Proceedings of the IFAC Workshop on Distributed Compu-
ter Control Systems Conference, Blagnac, September 1995

6.2.2 ARTICLES AND PAPERS PUBLISHED IN 1994

[MH94c] Integrating Modular, Object Oriented Programming and Application generator
technologies in large Real Time and distributed Developments M.HEITZ, the
Ada-Eurospace Conference, Copenhagen, September 1994,

[MH94b] EXPERIMENTING REUSE with HOOD and Ada, M.HEITZ,B.DELATTE,
Proceedings of the Ada-Eurospace Conference, Brussels, November 1993

[MH94a] Analyse et Conception Orientée Objet avec HOOD, M. HEITZ, Journée Rencon-
tres Industrielles ENSIMAG, Grenoble juin 1993.

6.2.3 ARTICLES AND PAPERS PUBLISHED IN 1993

[HRM93] HOOD Reference Manual 3.1, HOOD Technical Group, B.DELATTE,
M.HEITZ,JF MULLER, Editions MASSON et PRENTICE HALL 1993.

[MH93b] EXPERIMENTING REUSE with HOOD and Ada, M.HEITZ,B.DELATTE,
Proceedings of the Ada-Eurospace Conference, Brussels, November 1993

[MH93a] Analyse et Conception Orientée Objet avec HOOD, M. HEITZ, Proceedings de
la conférence des Utilisateurs Informatique du CEA, Grenoble juin 1993.

[MHULL93] Introducing formal methods to HOOD, M.E.C. Hull & P.G. o’Donoghe, Univer-
sity of Ulster, Proceedings of the International Conference on Software Engineer-
ing Toulouse Nov. 1993.

[FM93] Ensembles de mesures applicables à la méthode HOOD, F.MAURICE, A.BEN-
ZEKRI, V.VALETTE, Proceedings of the International Conference on Software
Engineering Toulouse nov 1993.

6.2.4 ARTICLES AND PAPERS PUBLISHED IN 1992

[ANDER92a] HOOD as a basis for OBJECT_ORIENTED PROGRAMMING J.A. ANDER-
SON (SYNETICS) Proceedings of the Ada-Eurospace Conference, Vienna, No-



Copyright 1995-96 by HOOD Users Group page 209

page -209
HOOD USER MANUAL 1.0 HUM-1.0

vember 1992

[ANDER92b] INCORPORATING MANAGEMENT INDICATORS INTO HOOD J.A. AN-
DERSON(SYNETICS) Proceedings of the Ada-Eurospace Conference, Vienna,
November 1992

[ANDR92] Reverse Engineering from Ada to HOOD P.ANDRIEU, C.ALVAREZ, JA. ES-
TEBAN (SEMA group) Proceedings of the Ada-Eurospace Conference, Vienna,
November 1992

[Chand92] Risk Reduction on Huygens Programme through Prototyping in the early Life
Cycle Phases S.CHANDLER, P ADVIES, J HARBONNE (LOGICA) Proceed-
ings of the Ada-Eurospace Conference, Vienna, November 1992

[CHIA92] Ada and HOOD for the development of the COLUMBUS Operating System Ker-
nel, R.CHIAVERINI, S.TRIVELLINI, G.DELLARTE, S.SABINA (INTECS)
Proceedings of the Ada-Eurospace Conference, Vienna, November 1992

[DEM92] An Xview application and the HOOD-Ada lifecycle B.DEMEUSE, O.LANGH-
ENDRIES,G.PAQUET (SPACEBEL) Proceedings of the Ada-Eurospace Con-
ference, Vienna, November 1992

[DENSK92] CASE and HOOD-Ada in the development of embedded systems U.DENSKAT,
D.COATES,D.WEBER (DORNIER) Proceedings of the Ada-Eurospace Confer-
ence, Vienna, November 1992

[GAJET92] A HOOD-Ada Application for an Object Oriented Simulation Library for On-
board Space System Payload Simulation M.GAJETTI,W.RAVETTO (Alenia
Spazio) Proceedings of the Ada-Eurospace Conference, Vienna, November 1992

[LAC92] Use of the HOOD Metgod in the HERMES Onboard Software P.LA-
CAN,P.COLANGELI (Aerospatiale) Proceedings of the Ada-Eurospace Confer-
ence, Vienna, November 1992

[MAR92] The VICOS Software Development U.MARON (ERNO) Proceedings of the
Ada-Eurospace Conference, Vienna, November 1992

[MARRD92] The Use of Ada and HOOD in the Design of an Autonomous Spacecraft Data
Management System , L.MARRADI, F.CICERI,D.MASOTTI (LABEN) Pro-
ceedings of the Ada-Eurospace Conference, Vienna, November 1992

[MH92a] Specification et Conception en technologie Objet, l'approche HOOD, M. HEITZ,
Conférence DECUS France, Avril 1992.

[MH92b] Towards more formal developments using HOOD, M. HEITZ, (CISI-INGE-
NIERIE) Proceedings of the International Conference on Software Engineering
Toulouse dec 1992.

[NAND92] Real Time On board Software for SILEX Space Communication System,
P.NANDE (Matra Marconi Space) Proceedings of the Ada-Eurospace Confer-
ence, Vienna, November 1992

[PAPAIX92] HOOD & ADA Quality Engineering in french Aerospace Industry, M. PA-
PAIX,M. HEITZ, (CNES) Proceedings of the Ada-Eurospace Conference, Vien-
na, November 1992, EUROSPACE , 16bis avenue Bosquet 75007 PARIS

[POU92] Customizable MODULAR SOFTWARE, J.POUDRET, P GUEDOU, T
GOHON (SEXTANT), Proceedings of the Ada-Eurospace Conference, Vienna,
November 1992

[ROB92] HIERARCHICAL OBJECT ORIENTED DESIGN, PJ ROBINSON, Prentice



Copyright 1995-96 by HOOD Users Group page 210

page -210
HOOD USER MANUAL 1.0  by HUM Working Group

HALL

[RUN92] A control system for the X_SAR Precision Processor H. Runge, P. Secchi (DLR),
A.Paganone (Intecs Sistemi), Proceedings of the Ada-Eurospace Conference, Vi-
enna, November 1992

6.2.5 ARTICLES AND PAPERS PUBLISHED IN 1991

[And 91] Relations entre l'environnement HOOD et les autres composants de l'atelier
CONCERTO, P. Andrieux, E. André, Conférence LIANA 1991 "Pratique et out-
ils logiciels d'aide à la conception de systèmes d'information", Nantes

[Ander91] Object Oriented and Ada lifecycle reuse, J. Anderson, 2ème conférence EU-
ROSPACE "Ada in Aerospace", Rome, Novembre 1991

[Bar 91] Eléments de la méthode HOOD Pour une composition ascendante d'objets, M.
Bari, C. Rolland, Conférence LIANA 1991 "Pratique et outils logiciels d'aide à
la conception de systèmes d'information", Nantes

[BD91a] La démarche HOOD au CNES, B. Delatte, Conférence LIANA 1991 "Pratique
et outils logiciels d'aide à la conception de systèmes d'information", Nantes

[BD91b] Experimenting Reuse in French Aerospace Industry, B. Delatte, ?M. Heitz, 2ème
conférence EUROSPACE "Ada in Aerospace", Rome, Novembre 1991

[Bea 91] Practical application of the rate monotonic scheduling theory with Ada, J. Beau-
fays, Ph. Bocquillon, Th. Dubois, E. Germeyn, H. Gilman, E. Snyers, 2ème con-
férence EUROSPACE "Ada in Aerospace", Rome, Novembre 1991

[Bir 91] EASAMS'Ariane5 on-board software experience, S.A. Birnie, 2ème conférence
EUROSPACE "Ada in Aerospace", Rome, Novembre 1991

[Car 91] Unifying the concepts of HOOD with Object Oriented Programming, A.R. Car-
michael, 2ème conférence EUROSPACE "Ada in Aerospace", Rome, Novembre
1991

[Deb 91] Description d'un générateur Ada d'objets HyperHood, Debœuf, Gatineau, Con-
férence LIANA 1991 "Pratique et outils logiciels d'aide à la conception de sys-
tèmes d'information", Nantes

[Do 91] A new approach to HOOD : A link between the design and the implementation,
T.N. Do, 2ème conférence EUROSPACE "Ada in Aerospace", Rome, Novembre
1991

[Dona 91] Experience in using an object oriented method and Ada for the development of a
Flight Management System, J.DONAGHY,(EUROCONTROL), Object Orient-
ed Software Engineering Conference, Campus THOMSON, PARIS, sept 1991

[Habri 91] la méthode HOOD et quelques autres, H.HABRIAS, Conférence LIANA 1991
"Pratique et outils logiciels d'aide à la conception de systèmes d'information",
Nantes

[Kou 91] Implantation de HOOD 3.0 dans un outil de génie logiciel existant, ?A. Kouri, P.
Gendre, Conférence LIANA 1991 "Pratique et outils logiciels d'aide à la concep-
tion de systèmes d'information", Nantes

[Lai91] M.LAI, Conception Orientée Objet - la méthode HOOD?Editions A.COL-



Copyright 1995-96 by HOOD Users Group page 211

page -211
HOOD USER MANUAL 1.0 HUM-1.0

IN.1991

[MH91a] HOOD3.1,the Adult Age, B.DELATTE/CNES, JF MULLER/MATRA-MAR-
CONI-SPACE, M. HEITZ/CISI INGENIERIE, Proceedings of the Ada-Eu-
rospace Conference, Roma, November 1991

[MH91b] Structuration des Classes, Objets, Types et Données dans HOOD, M. HEITZ,
CISI INGENIERIE, Numero Spécial AFCET sur les Objets juin 1991.

[MH91c] Structuring Classes, Objects, Types and Data within HOOD, M. HEITZ, CISI
INGENIERIE, Special Issue AFCET journal on objects june 1991.

[MH91d] Développement d'applications  réparties avec ADA et HOOD, ?M. HEITZ, CISI
INGENIERIE, Conférence ADA-FRANCE Nov 1991,Paris.

[Mic 91] Objets et automates : un essai de mise en œuvre de Grafcet en conception HOOD,
M. Micouin, Conférence LIANA 1991 "Pratique et outils logiciels d'aide à la con-
ception de systèmes d'information", Nantes

[Mon 91] The process of developping Ada software for large scale real-time and embedded
systems, with distributed and redundant architecture, Ph. Monseu, 2ème con-
férence EUROSPACE "Ada in Aerospace", Rome, Novembre 1991

[Mul 91] Eléments de comparaison entre la méthode HOOD et les langage par objets, N.
Cam, J.F. Muller, Conférence LIANA 1991 "Pratique et outils logiciels d'aide à
la conception de systèmes d'information", Nantes

[Ponc91] De HOOD à HOOK : une méthode de conception uniforme pour ADA et les Bas-
es de Données Orientées Objet, P. Poncelet, M. Teisseire, A. Cavarero, S. Miran-
da, Rapport K-I2S/HOOK, Janvier 1991

[Sch 91] Using the HOOD virtual node concept for the COLUMBUS DMS Software ar-
chitectural design, F. Feck, B. Labreuille, J.F. Muller, H. Schindler, 2ème con-
férence EUROSPACE "Ada in Aerospace", Rome, Novembre 1991

[Seh 91] Prototyping for the basic management computer in helicopter project 'Tiger',H.
Sehmer, 2ème conférence EUROSPACE "Ada in Aerospace", Rome, Novembre
1991

[Ser 91] Prototyping the CPF Hermes software with Ada, R. Serrao, M. Manigrasso, 2ème
conférence EUROSPACE "Ada in Aerospace", Rome, Novembre 1991

[Tem 91] Some critical comments on HOOD, T. Tempelmeier, 2ème conférence EU-
ROSPACE EUROSPACE "Ada in Aerospace", Rome, Novembre 1991

[Tra 91] Mise en œuvre de la méthode HOOD pour la simulation discrète de systèmes dis-
tribués avec le langage Ada, M.K. Traore, Conférence LIANA 1991 "Pratique et
outils logiciels d'aide à la conception de systèmes d'information", Nantes

[Wil 91] Building a system for screening ERS-1 satellite data using the HOOD method
and Ada, M. Eineder, H.J. Wilhelms, P; Coppola, A. Paganone, 2ème conférence
EUROSPACE "Ada in Aerospace", Rome, Novembre 1991

6.2.6 ARTICLES AND PAPERS PUBLISHED IN 1990

[Auton90] Use of HOOD in the Design of a Multiprocessor Real Time System, I. Auton,
Thorn Emi, Proceedings of Hood conference, April 1990, Manchester Airport



Copyright 1995-96 by HOOD Users Group page 212

page -212
HOOD USER MANUAL 1.0  by HUM Working Group

[BARCE90] MSLIB_Ada : a library for spatial mechanics computing, JC BERGES (CNES°,
C.COMPE, L.MALLET (SIMULOG), F.DUCRET (AEROSPATIALE), Pro-
ceedings of the Ada-Eurospace Conference, Barcelona, december 1990

[BARCE90] Prototyping in Ada : experience in developing the HERMES on-board mission
software mockup, A;BARCELLONA, A.SANTARELLI, Proceedings of the
Ada-Eurospace Conference, Barcelona, december 1990

[BING90] Ada realization for the process computers of the DOEL1&é nuclera power plants,
M.BINGEN, J.BEAUFAYS, Proceedings of the Ada-Eurospace Conference,
Barcelona, december 1990

[BL90] HOOD , A Design Method for Space Industry JF Muller, B.Labreuille/ MATRA-
ESPACE, Proceedings of American Institute of Aeronautics and Astronautics
Conference Sept 1990, PASEDENA.

[GEN90] HOOD version 3.0 : l'âge de raison, P. Gendre et H. Bitteur, Génie Logiciel et
Système Expert, Vol. n° 19, pp 44-48, juin 1990

[GIOV90] On the translation of HOOD Nest into Ada, R.Di Giovanni (PRISMA), Proceed-
ings of ADA-Europe, Dublin 1990, Cambridge University Press, ADA Compan-
ion series

[IS 90] Integration of H_OOD ,Estérel  and Ada for the development of safe and reliable
Real Time Systems, I. SNEED, M. HEITZ, CISI INGENIERIE, Proceedings of
the Ada-Eurospace Conference, Barcelona, december 1990

[JOCT90] La méthode HOOD, compte-rendu du groupe de travail AFCET, H JOCTEUR,
AFCET -INTERFACES n°93, Juillet 90

[LAFEU90] Contribution of Ada to an improved Software Development Approach, Y.LA-
FEUILLADE, F.COURJARET (MATRA-MS2I) Proceedings of the Ada-Eu-
rospace Conference, Barcelona, december 1990

[Lai 90] An overview of several French Navy projects using HOOD and Ada, M. Lai, Pro-
ceedings of the Ada-Europe conference 1990 Dublin, ADA Companion Series,
Ada Cambridge University Press 1989

[LARR90] A Baseline for a HOOD method Assistant, JR Larre, N.Alfaro, JJ.GAlan, J.Gar-
baosa, GMV:Spain Proceedings of the Ada-Eurospace Conference, Barcelona,
december 1990

[Mell90] A Pragmatic Application of OOD to the Development of Ada Using the Team-
work Toolset, P. Mellor, Proceedings of Hood conference, April 1990, Manches-
ter Airport

[MH90a] La méthode de conception HOOD dans le cycle de développement et ses outils,
M.Heitz, Proceedings des Journées Internationales de l'Informatique et de l'Au-
tomatisme, JIIA 90

[MH90b] Integration of HOOD in the Lifecycle, M. Heitz, Proceedings of Hood confer-
ence, April 1990, Manchester Airport

[MU90] HOOD, A Method to Support Real Time and Embedded Systems Design ?  JF
Muller/MATRA-ESPACE, Jochen DERISSEN/GEI, M.Heitz and I.SNEED/
Cisi-Ingenierie,Proceedings of Journees du Genie Logiciel Toulouse, Décembre
1990, Editions EC2

[Neil90] Use of Yourdon for Requirements Analysis in combination with HOOD for Ar-
chitectural Design, J. van Neil, Proceedings of Hood conference, April 1990,



Copyright 1995-96 by HOOD Users Group page 213

page -213
HOOD USER MANUAL 1.0 HUM-1.0

Manchester Airport

[NIEL90] Extension of Communication Facilities in Ada, HJ Goedman & J Van NIEL
(HCS) Proceedings of HOOD conference, April 1990, Manchester Airport

[PALU90] Generation de code Ada en conception orientée Objects HOOD/Réseaux de Petri,
VALLETTE, PALUDETTO et COURVOISIER, LAAS, Proceedings des
Journées Internationales "Le Génie Logiciel et ses Applications", Toulouse,
Décembre 90.

6.2.7 ARTICLES AND PAPERS PUBLISHED IN 1989, 1988 ET 1987

[AUX89] Promethée : Designing a Process Control System, G.Auxiette/ TOTAL, ?JF
CABADI, P.Rehbinder/Cisi-Ingénierie, Proceedings of ADA-EUROPE Confer-
ence 89, Madrid

[BL 88] Design and Development of Distributed Software using Hierarchical Object Ori-
ented Design and ADA, M. HEITZ, B. LABREUILLE, CISI INGENIERIE, Pro-
ceedings Ada Europe Conference München, May 88.

[CAR89] Integrated Support for Requirements Analysis, HOOD Design and Implementa-
tion, A.R. Carmichael, UNICOM, HOOD Tutorials and Demonstrations",
Londres, 28-29 novembre 1989

[GIOVA89] HOOD and Z for the development of Complex Software Systems, R. Di Giovan-
ni, P.L. Iachini, Lecture Notes in Computer Science, n° 428, ' VDM'90, VDM and
Z, FORMAL METHODS in SOFTWARE DEVELOPMENTS.

[HEI 89-1] Hierarchical Object Oriented Design for Ada development of large technical and
realtime software, M. HEITZ, technical Note CISI INGENIERIE, 3 pages, 21/06/
89.

[HEI 89-2] Hierarchical Object Oriented Design - Une méthode de conception orientée Ada
pour le développement de logiciels techniques et temps réels, M.HEITZ, Note
technique CISI INGENIERIE, 3 pages, 08/12/89.

[HEI 89] Hierarchical Object Oriented Design - A Summary, M. HEITZ, CISI INGE-
NIERIE, a 10 page summary, 13/11/89.

[HRM 89] H_OOD Reference Manual, V3.0, produced by HOOD Working Group, edited
by ESA Noordwijk, The Netherlands, 09/89

[HUM 89] H_OOD User Manual, V3.0, produced by HOOD Working Group, edited by
ESA Noordwijk, The Netherlands, 12/89

[IS 89] An Extended Algebraic Approach for Methods Formalisation, Application to the
HOOD Method, Deuxièmes Journées Internationales "Le Génie Logiciel et ses
Applications", I. SNEED, M. HEITZ, B. RAYNAUD, Proceedings of Journées
du Génie Logiciel Toulouse, 4-8 Décembre 1989

[VIEL 89] H_OOD Design method and control/command techniques for the development
of realtime software, P. VIELCANET, CISI INGENIERIE, Proceedings of ADA
Conference, Washington, 06/89.

[HEI 88] Hierarchical Object Oriented Design for Ada, La Lettre ADA n° 8, M.HEITZ,
CISI INGENIERIE, 2 pages 10/88.

[VAL 88] Réseaux de Pétri pour la conception de logiciels temps réels, VALLETTE,



Copyright 1995-96 by HOOD Users Group page 214

page -214
HOOD USER MANUAL 1.0  by HUM Working Group

PALUDETTO, du LAAS, et LABREUILLE, CISI INGENIERIE, Proceedings
des Premières Journées Internationales "Le Génie Logiciel et ses Applications",
Toulouse, Décembre 88.

[HEI 87] H_OOD, Une Méthode de Conception Hierarchisée Orientée Objects pour les
développements des logiciels techniques et Temps réels, M.HEITZ, Proceedings
Journées ADA-AFCET, 12/87.



Copyright 1995-96 by HOOD Users Group page 215

page -215
HOOD USER MANUAL 1.0 HUM-1.0

A APPENDIXES



Copyright 1995-96 by HOOD Users Group page 216

page -216
HOOD USER MANUAL 1.0 HUM-1.0

A1 MORE ON THE EMS EXAMPLE

A1.1 EMS REQUIREMENTS

A1.1.1  PRESENTATION OF THE EMS SYSTEM

The EMS is a software to monitor a motor engine variables, to display them on a bargraph and
trigger an alarm if associoated values are out of range. A detailed requirement of the EMS is giv-
en hereafter

Figure 158 -  The EMS System

Figure 159 -  The EMS Hardware Block Diagram

OIL

FUEL

WATER

Displays

EMS
Alarm

Start

Stop

Ack Alarm

Push Buttons

MOTOR

SENSORS

Water

Fuel

Oil

WATER

OIL

FUEL

8 A/D
converters

board

16 input
board

8 bargraph
board

16 output
board

timer

real time clocks

green, redsensor failure

ALARM

DISPLAY
DEVICESENSORS

PUSHBUTTONS

start

stop

ack

CPU

Memory



Copyright 1995-96 by HOOD Users Group page 217

page -217
HOOD USER MANUAL 1.0 HUM-1.0

A1.1.2 CLIENT  REQUIREMENTS

• The EMS software is running on the CPU, using an Input/Output and a Timers drivers.

• The values of water temperature, oil pressure and fuel level are displayed in green light on
three different bargraphs, each second. In case of sensor failure, the corresponding bargraph
flashes in red light and the alarm is started. In case of a value is out of range, the bargraph
displays the value in red light and triggers the alarm.

• The EMS can be started and stopped independently of the car engine, by using start and stop
pushbuttons.

• The alarm of the EMS may be switched off by the ack push button.

• More sensors might be handled.

• The EMS must be reliable.

• The EMS system might be connected to a general vehicle control system.

A1.1.3 SOFTWARE ENVIRONMENT

• The Timers_Driver object manages a set of timers which send cyclic interruptions at a spec-
ified address. Each timer is first created with given frequency and address. A timer then may
be started or stopped at any moment. It may also be deleted from the list of available timers.

• The Input_Output_Driver object provides means to exchange information with hardware de-
vices. It allows to put or to get information of these devices (excepted the push-buttons).
Malfunction from a hardware device is returned as an exception of the put or get operation.
Pushing a push-button generates an interruption.

A1.2 OBJECT AND OPERATION IDENTIFICATION
THROUGH TEXTUAL ANALYSIS TECH-
NIQUES

A1.2.1 IDENTIFICATION OF NOUNS :

On IT reception from the Start push button, theEMS is started if it was not.
Then thesensors of theEMS are sampled every 1/10 second by a signal from thetimer .
Every second, themean values of oil pressure, fuel level andwater temperature, are acquired
from sensors and  then displayed on theappropriate bargraphs. If a mean value is out of
range, thealarm is switched on and the correspondingbargraph is displayed inred light. If
there is asensor failure, thealarm is switched on and the correspondingbargraph flashes in
red light. In the other cases, thebargraphs are displayed ingreen light.
On IT reception from the Ack push button, thealarm is acknowledged if it was not.
On IT reception from the Stop push button, theEMS is stopped if it was not : thealarm, the
timer  and thesensors are stopped and thebargraphs are switched off.



Copyright 1995-96 by HOOD Users Group page 218

page -218
HOOD USER MANUAL 1.0 HUM-1.0

A1.2.2 IDENTIFICATION  OF  VERBS  ( ❸ CONTINUE)

On IT reception from the Start push button, the EMSis started if it was not.
Then the sensors of the EMSare sampled every 1/10 second by a signal from the timer.
Every second, the mean values of oil pressure, fuel level and water temperature,are acquired
from sensors and  thendisplayed on the appropriate bargraphs. If a mean valueis out of range,
the alarmis switched on and the corresponding bargraphis displayed in red light. Ifthere is a
sensor failure, the alarmis switched on and the corresponding bargraphflashes in red light. In
the other cases, the bargraphsare displayed in green light.
On IT reception from the Ack push button, the alarmis acknowledged if it was not.
On IT reception from the Stop push button, the EMSis stopped if it was not : the alarm, the
timer and the sensorsare stopped and the bargraphsare switched off.
Grouping  Operations  and  Objects  (❸ continue)

EMS EMS X System to be designed
sensors Sensors X 3 sensors
timer Timers_Driver X environment
mean value of oil pressure value X
mean value of water temperature value X
mean value of fuel level value X
appropriate bargraphs Bargraphs X 3 bargraphs
mean value value X
range limited_value X system parameters
alarm Alarm X
red light colour X
sensor failure sensor_failure X
green light colour X

NOUNS OBJECT DATAIDENTIFIERS COMMENTS

started EMS start on IT from Start button
sampled Sensors sample every 1/10 second

by a signal from timer
∑ 8 following actions ? monitor every second

acquired mean value Sensors acquire
displayed_mean_val. Bargraphs display
is out of range ? or Filter is_value_outof_range
switched on Alarm switch_on
displayed Bargraphs set_colour in red light
there is sensor failure Sensor is_there_sensor_fail.
flashes Bargraphs flash in red light
displayed Bargraphs set_colour in green light

acknowledged EMS/Alarm acknowledge on IT from Ack button
stopped = EMS stop on IT from Stop button

stopped Alarm stop
stopped Timers_Driver stop environment
stopped Sensors stop
switched off Bargraphs switch_off

VERBS IDENTIFIERS
Server

OBJECT
COMMENTS

(execution request, par a



Copyright 1995-96 by HOOD Users Group page 219

page -219
HOOD USER MANUAL 1.0 HUM-1.0

A1.3 OTHER  ODS OF EMS SYSTEM

A1.3.1 OBJECTTIMERS_DRIVER IS ENVIRONMENT ACTIVE

DESCRIPTION
--| The Timers_Driver manages a set of timers which send cyclic interruptions at a specified address. A timer is created with

a given frequency and may be started (re-started) or stopped at any moment. A timer then may be deleted from the list of
available timers.|--

IMPLEMENTATION_CONSTRAINTS
--| 255 timers may be consecutively used at a same time.|--
PROVIDED_INTERFACE
TYPES

T_TIMER; --| This type defines a timer.|--
T_IT_ADDRESS is SYSTEM.ADDRESS; --| This type defines the address of an IT.|--

CONSTANTS
NONE

OPERATION_SETS
NONE

OPERATIONS
Create(TIMER : out T_TIMER; -- new timer

FREQUENCY : in POSITIVE; -- cyclic frequency of the timer in Hz
IT_ADDRESS : in ADDRESS -- reception address of the sent IT);

--| The Create operation allows to create a new timer, which can send IT at the address of reception and at the specified
frequency. The timer is not started. The created timer is returned.|--
Start (TIMER : in T_TIMER -- timer to be started);
--| The Start operation allows to start the given timer.|--
Stop (TIMER : in T_TIMER -- timer to be stopped);
--| The Stop operation allows to stop the given timer.|--
Delete (TIMER : in T_TIMER -- timer to be deleted);
--| The Delete operation allows to suppress the given timer of the list of available timers. This operation stops the timer (if
it is running) before to delete it.|--

EXCEPTIONS
NONE

OBJECT_CONTROL_STRUCTURE
DESCRIPTION
--| Start, Stop and Delete operations may arrive at any moment, as soon as the timer exists. A Start operation is of no effect if

the timer is still running or is not created. A Stop operation is of no effect if the timer is still stopped or is not created. A
Delete operation is of no effect if the timer is not created.|--

CONSTRAINED_OPERATIONS
Start CONSTRAINED_BY ASER;
Stop CONSTRAINED_BY ASER;
Delete CONSTRAINED_BY ASER;

END_OBJECT Timers_Driver

A1.3.2 OBJECTSENSORSIS ACTIVE

DESCRIPTION
--| This object samples oil pressure, water temperature and fuel level at 10Hz and stores the read values of the three sensors

at any moment. It may provide the mean of stored values of a sensor.
It also provides all means to start and stop the hardware sensors.|--

IMPLEMENTATION_CONSTRAINTS
--| Buffering capacity, for each sensor, is of ten values.|--
PROVIDED_INTERFACE
TYPES



Copyright 1995-96 by HOOD Users Group page 220

page -220
HOOD USER MANUAL 1.0 HUM-1.0

T_SENSOR is(OIL_PRESSURE_SENSOR,
WATER_TEMPERATURE_SENSOR,
FUEL_LEVEL_SENSOR);

--| This type defines the types of sensors which are taken into account in this object. |--
OPERATIONS

Start;
--| This operation initializes the hardware sensors.|--
Sample;
--| This operation is in charge of the Sensors sampling. It gets the current values of each hardware sensor and stores them
into an internal database.|--
Acquire (SENSOR : in T_SENSOR) return POSITIVE;
--| This operation returns the mean of the ten last stored values of a sensor. It  returns a SENSOR_FAILURE exception in
case of  hardware sensor problem.|--
Stop;
--| This operation stops the hardware sensors.|--

EXCEPTIONS
SENSOR_FAILURERAISED_BY Acquire;

OBJECT_CONTROL_STRUCTURE
DESCRIPTION
--| The Sensors object accepts to sample as soon as it has been initialized. The Sample operation is not significant before a

Start or after a Stop.|--
CONSTRAINED_OPERATIONS
Sample CONSTRAINED_BY ASER_by_IT Timer_10Hz;
REQUIRED_INTERFACE
OBJECT Input_Output_Driver;

TYPES
T_DEVICE;T_DEVICE_STATUS;T_DESCRIPTOR;

CONSTANTS
MAX_SENSORS_NUMBER;

OPERATIONS
Get; Put;

EXCEPTIONS
MALFUNCTION;

OBJECT Timers_Driver;
TYPES

T_TIMER;
OPERATIONS

Create; Start; Delete;
DATAFLOWS

data_in<= Input_Output_Driver;
initial_frequency=> Timers_Driver;

EXCEPTION_FLOWS
malfunction<= Input_Output_Driver;

INTERNALS
OBJECTS

NONE
TYPES

T_SENSOR_STATUS is(INITIALIZED, STOPPED);
T_HARDWARE_SENSOR_STATUS is(FAILED, OK);
--| TBD |--

CONSTANTS
IT_10HZ_ADDRESS : constant := Sample’ADDRESS;
SAMPLING_FREQUENCY : constant :=10;
--| TBD |--

OPERATIONS
Store_Value(SENSOR : in T_SENSOR;

VALUE : in POSITIVE;
STATUS : in T_HARDWARE_SENSOR_STATUS);

Get_Last_Value(SENSOR : in T_SENSOR;
VALUE : out POSITIVE;
STATUS : out T_HARDWARE_SENSOR_STATUS);

--| TBD |--



Copyright 1995-96 by HOOD Users Group page 221

page -221
HOOD USER MANUAL 1.0 HUM-1.0

EXCEPTIONS
--| TBD |--

DATA
SAMPLING_TIMER : Timers_Driver.T_TIMER;
WATER_SENSOR,
OIL_SENSOR,
FUEL_SENSOR : Input_Output_Driver.T_DEVICE (SENSOR);
SENSOR_STATUS : T_SENSOR_STATUS := STOPPED;
--| TBD |--

OBJECT_CONTROL_STRUCTURE
PSEUDO_CODE

--| TBD |--
CODE

--| TBD |--
OPERATION_CONTROL_STRUCTURES
OPERATION  Start
DESCRIPTION
--| This operation initializes the hardware sensors and then creates and starts a timer for it triggers the sampling every 10 sec-

onds. The sensors status are set to INITIALIZED.|--
USED_OPERATIONS

Timers_Driver.Create;
Timers_Driver.Start;
Input_Output_Driver.Put;

PROPAGATED_EXCEPTIONS
NONE

HANDLED_EXCEPTIONS
Input_Output_Driver.MALFUNCTION;

PSEUDO_CODE
--| TBD |--

CODE
--| TBD |--

END_OPERATION  Start
OPERATION  Sample
DESCRIPTION
--| This operation is in charge of the Sensors sampling. It gets the current values of each hardware sensor and stores them into

an internal database.|--
USED_OPERATIONS

Input_Output_Driver.Get;
Store_Value;

PROPAGATED_EXCEPTIONS
NONE

HANDLED_EXCEPTIONS
Input_Output_Driver.MALFUNCTION;

PSEUDO_CODE
--| TBD |--

CODE
--| TBD |--

END_OPERATION  Sample
OPERATION  Acquire(SENSOR : in T_SENSOR ) return POSITIVE
DESCRIPTION
--| This operation gets the ten last stored values of a sensor, calculates and returns their mean. In case of the corresponding

hardware sensor is failed for the ten stored values, this operation returns a sensor_failure exception. In the other cases, a
momentaneous hardware sensor failure is ignored and the mean value is calculated on the correct values.|--

USED_OPERATIONS
Get_Last_Value;

PROPAGATED_EXCEPTIONS
SENSOR_FAILURE;

HANDLED_EXCEPTIONS
NONE

PSEUDO_CODE
--| TBD |--

CODE



Copyright 1995-96 by HOOD Users Group page 222

page -222
HOOD USER MANUAL 1.0 HUM-1.0

--| TBD |--
END_OPERATION  Acquire
OPERATION  Stop
DESCRIPTION
--| This operation stops the hardware sensors and resets the sampling timer. The sensors status is set to STOPPED.|--
USED_OPERATIONS

Timers_Driver.Delete;
Input_Output_Driver.Put;

PROPAGATED_EXCEPTIONS
NONE

HANDLED_EXCEPTIONS
Input_Output_Driver.MALFUNCTION;

PSEUDO_CODE
--| TBD |--

CODE
--| TBD |--

END_OPERATION  Stop
OPERATION  Store_Value (SENSOR : in T_SENSOR;

VALUE : in POSITIVE;
STATUS : in T_HARDWARE_SENSOR_STATUS)

DESCRIPTION
--| TBD |--

USED_OPERATIONS
--| TBD |--

PROPAGATED_EXCEPTIONS
--| TBD |--

HANDLED_EXCEPTIONS
--| TBD |--

PSEUDO_CODE
--| TBD |--

CODE
END_OPERATION  Store_VAlue
OPERATION  Get_Last_Value (SENSOR : in T_SENSOR;

VALUE : out POSITIVE;
STATUS : out T_HARDWARE_SENSOR_STATUS)

DESCRIPTION
--| TBD |--

USED_OPERATIONS
--| TBD |--

PROPAGATED_EXCEPTIONS
--| TBD |--

HANDLED_EXCEPTIONS
--| TBD |--

PSEUDO_CODE
--| TBD |--

CODE
END_OPERATION  Get_Last_Value
END_OBJECT Sensors

A1.3.3 OBJECTBARGRAPHSIS PASSIVE

DESCRIPTION
--| The bargraphs object allow to display values, in red or green with or without flashing, on appropriate display devices.

It also provides all means to start and stop the hardware display_device.|--
IMPLEMENTATION_CONSTRAINTS
--| NONE|--
PROVIDED_INTERFACE
TYPES



Copyright 1995-96 by HOOD Users Group page 223

page -223
HOOD USER MANUAL 1.0 HUM-1.0

T_BARGRAPH is(OIL_PRESSURE_BARGRAPH,
WATER_TEMPERATURE_BARGRAPH,
FUEL_LEVEL_BARGRAPH);

--| Defines the type of bargraphs which are taken into account in this object.|--
T_COLOUR is(RED, GREEN);
--| Enumerated type giving the different displaying colours.|--
T_FLASHING is(ON, OFF);
--| Status of the displaying : Flashing or not.|--
T_PERCENTAGE isRANGE 0..100;
--| Type of the values which are displayed on the bargraphs.|--

OPERATIONS
Init ;
--| This operation initializes the hardware bargraphs. Bargraphs are switched on in green colour without flashing and with
a null value.|--
Display(BARGRAPH : in T_BARGRAPH;

VALUE : in T_PERCENTAGE);
--| This operation displays the input percentage value in the corresponding hardware bargraph. The colour and the flashing
are not modified.|--
Set_Colour(BARGRAPH : in T_BARGRAPH;

COLOUR : in T_COLOUR);
--| This operation sets the corresponding hardware bargraph in the specified colour. The displayed value and the flashing
are not modified.|--
Flash(BARGRAPH : in T_BARGRAPH;

STATUS : in T_FLASHING);
--| This operation allows to flash the corresponding hardware bargraph. The colour and the displayed value are not modi-
fied.|--
Switch_Off;
--| This operation switches the hardware bargraphs off.|--

REQUIRED_INTERFACE
OBJECT Input_Output_Driver;

TYPES
T_DEVICE;
T_DEVICE_STATUS;
T_BARGRAPH_COLOUR;
T_BARGRAPH_FLASH_STATUS;
T_DESCRIPTOR;

CONSTANTS
MAX_BARGRAPHS_NUMBER;

OPERATIONS
Put;

EXCEPTIONS
MALFUNCTION;

DATAFLOWS
data_out=> Input_Output_Driver;

EXCEPTION_FLOWS
malfunction<= Input_Output_Driver;

INTERNALS
OBJECTS

NONE
TYPES

--| TBD |--
CONSTANTS

--| TBD |--
OPERATIONS

--| TBD |--
DATA

WATER_BARGRAPH,
OIL_BARGRAPH,
FUEL_BARGRAPH : Input_Output_Driver.T_DEVICE (BARGRAPH);
--| TBD |--

OPERATION_CONTROL_STRUCTURES
OPERATION Init



Copyright 1995-96 by HOOD Users Group page 224

page -224
HOOD USER MANUAL 1.0 HUM-1.0

DESCRIPTION
--| This operation initializes the hardware bargraphs. Bargraphs are switched on in green colour without flashing and with a

null value.|--
USED_OPERATIONS

Input_Output_Driver.Put;
PROPAGATED_EXCEPTIONS

NONE
HANDLED_EXCEPTIONS

Input_Output_Driver.MALFUNCTION;
PSEUDO_CODE

--| TBD |--
CODE

--| TBD |--
END_OPERATION  Init
OPERATION  Display(BARGRAPH : in T_BARGRAPH; VALUE : in T_PERCENTAGE)
DESCRIPTION
--| This operation sets the input percentage value in the Input/Output Descriptor related to the specified bargraph. The colour

and flashing are the current one.|--
USED_OPERATIONS

Input_Output_Driver.Put;
PROPAGATED_EXCEPTIONS

NONE
HANDLED_EXCEPTIONS

Input_Output_Driver.MALFUNCTION;
PSEUDO_CODE

--| TBD |--
CODE

--| TBD |--
END_OPERATION  Display
OPERATION  Set_Colour(BARGRAPH : in T_BARGRAPH;

COLOUR : in T_COLOUR)
DESCRIPTION
--| This operation displays the bargraph in the specified colour. The value and flashing are the current one.|--
USED_OPERATIONS

Input_Output_Driver.Put;
PROPAGATED_EXCEPTIONS

NONE
HANDLED_EXCEPTIONS

Input_Output_Driver.MALFUNCTION;
PSEUDO_CODE

--| TBD |--
CODE

--| TBD |--
END_OPERATION  Set_Colour
OPERATION  Flash(BARGRAPH : in T_BARGRAPH;

STATUS : in T_FLASHING)
DESCRIPTION
--| This operation sets the specified bargraph to flash. The colour and the value are the current one.|--
USED_OPERATIONS

Input_Output_Driver.Put;
PROPAGATED_EXCEPTIONS

NONE
HANDLED_EXCEPTIONS

Input_Output_Driver.MALFUNCTION;
PSEUDO_CODE

--| TBD |--
CODE

--| TBD |--
END_OPERATION  Flash
OPERATION  Switch_Off
DESCRIPTION
--| This operation switches the hardware bargraphs off.|--



Copyright 1995-96 by HOOD Users Group page 225

page -225
HOOD USER MANUAL 1.0 HUM-1.0

USED_OPERATIONS
Input_Output_Driver.Put;

PROPAGATED_EXCEPTIONS
NONE

HANDLED_EXCEPTIONS
Input_Output_Driver.MALFUNCTION;

PSEUDO_CODE
--| TBD |--

CODE
--| TBD |--

END_OPERATION  Switch_Off
END_OBJECT Bargraphs

A1.3.4 OBJECTALARM IS ACTIVE

DESCRIPTION
--| The Alarm object manages a set of software alarms. One hardware alarm is associated to those software alarms. It is pos-

sible to switch a software alarm on or off at each time. The hardware alarm is started when an unset software alarm is
switched on (set). The hardware alarm is stopped when the set of software alarms are switched off (unset) or when acknowl-
edged by the user. In that case the status of the set software alarms are not modified.|--

IMPLEMENTATION_CONSTRAINTS
--| 255 software alarms may be simultaneously.|--
PROVIDED_INTERFACE
TYPES

T_ALARM is integer range 1..255;
--| This type defines a software alarm, identified by an integer range1 to 255.|--

OPERATIONS
Start;
--| The Start operation switches the hardware alarm and the software alarms off. |--
Acknowledge;
--| This operation stops the hardware alarm without unset the set software alarms. |--
Switch_On (ALARM : in T_ALARM);
--| This operation switched the specified software alarm on. If this alarm was not yet set, the hardware alarm is started (if
it was not). In the other cases, nothing is modified.|--
Switch_Off (ALARM : in T_ALARM);
--| The Switch_Off operation switched the specified software alarm off. If the hardware alarm is yet started and all the other
software alarms are unset, the hardware alarm is stopped.|--
Stop;
--| The Stop operation switches the hardware alarm off.|--

OBJECT_CONTROL_STRUCTURE
DESCRIPTION
--| The Alarm accepts an Acknowledge operation only before a Stop and after a Start. The Acknowledge is not significant if

the alarm is not previously set.|--
CONSTRAINED_OPERATIONS
Acknowledge CONSTRAINED_BY ASER_by_IT Ack_push-button;
REQUIRED_INTERFACE
OBJECT Input_Output_Driver;

TYPES
T_DEVICE;
T_DEVICE_STATUS;
T_DESCRIPTOR;

CONSTANTS
MAX_ALARMS_NUMBER;

OPERATIONS
Put;

EXCEPTIONS
MALFUNCTION;

DATAFLOWS



Copyright 1995-96 by HOOD Users Group page 226

page -226
HOOD USER MANUAL 1.0 HUM-1.0

data_out=> Input_Output_Driver;
EXCEPTION_FLOWS

malfunction<= Input_Output_Driver;
INTERNALS
OBJECTS

NONE
TYPES

T_SOFTWARE_ALARM_STATUS is (ON, OFF);
--| Define the two possible status of a software alarm.|--
T_HARDWARE_ALARM_STATUS is (ON, OFF);
--| Define the two possible status of a hardware alarm.|--
T_SOFTWARE_ALARMS is array (T_ALARM’RANGE) of

T_SOFTWARE_ALARM_STATUS;
--| Define the set of software alarms.|--
--| TBD |--

CONSTANTS
--| TBD |--

OPERATIONS
--| TBD |--

EXCEPTIONS
--| TBD |--

DATA
HARDWARE_ALARM : Input_Output_Driver.T_DEVICE (ALARM);
HARDWARE_ALARM_STATUS : T_HARDWARE_ALARM_STATUS := OFF;
SOFTWARE_ALARMS : T_SOFTWARE_ALARMS;
--| TBD |--

OBJECT_CONTROL_STRUCTURE
PSEUDO_CODE

--| TBD |--
CODE

--| TBD |--
OPERATION_CONTROL_STRUCTURES
OPERATION Start
DESCRIPTION
--| The Start operation switches the hardware and the software alarm off.|--
USED_OPERATIONS

Input_Output_Driver.Put;
PROPAGATED_EXCEPTIONS

NONE
HANDLED_EXCEPTIONS

Input_Output_Driver.MALFUNCTION;
PSEUDO_CODE

--| TBD |--
CODE

--| TBD |--
END_OPERATION  Start
OPERATION  Acknowledge
DESCRIPTION
--| This operation stops the hardware alarm.|--
USED_OPERATIONS

Input_Output_Driver.Put;
PROPAGATED_EXCEPTIONS

NONE
HANDLED_EXCEPTIONS

Input_Output_Driver.MALFUNCTION;
PSEUDO_CODE

--| TBD |--
CODE

--| TBD |--
END_OPERATION  Acknowledge
OPERATION  Switch_On (ALARM : in T_ALARM)
DESCRIPTION



Copyright 1995-96 by HOOD Users Group page 227

page -227
HOOD USER MANUAL 1.0 HUM-1.0

--| This operation sets the specified software alarm to ON if it was not. If it was OFF, it starts the hardware alarm if it was not
and sets the hardware alarm status to ON.|--

USED_OPERATIONS
Input_Output_Driver.Put;

PROPAGATED_EXCEPTIONS
NONE

HANDLED_EXCEPTIONS
Input_Output_Driver.MALFUNCTION;

PSEUDO_CODE
--| TBD |--

CODE
--| TBD |--

END_OPERATION  Switch_On
OPERATION  Switch_Off (ALARM : in T_ALARM)
DESCRIPTION
--| This operation sets the specified software alarm to OFF (if it was not). If all the software alarm status are OFF, it stops the

hardware alarm if it was not and sets the hardware alarm status to OFF.|--
USED_OPERATIONS

Input_Output_Driver.Put;
PROPAGATED_EXCEPTIONS

NONE
HANDLED_EXCEPTIONS

Input_Output_Driver.MALFUNCTION;
PSEUDO_CODE

--| TBD |--
CODE

--| TBD |--
END_OPERATION  Switch_Off
OPERATION  Stop
DESCRIPTION
--| The Stop operation switches the hardware alarm off.|--
USED_OPERATIONS

Input_Output_Driver.Put;
PROPAGATED_EXCEPTIONS

NONE
HANDLED_EXCEPTIONS

Input_Output_Driver.MALFUNCTION;
PSEUDO_CODE

--| TBD |--
CODE

--| TBD |--
END_OPERATION  Stop

END_OBJECT Alarm



Copyright 1995-96 by HOOD Users Group page 228

page -228
HOOD USER MANUAL 1.0 HUM-1.0

A2 EXAMPLE OF ADA CODE IMPLE-
MENTATION

-- OBJECT EMS IS ACTIVE
-- INTERNAL OBJECTS : Ctrl_EMS, Alarm, Sensors, Bargraphs
with  Ctrl_EMS, Alarm;
package EMS is
-- DESCRIPTION
The EMS monitors and displays the oil pressure, water temperature and fuel level on the appropriate bargraphs, and starts an

alarm in case of a value is out of a predefined range. First, the EMS shall be started. It may be stopped at any moment.
-- IMPLEMENTATION_OR_SYNCHRONISATION_CONSTRAINTS
Start, Stop and Acknowledge operations are mutually exclusive (each of those operations shall wait the end of an other one

before to be started).
-- PROVIDED_INTERFACE

-- OPERATIONS
procedure Start renames Ctrl_EMS.Start;

The Start operation starts the EMS. The EMS environment will be initialised.
procedureStop renames Ctrl_EMS.Stop;

The Stop operation stops the EMS.
procedureAcknowledge renames Alarm.Acknowledge;

The Acknowledge operation stops the Alarm for the faults which have switched on it.
-- OBJECT_CONTROL_STRUCTURE

-- DESCRIPTION
The EMS accepts start, stop and acknowledge operations at any time. Start is not significant after a start. Stop or acknowledge

are not significant after a stop.
-- CONSTRAINED_OPERATIONS

-- Start CONSTRAINED_BY ASER_by_IT Start_push-button
-- Stop CONSTRAINED_BY ASER_by_IT Stop_push-button
-- Acknowledge CONSTRAINED_BY ASER_by_IT Ack_push-button

-- IMPLEMENTED_BY Ctrl_EMS, Alarm
end EMS;

-- OBJECT Ctrl_EMS IS ACTIVE
package Ctrl_EMSis
-- DESCRIPTION
-- This object is the controller of the EMS. It starts and stops all the constituents objects of the EMS and controls the moni-

toring.
-- IMPLEMENTATION_OR_SYNCHRONISATION_CONSTRAINTS
-- The Ctrl_EMS must perform the monitor operation in less than 1 second.

-- OBJECT_CONTROL_STRUCTURE
-- DESCRIPTION

-- The Ctrl_EMS accepts start, stop and monitor operations at any time. A start is not significant after a start. A stop or a mon-
itor --are not significant after a stop.
-- CONSTRAINED_OPERATIONS

-- Start CONSTRAINED_BY ASER_by_IT Start push-button
-- Stop CONSTRAINED_BY ASER_by_IT Stop push-button
-- Monitor CONSTRAINED_BY ASER_by_IT Timer_1Hz

task OBCS_Ctrl_EMSis
entry Start;
entry Stop;
entry Monitor;

endOBCS_Ctrl_EMS;

-- PROVIDED_INTERFACE
-- OPERATIONS
procedureStartrenames OBCS_Ctrl_EMS.Start;



Copyright 1995-96 by HOOD Users Group page 229

page -229
HOOD USER MANUAL 1.0 HUM-1.0

--The Start operation initialises the monitoring timer, the alarm, the sensors and the bargraphs which are used during the mon-
itoring.
procedureStop renamesOBCS_Ctrl_EMS.Stop;

--The Stop operation stops the monitoring timer and switches off the alarm and the bargraphs and stops the sensors.
procedure Monitor renames OBCS_Ctrl_EMS.Monitor;

--The Monitor operation acquires the values of each sensor. Those values are displayed on the appropriate bargraph. In case
of a value --is out of range, this operation switches the alarm on and gives the red colour to the bargraph. If there is a sensor
failure, the alarm --is switched on and the bargraph flashes in red colour. In other cases, the values are displayed in green
colour.

-- DATAFLOWS
-- mean_value <= Sensors
-- mean_value => Bargraphs
-- color => Bargraphs
-- initial_frequency => Timers_Driver

-- EXCEPTION_FLOWS
-- sensor_failure <= Sensors

-- END_OBJECT Ctrl_EMS
end Ctrl_EMS;
-- OBJECT Ctrl_EMSIS ACTIVE
-- REQUIRED_INTERFACE

-- OBJECT Sensors
with  Sensors;

-- TYPES
-- T_SENSOR

-- OPERATIONS
-- Start
-- Acquire
-- Stop

-- EXCEPTIONS
-- SENSOR_FAILURE

-- OBJECT Alarm
with  Alarm;

-- TYPES
-- T_ALARM

-- OPERATIONS
-- Start
-- Switch_On
-- Switch_Off
-- Stop

-- OBJECT Bargraphs
with  Bargraphs;

-- TYPES
-- T_COLOUR
-- T_BARGRAPH
-- T_FLASHING
-- T_PERCENTAGE

-- OPERATIONS
-- Init
-- Display
-- Set_Colour
-- Flash
-- Switch_Off

-- OBJECT Timers_Driver
with Timers_Driver;

-- REQUIRED TYPES
-- T_TIMER

-- REQUIRED OPERATIONS
-- Create
-- Start



Copyright 1995-96 by HOOD Users Group page 230

page -230
HOOD USER MANUAL 1.0 HUM-1.0

-- Delete
package body Ctrl_EMSis
-- INTERNALS

-- TYPES
-- TBD

-- CONSTANTS
IT_1HZ_ADDRESS: constant :=Monitor’ADDRESS;
MONITORING_FREQUENCY : constant :=1;
-- TBD

-- OPERATIONS
procedure Is_Value_out_of_Range;
procedure OPCS_Start;
procedure OPCS_Stop;
procedure OPCS_Monitor;
-- TBD

-- EXCEPTIONS
-- TBD

-- DATA
MONITORING_TIMER : Timers_Driver.T_TIMER;
-- TBD

-- OBJECT_CONTROL_STRUCTURE
-- PSEUDO_CODE

-- TBD
-- CODE

task bodyOBCS_Ctrl_EMS is
begin

loop
loop

select
accept Start; OPCS_Start; exit;

or
accept Stop; -- empties Stop queue

or
accept Monitor; -- empties Monitor queue

end select;
end loop;
loop

select
accept Start; -- empties Start queue

or
accept Stop; OPCS_Stop; exit;
-- only when monitoring is completely finished

or
accept Monitor; OPCS_Monitor;

end select;
end loop;

end loop;
endOBCS_Ctrl_EMS;

-- OPERATION_CONTROL_STRUCTURES

-- OPERATION OPCS_Start
procedureOPCS_Start is
-- DESCRIPTION

--This operation initialises the system (the alarm, the bargraphs, the sensors) and then creates and starts a timer for it triggers
the mon--itoring every 1 second.
-- USED_OPERATIONS

-- Timers_Driver.Create
-- Timers_Driver.Start
-- Sensors.Start
-- Alarm.Start



Copyright 1995-96 by HOOD Users Group page 231

page -231
HOOD USER MANUAL 1.0 HUM-1.0

-- Bargraphs.Init
-- PSEUDO_CODE

-- TBD
-- CODE

begin
Timers_Driver.Create (MONITORING_TIMER,

MONITORING_FREQUENCY,
IT_1HZ_ADDRESS );

Alarm.Start;
Bargraphs.Init;
Sensors.Start;
Timers_Driver.Start ( MONITORING_TIMER );

Monitoring Timer is started only when all the hardware devices are initialised.
endOPCS_Start;

-- END_OPERATION OPCS_Start

-- OPERATION OPCS_Stop
procedure OPCS_Stop is
-- DESCRIPTION

--This operation stops all the system (the alarm, the bargraphs, the sensors) and resets the monitoring timer.
-- USED_OPERATIONS

-- Timers_Driver.Delete
-- Alarm.Stop
-- Bargraphs.Switch_Off
-- Sensors.Stop

-- PSEUDO_CODE
-- TBD

-- CODE
begin

Timers_Driver.Delete( MONITORING_TIMER );
Sensors.Stop;
Alarm.Stop;
Bargraphs.Switch_Off;

endOPCS_Stop;
-- END_OPERATIONOPCS_Stop

-- OPERATION Is_Value_out_of_Range
procedure Is_Value_out_of_Range is
-- DESCRIPTION

-- TBD
-- USED_OPERATIONS

-- TBD
-- PROPAGATED_EXCEPTIONS

-- TBD
-- HANDLED_EXCEPTIONS

-- TBD
-- PSEUDO_CODE

-- TBD
-- CODE

begin
null;
-- TBD

end Is_Value_out_of_Range;
-- END_OPERATIONIs_Value_out_of_Range

--OPERATION Monitor
procedure OPCS_Monitor is
-- DESCRIPTION

--This operation is in charge of the EMS monitoring. It acquires the mean values of each sensor, controls them against limit
values --with respect to each category of sensors, converts those mean values into displaying values according to min. and
max.  infor--mation and displays them on the corresponding bargraph. It sets the alarm if the mean value is out of range or
if there is a sensor --failure. It also set the green colour of a bargraph when the value is correct, the red colour when the



Copyright 1995-96 by HOOD Users Group page 232

page -232
HOOD USER MANUAL 1.0 HUM-1.0

value is out of range and the --red flashing colour when  the corresponding sensor is failed.
--The Monitor operation switched the alarm on for each out of range value and each failed sensor and switched the alarm
off for --each correct value and running sensor.
-- USED_OPERATIONS

-- Alarm.Switch_On
-- Alarm.Switch_Off
-- Bargraphs.Display
-- Bargraphs.Flash
-- Bargraphs.Set_Colour
-- Sensors.Acquire
-- Is_Value_out_of_Range

-- HANDLED_EXCEPTIONS
-- Sensors.SENSOR_FAILURE

-- PSEUDO_CODE
-- TBD

-- CODE
begin

null;
-- TBD

end OPCS_Monitor;
-- END_OPERATIONOPCS_Monitor

-- END_OBJECT Ctrl_EMS
endCtrl_EMS;



Copyright 1995-96 by HOOD Users Group page 233

page -233
HOOD USER MANUAL 1.0 HUM-1.0

A3 HOOD4 TARGET IMPLEMENTA-
TION AND ILLUSTRATIONS

A3.1 HOOD4 TO TARGET IMPLEMENTATION
PRINCIPLES

By convention, there is one OBCS per active object,which shall handle all dynamivc process/
task ineteractions associated to the dynamic (i.e. the way the operations are executed) behaviour
of the object.  In case of resource shortage, its is always possible to group several OBCS into one.

HOOD standard generation rules [HRM] define the OBCS as an Ada package( nested or not in
the package associated to the current object), possibly reduced to one OBCS task unit, and the
OPCS header code as rename of an OBCS entry hiding the OBCS to clients, whereas the OPCS
body code is defined in a procedure called OPCS_<OP_NAME

This solution, the standard code generation schema in HOOD3 is however not always matching
the needs of real time programming; for example one may want to execute an operation in mu-
tual exclusion. A solution for such problems has been proposed to the HTG and may be included
in the next evolution of HOOD, named HOOD4. This solution is briefly outlined below.

In order to solve the problems associated to non supported execution request and protocols, and
based on several attempts to conceptualize and formalize the behavior of process upon con-
strained operations, a general solution has been achieved which splits the code associated to
an OPCS into several LOGICAL PARTS which redefine the OBCS code. Code generation
rules are then easily derived by defining the source code (which may be empty) associated to
each LOGICAL PART and depending on the type of constraints attached to an operation:

• OPCS_ERcode associated to an execution request for protocol constrained operation

• OPCS_HEADER code associated to a protected and/or state constrained operation

• OPCS_BODY the real functional code of the operation

• OPCS_FOOTER code associated to a protected constrained

• OBCS: client part executed code for queuing and execution request and waiting return pa-
rameters

• OBCS: server part executed code for dequeing Op requests, processing them and return pa-
rameters



Copyright 1995-96 by HOOD Users Group page 234

page -234
HOOD USER MANUAL 1.0 HUM-1.0

Figure 160 -  Suggested   Target Code structure for constraint operations

A3.1.1 IMPLEMENTING STATE CONSTRAINTS WITH STANDARD
ADA

Constraints on operations may most of the time be described using a state transition diagram
where states are those of the object and transitions only triggered by operation execution. The
OBCS is then reduced to a correct implementation of the state diagram which is defined as an
Ada task according to standard generation rules[HRM]. section 2.13.2  gives a full illustration
of the Ada code for a the STACKS object .

A3.1.2 IMPLEMENTING STATE CONSTRAINTS WITHOUT ADA
TASKING

In case of resources shortage or when Ada tasking should not be used, an alternativeimplemen-
tation, based on Finite State Machines (FSM), may be used, simulating the code structure as il-
lustrated in figure above (up to standardization within HOOD and support by the toolsets). The
OPCS code shall then be structured in three parts:

• OPCS_HEADER part for handling state constraints. The associated header code as illustrat-
ed in Figure 147 - is reduced to a simple call to an FSM module. This code attached to the

 CLIENT Thread

OPCS_HEADER

OBCS

OPCS_FOOTER

OBCSClient

OBCSServer

 OPCS_BODY part

OPCS_ER

OPCS_SER

state constraint operations

Protocol constraint operations

 SERVER Thread

Execution space

Execution space



Copyright 1995-96 by HOOD Users Group page 235

page -235
HOOD USER MANUAL 1.0 HUM-1.0

constraint resolution generally needs not an additional process: a simple test may implement
the state constraint. Thus we implement the constraint using an FSM. The code of that FSM
could be generated automatically from an appropriate STD, so that the designer has just to
express the possible sequences of an object/class by drawing a STD. See Appendix  A3.2.1.2
for an example of such code>
Additionaly the OPCS_HEADER could contain code to set a semaphore when the operation
is to be executed in mutual exclusion. (this is done by a call to the target OS services.)

• Core body part: containing the functional, transformational code, not dealing with states and
behaviours

• OPCS_FOOTER part: code needed only to release a semaphore in case of mutual exclusion
constraint.

The semantics ofstate constrained operations of HOOD[HRM] is thus enforced, since the re-
turn to the client is made either with the OPCS executed (the state was OK at the operation re-
quest) or with OPCS non executed (the state was not OK at calling time). Appendix  A3.2 gives
a full illustration of such ADA code.

A3.1.3 IMPLEMENTING PROTOCOL CONSTRAINTS IN  ADA

Protocol constraint operations are specified through trigger labels expressed in text structured
with keywords such as HSER, LSER, TOER_HSER, TOER_LSER or ASER, that may apply
together with state constraints. These protocols, specified in [HRM] are used to express inter-
process communications, as well as inter-node communication in case of virtual nodes defining
distributed code or memory partitions.
Using the queuing and mutual exclusion mechanisms supported by the Adaselectandaccept
statements, standard code generation rules[HRM] for constraint protocols are rather straightfor-
ward, but always involving a server OBCS task, and often with the need of copying parameters
inside theaccept statement. An example of such generated code is given in section 2.13.2

A3.1.3.1 Implementing protocol constraints without Ada tasking

In case of resources shortage or when Ada tasking should not be used, generation rules again
rely on queuing, synchronisation and message passing mechanisms, but this time using classical
operating services. We hope that in the near future this code will also be standardised, using ef-
ficient communication standards such as those promised betweenthreads and already available
on the most recent UNIX releases. Figure 161 - gives the HOOD execution model associated to
a protocol constrained implementation, where:

• the code executed by the client thread comprises:

- the OPCS_ER (see below) and

- the ClientObcsPart which sends a request MSG to the server process and waits for a re-
turn MSG

• the code executed by the server thgread comprises:

-  aServerObcsPart which waits for a request MSG, and dispatches the request to the as-
sociated local operation, that is

- the OPCS_SER which executes the effective OPCS  body code, and returns back a return



Copyright 1995-96 by HOOD Users Group page 236

page -236
HOOD USER MANUAL 1.0 HUM-1.0

MSG to the client .

When the queuing mechanisms used also supporting distribution1, this solution can be di-
rectly used for VN code generation. In that case ClientObcs parts may be grouped into a
common VNCS module. (VN Control Structure)

Figure 161 -   Principle of Code for Protocol onstrained operation support

Since such a schema is not yet supported by HOOD tools, the code for OPCS_ER, OPCS_SER
and client part and server parts should be structured in such a way as to  isolate the original func-
tional code. This could be done by defining for each active object<NAME>:

• the original object of name<NAME>_SERVER where constrained operations are reduced
to state constrained operation s and OPCS structured into HEADER, BODY and FOOTER
parts.

• a client code part as an object named<NAME> providing unconstrained operation, with
same signatures as the protocol constrained one from the original object, and having OPCS
implementing OPCS_ER code

• a "request_broker" code part as an object named <NAME>_RB providing unconstrained op-
erations, with same signatures as the protocol constrained one from the original object, and
having OPCS implementing OPCS_SER code, which require operations provided by
<NAME>_SERVER

Such strategy is illustrated in Figure 162 - below.

1. generic pacakge BUFFERS of the EXTRA proposal [ISO/JTC1/SC22/WG9/RRG} [Work Item Number JTC 1.22.35,

31/03/93]  gives already specifications of such code..

CLIENT THREAD SPACE

FSM

return
parameters

OPCS_ER

SERVER THREAD SPACE

ServerObcsPart

MSG

MSG
ClientObcsPart

IN OUT
parameters parameters

sending
queue

sending
queue

receiving
queue

receiving
queue

interprocess
fifoqueues

BODY
HEADER

Footer

OPCS_SER



Copyright 1995-96 by HOOD Users Group page 237

page -237
HOOD USER MANUAL 1.0 HUM-1.0

Figure 162 -   Principle of Code for Protocol Constrained operation support

<NAME>

<NAME>_RB

<NAME>_SERVER

IPC_Mechanism

ADT_MSG

IPC_Mechanism

ADT_MSG

<NAME>

OP1
OP2
Op3

ER_by_IT

HSER_TOER 2s

OP1
OP2
Op3

OP1
OP2
Op3

OP1
OP2
Op3

LSER

CLIENT OBJECT

Original Active
Object

Associated Objects to
support protocol constraine d
operation without tasking



Copyright 1995-96 by HOOD Users Group page 238

page -238
HOOD USER MANUAL 1.0 HUM-1.0

A3.2 HOOD4 ADA CODE  ILLUSTRATION

A3.2.1 HOOD4 STATE CONSTRAINT SUPPORT

The approach taken for enforcing the state of an object or a class is to raise an exception2  if the
state was not OK for the operation to execute. Figure 163 - illustrates the associated target pro-
cedure code associated to a state constrained operation.
procedure<State_Constrained_Operation> is -- target code structure
begin
-- OPCS_HEADER part (automatically generated)-------------------------------

HRTS.SEMAPHORE.P(<object Name>); -- seize MUTEX Semaphore
HRTS.FSMs.FIRE(operation);      -- try to fire  operation transition
-- if execution allowed in current state, exception BAD_EXECUTION REQUEST is raised.
-- end OPCS_HEADER --------------------------------

--------------------------------------------------
OPCS BODY CODE ; -- extracted directly from ODS fields

--------------------------------------------------
-- OPCS_FOOTER part (automatically generated)-------------------------------

HRTS.SEMAPHORE.V(<object Name); -- release MUTEX Semaphore
-- end OPCS_FOOTER --------------------------------

end;

Figure 163 -   State Constraints Implementation Schema

A3.2.1.1 STACK OSTD

This seems well founded and pragmatic, since automatically enforcing a state according to a
specification given in an Object State Transition Diagram (OSTD) as illustrated in Figure 164 -

could lead to uncontrollable and less understandable3 code.
.

Figure 164 -   OSTD for STACK object

2.(to abort the operation request)
3.(see the paper [18] showing the difficulty of enforcing correct state (wrt a state specification)).

operation execution request

Legend

initial state

state

EMPTY

push

push

push|pop

stopN_E_N_F

pop

start

FULL

pop

start

stop

stop

EXIT state



Copyright 1995-96 by HOOD Users Group page 239

page -239
HOOD USER MANUAL 1.0 HUM-1.0

A3.2.1.2 STACK OSTM

Figure 165 - illustrates the OSTM (Object State Machine), an  implementation of the STACK
OSTD which could be generated automatically from the OSTD by a HOOD toolset.
Such code is standardised using the HRTS.FSM module (Finite State Machine where transitions
are only triggered  by operation execution requests) associated to an object or class instance.
This FSM is initialised either at initialisation or when procedure FIRE for that object FSM is

called for the first time4.
with  HRTS;use HRTS;  -- visibility to FSMs handling module of HRTS
procedure OSTM is -- OSTM for stack

HRTS.FSMs.CREATE (STACK,4,3,EMPTY); //4 possible ER and 3 states, initial state is EMPTY
HRTS.FSMs.TRANS(STACK, EMPTY,Start,EMPTY);
HRTS.FSMs.TRANS(STACK, EMPTY,Push,NON_E_F);
HRTS.FSMs.TRANS(STACK, EMPTY,Stop,EXIT);
HRTS.FSMs.TRANS(STACK, NON_E_F,Start,EMPTY);
HRTS.FSMs.TRANS(STACK, NON_E_F,Push,NON_E_F);
HRTS.FSMs.TRANS(STACK, NON_E_F,Pop,NON_E_F);
HRTS.FSMs.TRANS(STACK, NON_E_F,Pop,EMPTY); -- if stack .top =1
HRTS.FSMs.TRANS(STACK, NON_E_F,Stop,EXIT);
HRTS.FSMs.TRANS(STACK, NON_E_F,Push,FULL); -- if stack.top=max-1
HRTS.FSMs.TRANS(STACK, FULL,Pop,NON_E_F);
HRTS.FSMs.TRANS(STACK, FULL,Start,EMPTY);
HRTS.FSMs.TRANS(STACK, FULL,Stop,EXIT);
end;

Figure 165 -  OSTD Implementation Example

A3.2.1.3 STACK with state constraints  in Ada

For conciseness we take the STACK object example for illustrating the associated target code5

in Ada956. STACK has  operations PUSH and POP HSER constrained, and operation STOP
state and ASER constrained, and operation START only state constrained, semantically correct
only when the behaviour expressed in OSTD in Figure 163 -  is enforced :

4.Any suggestion that works reliably both in ADA and c++  and for both objects  and classes very well come!
5.Target ADA units are represented as squared boxes, with its kind and name represented in the top, and required units represen-

tented as attached small boxes.
6.Translation into C++ is straight forward since we do not use here any "tasking feature". As "thread supporting UNIX targets

are available, translation from ADA95to C+ would also become straight..



Copyright 1995-96 by HOOD Users Group page 240

page -240
HOOD USER MANUAL 1.0 HUM-1.0

Figure 166 -  STACK object  with state constraints operations

with Items; use Items; -- visibility on STACK items
packageSTACK is

procedurestart;  -- only state constraint
procedurestop ;
procedurePUSH(item : in T_Item) ;
procedurePOP(Item:out T_Item);
function Statusreturn T_Status;

endSTACK;

Figure 167 -  STACK  with state constraints code Sample

STACK

START

STOP

PUSH

POP

STATUS

package STACK

package body STACK

Procedure PUSH

Procedure POP

Procedure STOP

HRST.FSMs

HRST.SEMAPHORES

Procedure STATUS

Procedure START

Procedure  OSTM



Copyright 1995-96 by HOOD Users Group page 241

page -241
HOOD USER MANUAL 1.0 HUM-1.0

package bodySTACK is -- any common data to be included here ------------------
with  HRTS;use HRTS;
procedure OSTM is -- code as illustrated in  figure A1.1 above
end OSTM;
procedurestartis separate;
procedurestop is separate;
procedurePUSH(item : in T_Item)is separate;
procedurePOP(Item:out T_Item)is separate;
function Statusreturn T_Statusis separate;

begin

OTSM; -- initialisation of FSM at package elaboration7

end STACK;--------------------------------------------------
separate(STACK)
procedure startis -- begin OPCS_HEADER -----------------------------------------------------

HRTS.SEMAPHORE.P(STACK); -- there is one  mutex semaphore for STACK
begin
HRTS.FSMS.FIRE(STACK,START);--X_BAD_EXECUTION_REQUEST possibly  raised
exception
whenX_BAD_EXECUTION_REQUEST=>

EXCEPTIONS.LOG(“STACK.Start”, “X_BAD_EXECUTION_REQUEST”);
EXCEPTIONS.raise; --shall work in ADA and in  C++

when Others =>
EXCEPTIONS.LOG(“STACK.Start”, “Others”);
EXCEPTIONS.raise;-- so as to propagate to client

end; -- end OPCS_HEADER -------------------------------------------------------
-- OPCS_BODY_CODE; -- extracted from the ODS field;
-- begin OPCS_FOOTER -----------------------------------------------------

HRTS.SEMAPHORE.V(STACK); -- release  mutex semaphore for STACK
-- end OPCS_FOOTER -------------------------------------------------------
endstart;--------------------------------------------------

separate(STACK)
procedure PUSH(item : in T_Item) is -- begin OPCS_HEADER -----------------------------------------------------

HRTS.SEMAPHORE.P(STACK); --  mutex still need since another client may start, stop in the meantime.
begin
HRTS.FSMS.FIRE(STACK,PUSH);--  X_BAD_EXECUTION ERQUEST possibly raised
exception
whenX_BAD_EXECUTION_REQUEST =>

EXCEPTIONS.LOG(“STACK.Push”, “X_BAD_EXECUTION_REQUEST”);
EXCEPTIONS.raise; -- so as to propagated to client

whenOthers =>
EXCEPTIONS.LOG(“STACK.Push”, “Others”);
EXCEPTIONS.raise;

end; -- end OPCS_HEADER -------------------------------------------------------
-- OPCS_BODY_CODE; --extracted from the ODS field;

if  TOP=maxthen-- possibly force object ‘s  state to FULL
HRTS.FSMS.SET(STACK, FULL);--where OPCS code can still interact on state

end if;
-- begin OPCS_FOOTER -----------------------------------------------------

HRTS.SEMAPHORE.V(STACK); -- release mutex semaphore for STACK
-- end OPCS_FOOTER -------------------------------------------------------
endPUSH;
function Status is -- non constrained operations have empty  HEADER or FOOTER code.
begin

[STACK STatus]
endSTatus;

Figure 168 -   STACK  with state constraints code Sample
Comments:

• Including OPCS_BODY directly in the procedure bodies avoids efficiency losses with pa-
7.When used for active class instances, the contructor (in ADA and C++) shall have to call  the OSTM.



Copyright 1995-96 by HOOD Users Group page 242

page -242
HOOD USER MANUAL 1.0 HUM-1.0

rameter pushing on and back memory frames.

• MUTEX semaphores are needed for ensuring state integrity in a concurent context, andare
generated by default. Optional rules shall specify under which conditions they can be  sup-

pressed (for e.g.  if all operations are HSER or LSER8, in which case the SERVEROBCS
warrants mutual exclusion because it is its own flow executing OPCS_OP code.)

A3.2.2 PROTOCOL CONSTRAINTS SUPPORT ILLUSTRATION

Protocol constraints implementation leads to interprocess communication (pure synchronisation
and/or data communication) between at least one client process and one server process which
execute each in their own memory partition. The target architecture principle applied to the
STACK example with protocol constrained operations leads to the following Ada code structure

For one active object, the target code is structured into three packages of which code samples
are given below. This code structure may be directly mapped in C++ modules and shall be op-
timised when using Ada tasking or thread supported OS;marshalling [10] in OPCS_ER code
andunmarshalling in OPCS_SER code as well as InterProcessCommunication (IPC) message
handling is not needed when threads or task share parameters in the same memory partition

8.Should probably be supported by ADA code generators, since users are hungry for efficient code.



Copyright 1995-96 by HOOD Users Group page 243

page -243
HOOD USER MANUAL 1.0 HUM-1.0

Figure 169 -   STACK with protocol constraints

package STACK

package body STACK_SERVER

Procedure POP

Procedure STATUS

HRST.FSMs

HRST.SEMAPHORES

package STACK_SERVER

Procedure Start

Procedure PUSH

package body STACK

Procedure POP

Procedure STATUS

HRST.OBCSs
Procedure Start

Procedure PUSH
HRST.IPCMSG

package body STACK_SER

Procedure POP

Procedure STATUS

package STACK_SER

Procedure Start

Procedure PUSH

HRST.OBCSs

HRST.IPCMSG

package ServerOBCSRequest_Queue

Return_Queue

State constrained

supporting

code

Procedure OSTM

CLIENT

SPACE

and THREAD

SERVER

SPACE

and THREAD

Procedure Stop

STACK

START

STOP

PUSH

POP

STATUS

ASER

LSER

HSER

Procedure Stop

Procedure Stop

package ClientOBCS



Copyright 1995-96 by HOOD Users Group page 244

page -244
HOOD USER MANUAL 1.0 HUM-1.0

A3.2.2.1 STACK  with protocol constrained operations  (Client code)

with Items; use Items;  -- package spec. as for passive object
packageSTACK is

procedurestart;
procedurestop;
procedurePUSH(item : in T_Item);
procedurePOP(Item:out T_Item);
function Statusreturn T_Status;

endSTACK;

Figure 170 -   STACK with protocol constraints  (without tasking)

with HRTS.IPCMSG; -- InterProcessCommunication  Message Handling
with HRTS.OBCSs; -- Module for Client And Server OBCS code
package bodySTACK is
-- not any data here since all deported in the STACK_SERVER object in server partition-------------------------------

package ClientObcs is new HRTS.OBCSs.ClientObcs (STACK,... );
procedurePUSH(item : in T_Item) is -- OPCS_ER code
MSG : IPCMSG.T_MSG;
begin

MSG=IPCMSG.create;  - initialise an IPC MSG data structure
MSG.sender=STACK;
MSG.OPERATION=PUSH;

MSG.CNSTRNT=HSER9;
MSG.INFO=Item;
ClientObcs.insert(MSG); -- insert in request queue
MSG:=ClientObcs.remove; -- remove return IPCMSG
if not (MSG.X=OK)then

EXCEPTIONS.raise(MSG.X); --raise exception according to Xvalue
else

EXCEPTIONS.LOG (“STACK.PUSH_ER”, “OK return from server”)
end if;
if not (MSG.CSTRNT=ASER) then

ClientObcs.FREE(MSG); -- deallocate MSG and queues
end if;

exception
whenX_BAD_EXECUTION_REQUEST =>

EXCEPTIONS.LOG(“STACK.PUSH”, “X_BAD_EXECUTION_REQUEST”);
EXCEPTIONS.raise; -- so as to propagated to client

whenOthers =>
EXCEPTIONS.LOG(“STACK.PUSH”, “Others”);
EXCEPTIONS.raise;

--similar code for POP,STOP and START and Status
procedurestartis separate;

-- code of state constrained operation are treated as HSER on client side.HSER is needed in order to get back the results of
FSM firing.
function Statusreturn T_Statusis separate;

-- non constrained operation become HSER constrained operations since return parameters must be accessed from the
<OBJECT>_SERVER code.

Figure 171 -  STACKwith protocol constraints  (without tasking)

9.if the request is also TOER, then we would insert here a call to TIMER.SET(delay), as well as a TIMER.TimeOut call after

return (MSG:=ClientObcs.remove; -- remove return IPCMSG



Copyright 1995-96 by HOOD Users Group page 245

page -245
HOOD USER MANUAL 1.0 HUM-1.0

A3.2.2.2 STACK  with protocol constrained operations  (STACK_RB CODE)

with Items; use Items;
with STACK_SERVER; -- visibility need to have access to real operations and data.
packageSTACK_RB is

procedurestartrenames STACK_SERVER.Start;
procedurestop;
procedurePUSH(item : in T_Item);
procedurePOP(Item:out T_Item);
function Statusreturn T_Statusrenames STACK_SERVER.Status;endSTACK_SER;

endSTACK_SER;

with HRTS.IPCMSG; -- InterProcessCommunicationMEssage Handling
with HRTS.OBCSs; -- Module for Client And Server OBCS code
package bodySTACK_SER is

procedurePUSH (MSG : in IPCMSG.T_MSG)is -- OPCS_SER code
Item : Items.T_Items;
begin

begin
item:= MSG.INFO;
MSG.X=OK;
if  MSG.CSTRNT=LSER|LSER_TOERthen

ServerObcs.insert(MSG);  -- insert in return queue
end if;
STACK_SERVER.PUSH (Item);

exception
whenX_BAD_EXECUTION_REQUEST =>

EXCEPTIONS.LOG(“STACK_SER.PUSH”, “X_BAD_EXECUTION_REQUEST”);
MSG.X= string (X_BAD_EXECUTION_REQUEST);

whenOthers =>
EXCEPTIONS.LOG(“STACK_SER.PUSH”, “Others”);
MSG.X= string (OTHERS);

end; -- of begin
if  MSG.CSTRNT=HSER|HSER_TOERthen

ServerObcs.insert(MSG); -- insert in return queue
end if;

end PUSH;
--similar code for POP_SER and STOP_SER

procedurestartis -- OPCS_SER code, also for STatus
begin

begin
MSG.X=OK; STACK_SERVER.start;

exception
whenX_BAD_EXECUTION_REQUEST =>

• • • •-- exceptions handling as in procedure PUSH
end; -- of begin
ServerObcs.insert(MSG); -- insert in return queue as treated as HSER

end start;

procedureSerDispatcher(Name : T_Operation)is \---
Local _STACK: T_STACK; -- local Data for client-server code
Local_Element : ADT_ELMENT.T_ELEMENT;

begin
case Nameis  --

when PUSH=>
begin

PUSH;
exception
when •••=>MSG.X.VALUE=X_•••



Copyright 1995-96 by HOOD Users Group page 246

page -246
HOOD USER MANUAL 1.0 HUM-1.0

whenX_UNW=> MSG.X_VALUE=X_UNW;
when others=>EXCEPTIONS.LOG("SerDispatcher, OPCS_PUSH", "Others");

MSG.X_VALUE=X_OTHERS;end ;
whenPOP=>

begin
POP;
exception
whenX_UNW=> MSG.X_VALUE=X_UNW;
when others=>EXCEPTIONS.LOG("SerDispatcher, OPCS_POP", "Others");

MSG.X_VALUE=X_OTHERS;end;
when others => EXCEPTIONS.LOG("  OBCS.OPCS.NAME", "NO SUCH NAME");

end case;
exception

when others => EXCEPTIONS.LOG(" OBCS.OPCS.NAME", "Others");raise:
endSerDispatcher;

procedureSTACKSERVERis  -- object’IPC message server
MSG : IPCMSG.T_MSG;-- local MSG data
begin
OBCS.INIT_POOL ;-- init of QUEUE pool
loop

QUEUES.Remove(R_Q,MSG);  --get a request from R_Q Queue
 case MSG.CSTRNTis  --process the MSG

when  HSER| HSER_TOER=>
SerDispatcher(MSG.OPERATION); -- execution du code concerné
QUEUES.Insert(MSG.RTN_Q,MSG); -- renvoi MSG au client

when LSER |LSER_TOER=>
QUEUES.Insert(MSG.RTN_Q,MSG); -- renvoi MSG au client
SerDispatcher(MSG.OPERATION); -- execution du code concerné

when ASER=> SerDispatcher(MSG.OPERATION); -- execution du code concerné
when others =>EXCEPTIONS.LOG(" STACK OBCS INIT PROCESS LOOP", "BAD constraints")

raiseX_MSG_INCONSISTENCY;
end case;

end loop;
exception  when others => EXCEPTIONS.LOG(" STACK OBCS INIT PROCESS LOOP", "EXCEPTION.NAME");

endSTART;
endSTACKSERVER;

Figure 172 -  STACK 1 with protocol constraints  (without tasking)

Note how the protocol constraints are solved :

• ASER constraint are treated directly in the STACKSERVER loop before the operation re-
quest is processed.

• TOER requests are treated at the client side using only local time.

• LSER request are treated as incoming parameters have been extracted.

• HSER request are treated after <OBJECT>_SERVER.operatiojn execution.

A3.2.2.3 STACK  with protocol constrained operations  (STACK_SERVER CODE)

same code as for state constrained STACK



Copyright 1995-96 by HOOD Users Group page 247

page -247
HOOD USER MANUAL 1.0 HUM-1.0

A3.2.3 CLIENT_SERVER  ILLUSTRATION FOR CLASSES

The above principles are adapted for defining code generation rules for an active class of name
<CLASS>, to whom three target class units are associated : client_class module of name
<CLASS>, request broker for the class of name<CLASS_RB>  and the original class named
<CLASS>_server.
Client of such classes shall only instanciateclient_class target unit, as illustrated inFigure 173 -
, with one server instance ofserver_classfor all instances of a given client, thus enforcing
Client_Server architecture principles

Figure 173 -  Client_Server Code structure for class TStack

By default there is only one instance of aserver_class and <class>_server. which are located
within the TStack Server space.

TSTACK

START

STOP

PUSH

POP

STATUS

package STACK

package body STACK_SERVER

Procedure Stop

Procedure POP

Procedure STATUS

HRST.FSMs

HRST.SEMAPHORES

Protocol label

package STACK_SERVER

Procedure Start

Procedure PUSH

package body STACK

Procedure Stop

Procedure POP

Procedure STATUS

HRST.OBCSsProcedure Start

Procedure PUSH
HRST.IPCMSG

package body STACK_SER

Procedure Stop

Procedure POP

Procedure STATUS

package STACK_SER

Procedure Start

Procedure PUSH

HRST.OBCSs

HRST.IPCMSG

package ClientOBCS package ServerOBCS
Request_Queue

Return_Queue

TStack Server

TStack  class

visible to CLIENTS

ServerOBCSClientOBCS

Procedure OSTM

Local Stack_Server instance

Original  TStack Class code



Copyright 1995-96 by HOOD Users Group page 248

page -248
HOOD USER MANUAL 1.0 HUM-1.0

A4 ODS CONTENTS ILLUSTRATION

A4.1 ODS CONTENT IN STATE "CHILD"

Textual Description of the object
Signature of provided operations
associated Textual Description
Declaration of provided  Types and  Exceptions
associated Textual Description
Description of required interface
Textual Description of execution constraints and OBCS

A4.2 ODS CONTENT IN STATE "PARENT"

Textual Description of the object
Signature of provided operations
associated Textual Description
Declaration of provided  Types and  Exceptions
associated Textual Description
Description of required interface
Textual Description of execution constraints and OBCS
Declaration of child objects .i.enfant;s
Declaration of Type, Exception and  Operration implementation

A4.3 ODS CONTENT IN STATE "TERMINAL"

Textual Description of the object
Signature of provided operations
associated Textual Description
Declaration of provided  Types and  Exceptions
associated Textual Description
Description of required interface
Textual Description of execution constraints and OBCS
Implementation of OBCS
Declaration and  Implementation of internal Types
associated Textual Description
Declaration and  Implementation of Data
associated Textual Description
Declaration of internal Opeérations
associated Textual Description
Impementationof operations (provided and internals)



Copyright 1995-96 by HOOD Users Group page 249

page -249
HOOD USER MANUAL 1.0 HUM-1.0

A5 ABBREVIATION LIST

• ADT Abstract Data Type

• AM Abstract Machine

• APSE Ada Programming Support Environment

• ASER ASynchronous Execution Request

• ASCII American Standard Code for Interchange of Information

• BNF Backus Naur Form

• CDT Class Design Tree

• FSM Finite State Machine

• ER Execution Request

• FIFO First In First Out

• HDL HOOD Design Language

• HCS HOOD Chapter Skeleton

• HDT HOOD Design Tree

• HOOD Hierarchical Object Oriented Design

• HRM HOOD Reference Manual

• HRTS HOOD RUN TIME SUPPORT or Virtual Machine

• HSER Highly Synchronous Execution Request

• HTG HOOD Technical Group

• HUM HOOD User Manual

• HUG HOOD User Group

• HW Hardware

• HWG HOOD Working Group

• ISR Interrupt Service Routine

• LSER Loosely Synchronous Execution Request

• MTEX Mutual Exclusion constraint

• OBCS OBject Control Structure

• ODS Object Description Skeleton

• OOD Object Oriented Design

• OPCS OPeration Control Structure

• OR Observation Report

• OS Operating System



Copyright 1995-96 by HOOD Users Group page 250

page -250
HOOD USER MANUAL 1.0 HUM-1.0

• OSTD Object State Transition Diagram

• OSTM Object State Transition Machine

• PDL Program Design Language

• RASER Reporting Asynchronous Execution Request

• RLSER Reporting Loosely Synchronous Execution Request

• SIF Standard Interchange Format

• STD State Transition Diagram

• TOER Timed Out Execution Request

• VN Virtual Node

• VNT Virtual Node Tree

[


