(HeoD

HOOD USER MANUAL

RELEASE 1.0
HOOD USERs GROUP

HOOD USER’sMANUAL
Issue: Working Document 1.0

Created: July 27, 1994 I
Reference: HUM3-1

Prepared by: HUM Working Group
Approved by: HOOD Technical Group

Diffusion HOOD USERSs Group Ad
.Jrl U!.i .J.-'.II.-.‘JIIL

Doc.Ref.: HUM-1.0

Printed : July 11, 1996 1:38 pm

(page -ii
HOOD USER MANUAL HUM-1.0

HOOD USER MANUAL

Technical Document property of the HUG

Document No.: HUM
Issue No.: 1.0
Last Modified : July 11, 1996 1:38 pm

Abstract : HOOD (HierarchicalObject Oriented Design, a trademark of The Hood User
Group) is the industrial design method chosen by the European Space Agency (ESA) as the com-
mon method for European software projects. HOOD is a design method supporting the definition
of interfaces, reusable modules as well as architecture models. It allows to represent systems and
software architecture as a set of interconnected hierarchies of objects.

HOOD is therefore supporting programming in the large, relying on code generator technology
from high level or formal notations. HOOD is thus primarily aiming to better fill the needs of the
prime contractor and integrator than those of the low level programmer. Although HOOD puts
the emphasis on interface and behaviour mastering, these benefits have been rather neglected by
today users of graphical programming notations for object oriented programming languages.

This document presents the HOOD development approach and gives examples for both master-
ing architecture definition and integration of components developed with different technologies
and teams in the area of large and complex, real time, critical and distributed data processing sys-
tems.

Index Terms: Method, Integration, HOOD, Object, Design, Formal, Verification, Control Ex-
pression, Real-Time, Reliability, Distribution, Test.

(page -iii
HOOD USER MANUAL 1.0 HUM-1.0

PREFACE

The HOOD method was developed in 1987 under European Space Agency (ESA) contract A0/
1-1890/86/NL/MA by a consortium of Cisi, CRI A/S and Matra Marconi Spd€D™ is a
registered Trademark of the HOOD User Group This fact must be stated in any publication
referencing the name of HOOD in the context of the HOOD method as the basis of the publica-
tion.

HOOD has been selected by ESA projects including Columbus and Hermes as the design method
for the Architectural Design phase. Since, HOOD was selected by several large long lived project
from aerospace and industry.

In 1991, the HOOD USER GROUP (HUG) was setup as a non profit organisation aiming to pro-
vide support for sharing experience and to control the evolution of the method. The HUG is or-
ganized in a STEERING GROUP (HSG) in charge of administrative issues, and in a
TECHNICAL GROUP (HTG) in charge of all technical issues possibly delegating work to spe-
cific WORKING GROUPs.
The HUG is officially based at:

C/O Spacebel Informatique, atth HUG

11,rue Colonel Bourg

B-1140 BRUSSELS, Belgium

Tel.: (32) 2.730.46.50

Fax: (32).2.726.85.13

e-mail: hug@spacebel.be

http://www.spacebel.be

The HOOD REFERENCE MANUAL Issue 3.1 was developed in 1991 by the HOOD TECHNI-
CAL GROUP and approved for two years by vote by the HOOD USER GROUP at the Pisa (It-
aly) april 3rd 1992 HUG meeting, and published by MASSON and PRENTICE HALL in 1993.

The HOOD Manual Issue 3.0 has been further developed in 1989 in response to user experience
by the HOOD Working Group comprising representatives of ESTEC, COLUMBUS and
HERMES projects.

The present document is the HOOD USER’S MANUAL and has as goals to illustrate how to use
the HOOD method for the design and development of large, complex and reliable software.

The material of this book shows usage of HOOD in various application domains, but avoids too
much arguing on how the thing is done. The authors have tried to leave each part self document-
ed, so that there is no precise rule to read the book, and that readers can jump from one chapter
to another according to their present needs on information about HOOD usage. There is however
a general line followed by the contents:

» chapter one is a summary of the method concepts, including some terminology, and some
HOOD examples and illustrations,

» chapter two describes the HOOD ideal usage in the ideal project: you have time, man-power,
and tools. It gives advanced hints and techniques on how to produce HOOD designs and
models in several common areas in the data processing domain. These hints are given from
a pure technical point of view, ignoring any project and support environment constraints,

» chapter three tries to help HOOD designers trapped in the constraints of a particular context
and project. It gives advice on how to cope and integrating HOOD techniques within given

Copyright © 1995-96 by HOOD Users Group page iii

(page -iv
HOOD USER MANUAL 1.0 by HUM Working Group

constraints, standards and toolsets.

This book is not a HOOD study, nor a pedagogic manual; we hope that despite of the different
backgrounds of the readers, they will manage to understand the HOOD spirit that the authors
have tried to put down along the different sections.

The current version is a working document intended only to be distributed among HOOD User
Group members only .

It has to be considered as set of technical notes providing a synthesis of the industrial experience
of the authors and various contributors.

A further version will take into account new concepts introduced within the HOOD4 evolution.

Copyright © 1995-96 by HOOD Users Group page iv

(page -v
HOOD USER MANUAL 1.0 HUM-1.0

OBSERVATION REPORTS

For submission of comments for modification or extension to this manual, we would appreciate
them being sent via e-mail to the following address:

heitz@cisi.cnes.fr
If you do not have e-mail access, please send the comments using the special Observation Report
(OR) form given on the following page, to HOOD TECHNICAL GROUP at the following ad-
dress:

Attn HTG-Chairman
Maurice HEITZ,
Cisl
13, rue Villet
31400 TOULOUSE - FRANCE
fax 33 - 61.17.66.96

Copyright © 1995-96 by HOOD Users Group page v

(page -vi
HOOD USER MANUAL 1.0

by HUM Working Group

Observation report FORM

OBSERVATION REPORT (OR) From

Document under review:
HOOD USER MANUAL

Para: Page: No:

Subject:
Discrepancy:

Recommendation:

Copyright © 1995-96 by HOOD Users Group page vi

(page -vii
HOOD USER MANUAL 1.0 HUM-1.0

ACKNOWLEDGMENTS

The assistance provided for meetings of the HOOD TECHNICAL GROUP by CISI, CRI AS,
ESA-ESTEC, INTECS, LOGICA, MATRA MARCONI SPACE, and SEMA GROUP, is grate-
fully acknowledged : without their support this work could not have been undertaken. We are
also grateful for the support of the employers of the HOOD TECHNICAL GROUP members and
other organisations that provided valuable feedbacks for the HOOD definition.

Particular thanks are due to MATRA MARCONI SPACE, CISI and CNES whose support made
possible the production of this book. A number of ideas and advices have been borrowed from
studies funded by the ESPRIT or EUREKA programmes and projects. We gratefully acknowl-
edge the work done in the TOOLUSE, COMPLEMENT, ESF and PROTEUS projects. Other
significant inputs were taken from HOOD training course materials developed by CISI and
MMS.

On a more personal note, we are especially grateful to the authors of observation reports on ear-
lier definition of the HOOD method, and to all members of the HOOD TECHNICAL GROUP
who contributed with many technical notes and to multiple and detailed discussions. Special
thanks for contributions from Giancarlo SAVOIA, Rainer GERLICH, Peter J ROBINSON and
Andy CARMICHAEL.

The authors want also to thank all early readers for their comments and discussions which con-
tributed significantly on the elaboration of this manual.

Attendees of HOOD TECHNICAL GROUP included :

Edouard ANDRE [Sema Group]

Jorge AMADOR [ESA/ESTEC]

Andy CARMICHAEL [Systematica]

Javier CAMPOS [GMV]

Bernard DELATTE [CNES]

Jean Marie WALLUT [CNES]

Pierre DISSAUX [TNI]

Antony ELLIOT [IPSYS]

Rainer GERLICH [Dornier]

Winfried BOELKE [ERNO]

Patrice Micouin [Steria]

Alain Paul Andry [Trasys]

Maurice HEITZ [Cisi] (HTG chairman)
Jean Franc¢ois MULLER [MMS] (HTG secretary)
Christophe .PINAUD [MMS]

Peter J ROBINSON [CANA]

Giancarlo SAVOIA [Intecs]

We also acknowledge gratefully the support of Jardine BARRINGTON-COOK, chairman of the
HOOD STEERING GROUP, and the HSG secretariesPatrick Van der DONCKTand Guy
PAQUET, who provided the necessary liaison between the HOOD TECHNICAL GROUP and
the HOOD USERs GROUP.

B. DELATTE, M. HEITZ, J.F. MULLER,C.PINAUD Editors

Copyright © 1995-96 by HOOD Users Group page vii

(page -viii
HOOD USER MANUAL 1.0 by HUM Working Group

About the Authors

Bernard Delatteis an engineer in computer science and is responsible for Object Oriented meth-
ods support aCNES, 18 av Edouard Belin, 31055 TOULOUSE, FRANCE, Phone: (33)
61.27.49.51 Fax: (33) 61.27.30.84mail: bdelatte@cst.cnes.fr

Bernard joined CNES in 1984 as a software quality assurance engineer on the SPOT1 project,
and then moved onto software engineering, Ada and HOOD support activities.

Bernard is an active member of the HOOD TECHNICAL GROUP and is publisher of the HOOD
NEWS letters (2 issues a year). He is also involved in introducing OOA methods into space soft-
ware developments and is conducting research activities on the co-operation of OOA methods
and HOOD.

Maurice Heitz is an engineer in energetics and mechanics and is consultant on software engi-
neering within theCISI GROUP 13, rue Villet, 31400 TOULOUSE, Phone: (33) 61.17.66.66,
Fax (33).61.17.66.96-mail heitz@cisi.cnes.fr Since 1983 Maurice developed the company’s
Ada education programme, and was technical manager of several Ada projects for the French Na-
tional Space Agency and the European Space Agency, before working on formal methods within
ESPRIT projects. He is currently involved in system engineering, software engineering, research,
development and training activities.

Maurice was one of the lead designers for the definition of HOOD, and he is how an active mem-
ber and chairman of the HOOD TECHNICAL GROUP. Maurice provided several contributions
to Ada Europe and software engineering conferences about HOOD and its application to distrib-
uted, fault tolerant systems, reuse and integration with formal methods.

Jean Francois Mulleris an engineer in automatics and electronics and is responsible for the def-
inition of software engineering tools MATRA MARCONI SPACE 1,rue des Cosmonautes,
31400 TOULOUSE, Phone: (33) 61.39.68.12, Fax (33).62.24.7&-8til muller@so-
leil.matra_espace.ft Since 1982, Jean Francois was responsible for the development of the
HIPPARCOS on board software OS, and later for the COLUMBUS Software Development En-
vironment. Jean Frangois was then project leader for the EUREKA ESF/FERESA and the space
FIP subprojects dealing with distributed software developments. Jean Francois was one of the
codesigners of HOOD, and he is now an active member of the HOOD TECHNICAL GROUP.

Christophe Pinaud is a software engineer and is responsible for the definition and use of the
software engineering methodsMATRA MARCONI SPACE 1,rue des Cosmonautes, 31400
TOULOUSE, Phone: (33) 61.39.65.40, Fax (33).62.24.77&8fail pinaud-christo-
phe@mms.matra_espace.fiSince 1987, Christophe has worked on software engineering tools
and methods evaluation and application and on Man Machine Interface development methods
and tools. He then participated to the Hermes Software Development Environment definition and
development and has supported more than thirteen projects using HOOD (for on-board and
ground systems using mainly Ada and C langages) from the training to the design and implemen-
tation within toolsets.He is now an active member of the HOOD TECHNICAL GROUP.

Copyright © 1995-96 by HOOD Users Group page viii

(page -ix
%@@ HOOD USER MANUAL 1.0 HUM-1.0
PREFACE. . .. "
OBSERVATION REPORTS e e \
ACKNOWLEDGMENTS e e VII
1 GETTING STARTED 1
1.1 GENERAL PRESENTATION i 1
1.1.1 History and Objectives e ...
1.1.2 HOOD in the development activities i 1
1.1.3 BASIC CONCEPTS ... e e e 2
1.1.3.1 HOOD ObjeCtS . . .ottt e e e e e e 3...
1.1.3.2 Control STrUCIUIES oot e 5...
1.1.3.3 Thelnclude relationship i 6...
1.1.3.4 Types, Data and Attributes. 7...
1.1.35 Class ObJeCtS . . . oot 7....
1.1.3.6 Virtual Node ObJeCtSo 8...
1.1.4 TEXTUAL FORMALIM . . s 8
1.1.5 An ODS lllustration- the STACK Object 11
1.1.6 From Architecture to Target Implementation 15
1.1.6.1 General ImplementationRules. 15.
1.1.6.2 Implementation of Constrained Operations. 17
1.2 THEHOODDESIGNMODEL. 19
1.2.1 SystemtoDesign 19...
1.2.2 System Configuration s 20. ...
1.3 THEHOODDESIGNPROCESS. 22
1.3.1 The Basic HOOD DESIGN PROCESS e 22
1.3.1.1 TheBasicDesign Step 23..
1.3.1.2 The Basic design step appliedto arootobject 31
1.3.1.3 The Basic design step applied to terminal object 31
1.3.1.4 The Basic design step applied to the other types of object.......... 32
1.3.2 The Overall HOOD DESIGN PROCESS e 32
1.3.3 PHASE 1: Logical Architecture i e 36
1.3.4 PHASE 2: Infrastructure Architecture 36
135 PHASE 3: Distribution 37....
1.3.6 PHASE 4: Physical Architecture 37
1.4 INTEGRATING HOOD IN THE LIFE_CYCLE ACTIVITIES. 38
1.4.1 OV IV W & ottt e e e, 38
1.4.2 Specification to design 38....
1.4.3 Designto Code 40. .
144 Testsand Validation 40. ..
1.4.4.1 Unitandintegrationtests 40. .
1.4.4.2 Verificationand Validation 4L
1.45 HOOD and REUSE i e e e 42. ...
1.4.6 HOOD and subcontractingt e 42
1.4.7 Phased Incremental Life Cycle 43

Copyright © 1995-96 by HOOD Users Group page ix

(page -x
HOOD USER MANUAL 1.0 by HUM Working Group

1.5 AHOODEXAMPLE e 45
151 Presentation of the EMS System 45
15.2 EMS Solution 45 .
1.5.2.1 Statement of the Problem (H1.1)......... 45 .
1.5.2.2 Analysis and Structuring of Requirement Data (H1.2).............. 45
1.5.2.3 Informal Solution Strategy (H2) i 47 .
1.5.2.4 Formalization of the Strategy (H3). 48.
1.5.25 Structuringthedesign. 51..
153 ODS examples of EMS System e 52
1.5.3.1 ENVIRONMENT OBJECT Input_Output_Driver. 52
1532 PARENTOBJECTEMS. i 53..
15.3.3 TERMINAL CHILDOBJECTCTRL_EMS............. 54
1.5.4 Example of Ada code implementation i 58
2 ADVANCED CONCEPTS 61
2.1 ARCHITECTURAL GUIDELINES., 61
211 STRUCTURING BASED ON ADTS e e e e e 62
2.1.1.1 Object Abstraction i 62 ..
2.1.1.2 Abstract Data Type Abstraction. 64 .
2.1.1.3 ADT implementations as HADT objects. 65.
2.1.1.4 Defining Logical Interfaces with ADT suppart. 68
2.1.1.5 ADT Refinement Techniques. 69 .
2.1.1.6 Deriving HADT objects from DataFlows. 69
2.1.2 THE HOOD DESIGN PROCESS AS SEVENDESIGNRULES 71
2.1.3 OTHER GUIDELINES FOR IDENTIFYING OBJECTScciivinvnn.. 73
2.1.3.1 Structuring based onlayeredmodels. 73.
2.1.3.2 Structuring based on Technological Components. 73
2.1.3.3 Structuring and Refinement 75. .
2.1.3.4 Modular and ADT Refinement Principles. 75
2.2 THE HOOD DESIGN DOCUMENTATION. 80
221 ODbJeClVES . oot 80
222 Documentation CONCEPLSttt e 80
2.2.3 Documentation Managementt e 80
2.2.4 Documentation Elaboration 81
2.3 EVALUATINGAHOODDESIGN, 82
2.3.1 DEFINITIONS .. s 82...
2.3.1.1 Goal of HOOD design verification. 82.
2.3.1.2 Means for HOOD design verification. 83.
2.3.2 DOCUMENTATION FOR VERIFICATION AND REVIEWS 83
2.3.2.1 Preliminary Design and Detailed Design Documents. 83
2.3.2.2 Documentation for Verifications. 84.
2.3.2.3 Summary on Documentation and Reviews 85
2.3.3 DESIGN STEP VALIDATION . .. e e 86
2.3.4 DESIGN PROTOTYPING . ..ot e e e e e 87
2.35 LEVEL VALIDATION . . .ot e e e e 87
2.3.6 DESIGN VERIFICATION IN THE DEVELOPMENT i 87

Copyright © 1995-96 by HOOD Users Group page x

(page -xi
HOOD USER MANUAL 1.0 HUM-1.0

24 REALTIME e 88
24.1 Development Approaches 88
2.4.2 Current Development Approaches e 89
2.4.2.1 Representing Common Real Time Mechanisms. 89
2.4.2.2 Establishing a Real Time architecture. 91.
2.4.3 Advanced Development Approaches, 92
2.4.3.1 Establishing a VN architecture. Q2.
2.4.3.2 Implementing INTER-VNs communications. 94
2.4.4 Expressing inter-process communication with operation constraints 95
2441 Useof Adatasking.......... ..., 96 . .
2442 NouseofAdatasking............ ... i, 96. .
25 DISTRIBUTED SYSTEMS 97
251 ADevelopment Approach 97
25.2 VNImplementation Approach 97
2.5.2.1 Implementing protocol constraintsforVNs. a8
2522 ManagingVNSasHOODOBJECTScvivinnnnn.. 103
2.6 MAN MACHINE INTERFACES 105
2.6.1 Development Approach for complex MMIs Systems 105
2.6.2 Modelling interactions with Window Managers, 109
2.6.3 Factorising interactions with Window Managersc. ... 109
2.7 INFORMATION SYSTEMS 111
2.7.1 PARALLEL DEVELOPMENT of Information Systems 111
2.7.2 Example of a HOOD initial Information System Model 112
2.8 FAULT TOLERANT SYSTEMS 113
2.9 ERROR AND EXCEPTIONS HANDLING. 115
2.9.1 The EXCeption CONCEPt . ..o v vt e e e e 115
29.2 Errors handling 115.
2.9.3 Suggested solution 115. ..
2.10 REUSINGHOODDESIGNS. i 117
2001 OVEIVIEW . .ottt e e e e e 117
2.10.2 Top-down & bottom-up approaches 118
2.10.3 Generalguidelines e 120. .
2.10.3.1 General designtechniques., 121
2.10.3.2 Classified guidelines for reuse and evolution. 122
2.10.4 Advancedtechniquest e 131....
2.10.4.1 Transforming objects into HOOD3classes 131
2.10.4.2 Using Virtual nodes.ot 132.
2.10.5 Summary on HOOD & ReUSE e 134
2.10.5.1 Whatto ReUSE?o e 134 .
2.105.2 HowtoDo Reusable?. e 134
2.11 HOOD AS A COMMON DEVELOPMENT FRAMEWORK. . 136
2.11.1 Integration of MULTIPLE-DEVELOPMENT TECHNOLOGIES 138
2.11.2 Conceptual and behaviours Modelling i 140
2.11.3 Dynamic behaviour Modelling 141
2.11.3.1 Extended Object ExecutionModel 142

Copyright © 1995-96 by HOOD Users Group page Xi

(page -Xii
%@@ HOOD USER MANUAL 1.0 by HUM Working Group
2.11.3.2 Requirements for selecting control expression notations. 145
2.11.3.3 Defining an Associated Verification Process. 146
2.11.3.4 Synchronous Automata Code for Predicate Transitionnets........ 148
2.11.4 Performance Evaluation i 9....14
2.11.4.1 Annotating a HOOD design for “automatic” performance analysis. . . .149
2.11.4.2 Kinds of performance relateddata 149
2.11.4.3 Inserting annotations into a HOOD design... 150
2.11.4.4 Performance Annotations fora HOOD design. 150
2.11.4.5 Building a performance model from an annotated HOOD design.. . . 152
2.11.5 Timing estimation and schedulability analysis 153
2.12 TARGET LANGUAGES. i 155
2.12.1 HOOD to targets Implementation principles i i 155
2.12.2 HOOD to Ada Code Generationt 155
2.12.3 Sequential Languages (C, C++, Fortran and Assemblers) 156
2.12.3.1 Operation Signatures.o e e e 156.
2.12.3.2 EXCEPLONS.ttt 156. .
2.12.3.3 Generation rules for passive objects. 157
2.12.3.4 Generation rules for active objects oL 157
2.12.3.5 Entity Naming.o o e 157..
2.12.3.6 ConventionsforCtargets., 157.
2.12.3.7 Code generation for Environmentsobjects 157
2.12.4 Object Oriented Language Targets i e 158
2.12.4.1 Designing for OOPL implementation (HOOD3.1). 158
2.12.4.2 Other Conventionsfor CH+. 158
2.12.4.3 Implementation of state constrained operations. 158
2.12.4.4 Implementation of protocol constrained operations 159
2.13 FULL ADA CODE ILLUSTRATION 161
2.13.1 TERMINAL PASSIVE OBJECTttt e e e e 161
2.13.1.1 ODS Definition for passive STACK object. 161
2.13.1.2 Ada code generation for passive STACK object. 163
2.13.1.3 ODS Definition for passive STACKS.o, 164
2.13.1.4 Ada code generation for passive object STACKS 166
2.13.2 TERMINAL ACTIVE OBJECT . ..ot e e 167
2.13.2.1 ODS Definition for active object STACKS 167
2.13.2.2 Ada code generation for ACTIVE OBJECT STACKS. 171
2.14 "NO TASKING" ADA CODE ILLUSTRATION 173
2.14.1 Code for State CoNnStraintst 73....1
2.14.2 Code Generation for Protocol Constraintsc. ... 175
3 GETTING THROUGH 181
3.1 HANDLING DOCUMENTATION STANDARDS 181
3.1 1 ADD Standard 182 .
3. 1.1 INtrodUCtioN. vt 182. .
3.1.1.2 Example of ADD Contentsot 182
3.1.2 DDD standard e 186. .
3.1.2.1 IntroduCtion.o e 186. .
3.1.22 Exampleof DDD Contents.t 186.
Copyright © 1995-96 by HOOD Users Group page xii

(page -xiii
HOOD USER MANUAL 1.0 HUM-1.0

Y, Y,

3.2 MAINTENAINING CONSISTENCY BETWEEN DESIGN AND

CODE. . . 187
3.21 Problem Definition e 187..
3.2.2 Mastering the relationship between ODs and CODEfiles 187
3.2.2.1 Maintaining Code definition withinthe ODS:. 188
3.2.2.2 Maintaining consistency between Codeand ODSS 188
3.3 REUSING ENVIRONMENTAL SOFTWARE (NON HOOD-
(00] 5] = I 189
3.4 MANAGING HOOD PROJECTS 190
34.1 OV IV W . o oot e e 190
3.4.2 Subcontracting e e 192. .
3.4.2.1 Allocation of objects to subcontractors. 193
3.4.2.2 Managingthe consistency., 193
3.4.3 Configuration Management 194
3.4.3.1 PrinCiples. . ..o 194. .
3.4.3.2 Configuration of a Development 194
3.4.3.3 Configuration Management of Code- versus-ODS 194
3.4.3.4 Evolution of the Project Configurations. 195
3.44 Reviewing a HOOD DeSIgNottt e 196
3441 Waring. . ..o oo 196. .
3.4.4.2 Documentation Structure. 196.
3.4.4.3 StartingreadingaDesign. 196.
3444 ODSsSReadingsS oo viiiii e 198 .
3.4.4.5 Redundancy Management...............ccuuiiiiiiinnnna... 198.
3.4.4.6 Evaluation ProCesSt 199.
3.4.4.7 Managing Author-Reader Cycles. 199
345 TULONNG .« o ot e 200
4 METHOD SUPPORT AND EVOLUTION 201
41 THEHOODUSERGROUP i 201
4.2 THE STANDARD INTERCHANGE FORMAT 201
4.3 TOOLSETS. ... e 202
5 CONCLUSIONS 203
6 BIBLIOGRAPHY 204
6.1 REFERENCES 204
6.2 HOOD BIBLIOGRAPHY 208

Copyright © 1995-96 by HOOD Users Group page xiii

400)

page -xiv
HOOD USER MANUAL 1.0 by HUM Working Group

6.2.1 Articles and Papers published in 1995 208
6.2.2 Articles and Papers published in 1994 208
6.2.3 Articles and Papers published in 1993 208
6.2.4 Articles and Papers published in 1992 208
6.2.5 Articles and Papers published in 1991 210
6.2.6 Articles and Papers published in 1990 i 211
6.2.7 Articles and Papers published in 1989, 1988 et 1987 213

A APPENDIXES 215

Al MORE ON THE EMS EXAMPLE 216

Al.l EMS REQUIREMENTS 216
Al.1.1 Presentation of the EMS System 216
Al.1.2 Client ReqUIrEMENTS e s 217. ..
Al.1.3 Software Environment 17....2

Al.2 OBJECT AND OPERATION IDENTIFICATION THROUGH
TEXTUAL ANALYSIS TECHNIQUES 217
Al.2.1 Identification of NouNns @ s 217..
Al1.2.2 Identification of Verbs (continue)........ 218

Al.3 OTHER ODSOFEMS SYSTEM 219
A1.3.1 OBJECT Timers_Driver IS ENVIRONMENT ACTIVE 219
AL1.3.2 OBJECT Sensors IS ACTIVE i e e 219
Al1.3.3 OBJECT Bargraphs IS PASSIVE e e 222
Al.3.4 OBJECT Alarm IS ACTIVEo e 225

A2 EXAMPLE OF ADA CODE IMPLEMENTATION 228

A3 HOOD4 TARGET IMPLEMENTATION AND ILLUSTRATIONS 233

A3.1

A3.2

HOOD4 TO TARGET IMPLEMENTATION PRINCIPLES . . 233

A3.1.1 Implementing state constraints with standard Ada 234

A3.1.2 Implementing state constraints without Adatasking........................... 234

A3.1.3 Implementing protocol constraintsin Ada 235
A3.1.3.1 Implementing protocol constraints without Ada tasking............ 235

HOOD4 ADA CODE ILLUSTRATION 238

A3.2.1 HOOD4 State Constraint SUPPOItot 238
A3.2.1.1 STACK OSTD. . .ttt e e 238 .
A3.2.1.2 STACK OSTM. . . oo e e 239 .
A3.2.1.3 STACK with state constraints inAda......................... 239

A3.2.2 Protocol constraints SUPPORT ILLUSTRATIONo 242

Copyright © 1995-96 by HOOD Users Group page xiv

(page -xv
HOOD USER MANUAL 1.0 HUM-1.0

Y,

A3.2.2.1 STACK with protocol constrained operations (Client code). 244
A3.2.2.2 STACK with protocol constrained operations (STACK_RB CODE). .245
A3.2.2.3 STACK with protocol constrained operations (STACK_SERVER CODE) 246

A3.2.3 Client_Server illustration forclasses i 247
A4 ODS CONTENTS ILLUSTRATION 248
A4.1 ODS CONTENT IN STATE"CHILD" 248
A4.2 ODS CONTENT IN STATE "PARENT" 248
A4.3 ODS CONTENT IN STATE "TERMINAL". 248
A5 ABBREVIATION LIST 249

Copyright © 1995-96 by HOOD Users Group page xv

(page -xvi
HOOD USER MANUAL 1.0 by HUM Working Group

Copyright © 1995-96 by HOOD Users Group page xvi

(page -xvii
HOOD USER MANUAL 1.0 HUM-1.0

LIST of FIGURES

Figure 1 - HOOD in the development aCtiVItIESc.uuviiiiieieeeei e 2.....
Figure 2 - Classification of the different HOOD ODbJECES........cuuviiiieeeeiiiiiiiiieeecee e i T
Figure 3 - Objects providing and requiring services and exchanging information items 4
Figure 4 - HOOD Object eXeCUution MOEcooiuuiiiiiiiiiiie e 5.
Figure 5 - Representation of Parent, Child Uncle and Environment objects ..o, 6
Figure 6 - A class as root object using environment and formal parameters objectccccceeeiiiiinns 8
Figure 7 - Structure of a HOOD ODjJECE.......cooiiiiiieeeeee e mmmnneeeend 9.

Figure 8 - L0 101 @ 11111 T 10

Figure 9 - Graphical representation for the active object Stack...........cccovvvieiiini s 1. 1
Figure 10 - Object behaviour fOr STACKcooi e 11

Figure 11 - ODS for STACK (USEr ManUAL)ccoeeiiiiiiiiiiiiiieee e ee s 12....

Figure 12 - ODS for STACK (INtEINAIS) ...ceeiieiieiiiitee et ee e e e e e e 13

Figure 13 - ODS for STACKS (Internals continued)............eeeeeieeeiiiiiiiiiiiiee e 14......
Figure 14 - Mapping between HOOD and Ada entitieS.........cccevviiiiciiiiiiieieeee e |- 1
Figure 15 - Code generation principle for Parent Object..........ccccoviiiiiiii e 16......
Figure 16 - Code generation principle for Parent object (standard generation)...........ccccoovvveeeeiiiieeeenns 16
Figure 17 - Code generation principle for Parent object (Nesting Child packages in parent Body))..... 16
Figure 18 - HOOD 3 Code structure for CoOnStraint OPEratioNSc.oeeiiiiiiiiiiiiieee e 17
Figure 19 - Code generation principles for terminal active ObjeCt..............coovviiiiiiiiiieeee e 8. 1

Figure 20 - A System To Design within a whole project (Client/server use relationships are not shown) 19

Figure 21- The HOOD design model into a set of spaces and hierarchies.ccccccvviiiieiiiiiineennn 21
Figure 22 - HOOD Design Tree as decomposed from the ROOT ODJECtoocvvevieiiiiiiiiiiiiieee e, 22
Figure 23 - The HOOD design activities and associated QULPULScoeiieieiiiiiiiiiiiiieieeeee e 24
Figure 24 - Application of Basic Design Steps to the system configuration............ccccccoeviiiiiiiiiieeennnennn. 33
Figure 25 - Full Design ACHIVItIES OVEIVIEWuvviiiiieeeei e ittt e e e e e e e e s st rre e e e e e e e e s e mneneeens 34

Figure 26 - Full Design Activities applied on the HOOD ArchiteCture............occccvvveeeeieeee e 35
Figure 27 - LIRS 121 (=T o Y PP PP 39

Figure 28 - The different models in the “Z” life CYCle.........cvviiiiiiii e 39..

Figure 29 - Test enviroNmMEeNt GENETALIONcoiiiiiiiiiiiiiiee et emmmmmmnnes 40

Figure 30 - Phased Incremental Development Approach For Complex SysStems..........cccceeeeiiiiniiinnen. 43
Figure 31 - State Transition Diagram modelling the behaviour of the EMS systemcccccvvvveeee.n. 46
Figure 32 - EMS HOOD DIAGRAM (H3.4) ... A9
Figure 33 - EMS objects and DeSIgN VIBWS........ocuuiiieiiiiiieee ittt s 51..

Figure 34 - Ada Specification associated t0 EMS ODS.........c.cooiiiiiiiiiiiieeiieee e B8..eee.
Figure 35 - Ada Specification associated to Ctrl_EMS ODS...........ooiiiiiiiiiiiieeee e 58
Figure 36 - Ada Body associated to Ctrl_EMS ODS ... 58
Figure 37 - Ada Specification associated to EMS ODS (Continued)c.coovecvvviiiieeieeee e 59
Figure 38 - HOOD Diagram of a Bounded Stackccccuviiiiiiiieeei e 63........
Figure 39 - Textual view of a Bounded Stack defined as an ADOcccoocuiiiiiiiiiiie e 63

Copyright[d 1995-96 by HOOD Users Group page Xxvii

(page -xviii
HOOD USER MANUAL 1.0 by HUM Working Group

Figure 40 - An alternative to the previous StACKoociiiiiiiiiiie e e 64.

Figure 41 - A bounded stack defined as an ADTccoiiiiiiiiiiiiiii e 65.......
Figure 42 - Graphical representation of object ADT_STACK ... 66
Figure 43 - Structure and ODS of HOOD object ADT_STACK encapsulating Data Instances............. 66
Figure 44 - Graphical representation of object ADT_STACKcoiiiiiiiiiiiiiiiie et 67
Figure 45 - Structure and ODS 0of ObjeCt ADT_STACKciii it 67
Figure 46 - Objects exchanging a complex data “Image”...........cceeeevieeiiiiiiniiiiiiieeeee e 68..........
Figure 47 - interface_object “ADT image” associated to data Image............ccccueviieeiiiiiniiiiiieeeeeen 68
Figure 48 - Objects of initial HOOD model exchanging a complex data “Message”........ccccccveeeeeeeiennns 69
Figure 49 - HADT object ADT_MESSAGE providing a MESSAGE ClassS.......ccccccceeeviviiviciiiiieeneeenn. 70
Figure 50 - ADT object ADT_MESSAGE providing a MESSAGE Classccccceiviiiiiiiiniieee e, 70
Figure 51 - HOOD Method of decomposition and refinement ..., 71
Figure 52 - Typical Layered Model of a on board Application.............oooueiiiiiiiiiiieieee e 73
Figure 53 - Typical System Information Model partitioned through Technological Components 74
Figure 54 - Modular and ADT RefiNEMENT.........oooiiiiieece e eeeeeas 76....
Figure 55 - Principle of specifying Interfaces through ADTScccooviiiiiiviiiieiicee e 76........
Figure 56 - Combining Modular with ADT RefinemMENt..........oocuiiiiiiiiiiii e 77
Figure 57 - Refinement Techniques of @ HOOD MOdEl............oooiiiiiiiiiiiiiiiiie e 79
Figure 58 - Relationships between parent and child ODS description Sections............ccccuvveeeeieieeennnnne 81
Figure 59 - States in the ODS production life CYCleooi it 81....
Figure 60 - Design Step activities and associated documentation SECtiON............ccocoveviiiiiiieeieeeeeeeininns 85
Figure 61 - Representations of tasks With HOOD..........ccoeoiiiiiiiiiiiiiiicicceee e eees 88......
Figure 62 - Representations Of CYClIC taSKS;.........oouuiiiiiiiiiiii e e d 89

Figure 63 - Representation of SEMAaPNOreS.........coooiiiiiiiiii e 90..

Figure 64 - Representation of Mail DOXEScooiiiiiii s 90

Figure 65 - Representation of shared ar€asoooieiiiiiiiiiiii e e Q0.

Figure 66 - Representation Of BVENLS..........cuiiiiiiiiic e 91

Figure 67 - Initial representation of @ RT arChiteCturecceeeeviiiicciiiiieieeec e 91...

Figure 68 - Explicating inter-process COMMUNICALIONS...........uiieiiiiiiiee ittt Q2.......
Figure 69 - initial representation of @ VN architeCtureccoocuviiiiiiiiiiic e 93...
Figure 70 - Explicit inter-VN COMMUNICAIONS........coiiiiiiiiieiit et e 3.

Figure 71 - Implementation Of & VIN e 94

Figure 72 - Principle of additional code to the logical model one in the physical model/...................... 98
Figure 73 - Execution Model for protocol constrained operations for VNcoovccviiiierieie e, 99
Figure 74 - OPCS_ER code Sample for STACK.PUSH client stub operationcccccveveviiiiieenninn. 99
Figure 75 - OPCS_SER codefor STACK.PUSH RB OpPErationcoocveeieiiniieieeiiiiiee e 100
Figure 76 - Architecture Principle of the VNCS SOftWare ...t QaQ...... 1
Figure 77 - lllustration of ServerVNCS.MeSSage _iN COURuuiiiiiiiiiiiiiiiiiiie et 101
Figure 78 - lllustration of ServerObcs code of an allocated object in a remote VN........ccccceeevivinnns 102
Figure 79 - lllustration of the representation of the physical model at terminal levelcc............ 104
Figure 80 - Generic Architecture for MIMIS..........eiiiiiiiii o 106

Copyright[d 1995-96 by HOOD Users Group page xviii

% @@ (page -Xix
) HOOD USER MANUAL 1.0 HUM-1.0
LIST of FIGURES
Figure 81 - Animation and prototyping of MMISueiiiiiieiiii e 107....
Figure 82 - Modelling DIALOG AUTOMATA with HOOD 0bject.........ccvvveeeiiiiiiiiiiiieieee e 108
Figure 83 - HOOD Representation of CallDackscoocuveiiiiiiiiieiii e 109.....
Figure 84 - Isolating the application from GUIMS COUEccuueeieiiiiiiiiiiiiiiee e 10...... 1
Figure 85 - Typical architecture of an Information System initial HOOD modelcoooiininnnee. 112
Figure 86 - Dedicated Object to handle Error and eXCeplioNSeeeiiiieaiiiiiiiiiiiiiiieee e 116
Figure 87 - Classical TOp-DoWN APProach..........uuuiiiiiiiieeeiii e e e e e e 118.
Figure 88 - Layered Bottom-Up APPrOACKueeiiiiie it e e 119...
Figure 89 - MiIXEA APPIOACKeeiiiiiiieii e e 120
Figure 90 - Definition of a disk driver and its associate properties..........cccccevvviieeeeiniiiene e, 3 12
Figure 91 - AEfINING 8N AITAY ...t e e e e aeeeeeeeeeaaan s 124
Figure 92 - two different puUt OPEratIONS...........uuuiiiiiiiie e 124
Figure 93 - instantiation of INPUT-OUTPUTcoiiiiiiiiiiiiieie e e e e e s 124..
Figure 94 - A generic stack providing a print Operationcccccvveeiieieeee e e 125.....
Figure 95 - an ODJECt t0 SOM dALA........eeeieiiiiiiie it e s L2
Figure 96 - Instance for SOMING INTEGETccoiiiiiiie e 127
Figure 97 - Instance for SOrtiNG STNGooi i mmmmmee e 127
Figure 98 - Generalization of the simple ADO BOUNDED_STACK ...t 129
Figure 99 - Generalization of the simple ADT BOUNDED_STACKS........ccccoiiiiieiieee e 129
Figure 100 - A class violating AdVICE 29........cccciviiieiiiiee e e e s e e e e e e e esennnnes 130
Figure 101 - The same class respecting AdVICE 29........cooiiiiiiiiiiiiie e 130.....
Figure 102 - an Object with expliCit dEPENENCYcooiiiiiiiiiiiii e 131..
Figure 103 - de-coupling a reusable ODJECTooii i 132
Figure 104 - Transformation of the above Example into a Class..........occcuvviiiiieiiiiiiiiniiiieeeee, 2 13
Figure 105 - level decomposition of a terminal Virtual Node...........cccccoeeeiiiiiiiiiiiiiieeecee e, 133......
Figure 106 - Models and Components of a complex software architecture.............ccccccvvvvveevereeiiiccnnns 136
Figure 107 - HOOD Architectural Model of a complex information Systemcccccoecveeiiniiieneennnnn, 139
Figure 108 - Target Code architecture associated to OBCS and OPCSSccccovviiieeeiiniiieee i 141
Figure 109 - Extended Execution model for constrained Operationscccceereeiiiiiiiiiieeieeee e 142
Figure 110 - Automata Code modelling an Object OBCS........ooooiiiiiiiiiiiiieee et 143
Figure 111 - Principle of | INTERFACE procedure COOe.........ccuviiiiiiieeee et 143
Figure 112 - Principle of O_INTERFACE procedure COUEcccoviiiiiiniiiiiiireeee e e s e s srienienereeae e e e e e 143
Figure 113 - |_INTERFACE Code for HSER CONSIFAINT.........ccoiiiiiiiiiiiiiiee et 144
Figure 114 - O_INTERFACE Code for HSER CONSIIAINTvuviiiiiiiiiieiiiiiee e 144
Figure 115 - |_INTERFACE Code for LSER CONSIIAINTccuiiiiiiiiiiieeeeee it 144
Figure 116 - O_INTERFACE Code for LSER CONSIIAINt.........cuuuiiiiiiiiieaeeaeieiiiiie e 144
Figure 117 - | _INTERFACE Code for HSER CONSIIaINtccceiiiiieiiiiiiiiiiiiiieecee e e e e e e 144
Figure 118 - | _INTERFACE Code for TOER_LSER CONSLraiNt.........c.coooiviviiiiieeiee e e csciiieeeeeeee e 145
Figure 119 - |_INTERFACE Code for TOER_HSER CONSLrAINt.....c..cccuuiiiiiiiiiiiee e 145
Copyright[d 1995-96 by HOOD Users Group page Xix

(page -Xx
HOOD USER MANUAL 1.0 by HUM Working Group

Figure 120 - Integration based on several concurrent AUTOMATAcooiiiiiiiiiiiiiieee e 147
Figure 121 - Integration based on merge of AUTOMATA 147
Figure 122 - Ada Code generation for PTNc..uuiiiiiiiieeoii e s 148

Figure 123 - : from performance requirements and design elements to performance model 149
Figure 124 - : Annotation with performance CONSIraiNtScoovcviiieiiiiiiie e 150......
Figure 125 - : Annotation with an execution Profile. ... 151..

Figure 126 - Estimating worst case eXeCUtion tiMeeeeiiiiiaiiiiiiiiiiiieeee e 152....
Figure 127 - : Generation of a performance model from an annotated HOOD design..........cccccceeeeeeennn. 152
Figure 128 - Timing estimations: Analysis of each HOOD ObjeCtcccoviiiiiiiiiiiiiiieee e, 153
Figure 129 - Timing estimations: Build overall execution skeletoncccccevvvieei i 154
Figure 130 - Example of HOOD annotations for performance and timing estimationsc......... 154
Figure 131 - Sample code of testing exceptions in client Code...........cceeviiiiiiiiiiiiie e 156........
Figure 132 - Graphical representation for the object Stack............ccccuiiiiee, 161......
Figure 133 - ODS of passive STACK ODJECEccuuiiiiiiiiiiieee e 162..

Figure 134 - Ada specification Unit for passive 0bject STACKccccviiiiieeiiii e 163
Figure 135 - Ada body Unit for passive object STACKcccccviiiiiiiieee e 163......
Figure 136 - Graphical representation for the active object Stacksccccceevviiiiiiiiiieee e, Ao, 16
Figure 137 - ODS 0Of passSiVe STACK S. ...ttt eeeeans 165

Figure 138 - Ada specification Unit for passive STACKS........cooiiiiiiiiieeeee e 66....... 1
Figure 139 - Ada body Unit for passive STACKScoiiiiiiiiie e 166....
Figure 140 - Graphical representation for the active object Stack...........ccccvvvveveeiieeiiiiiiiinnd 67........ 1
Figure 141 - Object behaviour fOr STACKciiiii it eeeennns 167

Figure 142 - Ada OBCS €OdE fOr STACK........eiiiiiiiiiiieiiii e 168

Figure 143 - ODS lllustration Of STACKSooiiiiiiiiiie e 169

Figure 144 - Internals of ODS for active object STACKS........oooiiiiiiiiiiee e 170......
Figure 145 - Ada specification Unit for active object STACKSooiiiiiiiiiee e, 171
Figure 146 - Ada Body Unit for Active STACKS ... 171....
Figure 147 - Additional HEADER code to the OPCS for state constraint support with an FSM........... 173
Figure 148 - Ada Specification Unit for State Constrained Operations without tasking 173
Figure 149 - Ada Body Unit for Constrained Operations without taskingccccccevviiereenniinne e 174
Figure 150 - Ada Specification Unit for Constrained Operations without taskingcccccueveeeeeen. 175
Figure 151 - Ada body code generation with no tasking - protocol constraintscccccvvveeeeieneennnnn. 176
Figure 152 - OBCS body code with no tasking - protocol CONStraintscccccvvivereeeeeeee e 178
Figure 153 - Separate part of OBCS body code containing the dedicated SerDispatcher code............. 178
Figure 154 - Example of a HOOD initial model at levell of decomposItionccccovviiiieeiniiieneenee 190
Figure 155 - Example of Refinement of initial HOOD MoOdel............oooiiiiiiiiiiiiiiiieee e 190
Figure 156 - HOOD Design trees states in the development life-Cycle ... 191
Figure 157 - Consistency of multi System-ConfigurationsS............ccoouiiiiiiiiiiiiiiee e, 93....... 1
Figure 158 - The EMS SYSIEBM ..uuiiiiiiiii ittt e e st e e e e e e e e smmmmeeeeennnn 216

Figure 159 - The EMS Hardware BIOCK DIiagramcceeeiiiiiiiiiiiiiiieie e s scccievveneeee e e e e e e e 216.......
Figure 160 - Suggested Target Code structure for constraint OpPerationscccccvveeeeviiiieeeiiiieeeeennens 234

Copyright[d 1995-96 by HOOD Users Group page xx

(page -Xxi
HOOD USER MANUAL 1.0 HUM-1.0

LIST of FIGURES

Figure 161 - Principle of Code for Protocol onstrained operation SUPPOIt..........ccoevviiiiiiiiiieeeeeeeeeeieinns 236
Figure 162 - Principle of Code for Protocol Constrained operation SUPPOrtcccvvveeereeeeeevisscnennnnnn 237
Figure 163 - State Constraints Implementation SChema...........ccocceviiiiiie e 238.........
Figure 164 - OSTD for STACK ODJECTeeiiiiiiiiiiie e 238

Figure 165 - OSTD Implementation EXampPle ... e 239....
Figure 166 - STACK object with state constraints operations............cccccveeeeveeeeerinnnciiveneeeeeee A0, 2
Figure 167 - STACK with state constraints code Sample.........ccccoeeeieieeeeiiiiccieee e, 240........
Figure 168 - STACK with state constraints code Sampleccccvveeveieeeiiiiccceee e 241........
Figure 169 - STACK with protocol CONSIIAINTS.ccoiiuiiiiiiiiiiie e 243

Figure 170 - STACK with protocol constraints (without tasking)cccoveiiiiii 244
Figure 171 - STACKwith protocol constraints (without tasking)coooiiiiiiii e, 244
Figure 172 - STACK 1 with protocol constraints (without tasking)ccccuviiiiiiiiiiiieeeeee, 246
Figure 173 - Client_Server Code structure for class TStack...........cccccveeevieeeeeiiiiiiiiiiieeeeeeee, 247.........

Copyright[d 1995-96 by HOOD Users Group page xxi

(page -xxii
HOOD USER MANUAL 1.0 by HUM Working Group

Copyright[d 1995-96 by HOOD Users Group page xxii

I}H@ (HOOD USER MANUAL 1.0 ﬂﬁgﬁf_o
1 GETTING STARTED

1.1 GENERAL PRESENTATION

HOODUO (HierarchicalObjectOrientedDesign is a design method, which is used after the re-
guirement analysis activities and covers architectural design, detailed design and coding. The
method resulted from merging methods knowalastract machineandobject oriented design

and was further adapted to the needs of European Software Industry as an attempt to unify and
integrate object orientation and advanced software engineering concepts and f@fations

1.11 HISTORY AND OBJECTIVES

In September 1989, HOOD3.0 was released bHD®D Technical Group founded by ESA.
In July 1992 an evolution of the design methd@OD, release 3.1jncorporating feed-back
over two years experience on various projects, was adopted BYDO® User'sGroup (HUG)
[4] as the method official release see HRM

After an evaluation phase on small pilot projects, the method was chosen for the COLUMBUS
Manned Space and ARIANES programs. Since, it has been adopted by EUROCOPTER, the
French NAVY and by several other large projects in aerospace, defence, transport, energy and
nuclear applications.

HOOD is anobject based methdtiat supports a modular technology, centered on client-server
and composition relationships, where minor emphasis is put on inheritance. This is why, beside
the recent blossoming of Object Oriented methods, HOOD has evolved slowly and a new release
is only planned to be compatible with Adg9%. Experience has proven that inheritance in re-
quirement analysis is not the same as inheritance used for implementation, thus there is a need
for an intermediate method in design. The advantages promidell ibjperitance basedbject

oriented methods are currently not balancing the drawbacks of introducing them straight on large
scale projects. Furthermore we are convinced that industrial use of inheritance will be limited to
data modelling and detailed design programming support. Today OOP is only made possible
through powerful programming and debugging support environments, and limited to very small
integrated teams. HOOD on the other side has been recently worked out to integrate both modular
and inheritance programming, thus making HOOD the architectural design method of choice.

With more than thousand engineers trained in Europe and the availability of several toolsets and
companies providing support for using the method, HOOD is spreading continuously within the
industry. The HU®] has been set-up as an international non profit organisation and is in charge
of controlling the method evolution.

1.1.2 HOOD IN THE DEVELOPMENT ACTIVITIES

HOOD supports identification of a software architecture after requirement analysis activities and
leads naturally into detailed design where operations of objects are further designed using a Pro-
gram Description Language (PDL) inspired from Ada. This detailed design description may be
further refined into target language descriptions up to a point where the target code can be gen-

Copyright[d 1995-96 by HOOD Users Group page 1

(page -2
HOOD USER MANUAL 1.0 by HUM Working Group

erated. The figure hereafter (Figure 1 -) indicates HOOD applicability within a simplified life-
cycle model.

Requirement definition Architectural design Detailed design Coding Testing

HOOD

Figure 1 - HOOD in the development activities

Due to the complexity and duration of activities in a large project, HOOD design activities may
take place several times in a real development life-cycle. Traceability with requirement analysis
as they are refined followed by refined solutions is still a problem in the management of large
projects. However HOOD refinement properties provide support for a development approach
that goes across the different design phases and helps support consistency of a design solution
from the initial approved solution down to the implementation one, and that is still specific and
adapted to particular target systems.

These issues may be more refined in dedicated sections of this document (see Section 2.1.2, or
Section 2.1.3) but what the reader should already point out now is that:

« HOOD is not a requirement analysis method

« HOOD handles “design requirement analysis” activities in transitioning from requirements
analysis to design (see Section 1.3 below)

« HOOD is an architectural design method, helping a destgrgartition the software into
modules or objectsof well defined interfaces that can either be directly implemented or fur-
ther partitioned with HOOD into modules of lower complexity.

« HOOD concepts looking for integration of design with the other development activities. Es-
pecially, HOOD object properties having been defiimeorder to ease interface mastering,
testing and integratiom the context of parallel, multi-people team developments.

1.1.3 BASIC CONCEPTS

HOOD is a method based on:
e aformalism:

- thegraphical notation allows to express an abstraction of a solution in a clear, high level
and easy-to-understand notation.

- thetextual notation allows formal expression and refinement of the object’s characteris-
tics and properties by means of @bject Description Skeleton(ODS). This concept
helps to structure the descriptions into separate fields which support appropriate control
and program description notations. Finally these descriptions may be fully translated into
a target language (Ada, C, C++, or Fortran).

» aprocesdescribing and refining a software model from abstract structures and concepts to-
wards target machine code.

Copyright[d 1995-96 by HOOD Users Group page 2

(page -3
HOOD USER MANUAL 1.0 HUM-1.0

* rules coming from industrial experiences.

These notations allow to use powerful structuring concepts for describing and organising a sys-
tem as a set of interconnected hierarchies of objects. The principles supported are threefold:

» the notations allow hierarchic representation supporting both global and local views of com-
ponents. Furthermore the concept of uncle and environment object supports formal represen-
tation of acontext of a modetith full consistency checking.

» the graphical notation is an abstraction of a fully detailed model, offexthgced but con-
sistent viewsand allowing hierarchical refinement of representations and understanding.

» the textual notations leave provisions for both informal and formal texts, allowing the defi-
nition of a documentation skeleton as a framework for a step by step integration of advanced
notations to capture and formally verify the characteristics of an object.

1.13.1 HOOD Objects

Within HOOD, everything is an object, but the term “object” does have the general meaning of
MODULE encapsulating a number of properties. However a number of modules may be charac-
terized more precisely. In order to ease the understanding of the method, one can group objects

different into different categories according to three perspettives

» decomposition characterizes objects according to the way they are structured,

* behaviour: characterizes objects according to their behavioural properties,

e organization: characterizes objects according to their role in the system development.
A synthetic view of this classification is provided in Figure 2 - below.

(normal) (instance) (op-control)

decomposition behaviour

=

organisation

(Object) (virtualnode) (class)

Figure 2 - Classification of the different HOOD Objects

Lpe careful those views are not facets; in other words, each HOOD object must not be characterized by a term in each of those
views, and some of these types are exclusive

Copyright[d 1995-96 by HOOD Users Group page 3

(page -4
HOOD USER MANUAL 1.0 by HUM Working Group

In the following, we give a more detailed description of the HOOD object concept as a summary
of its description in the HRM] .

Theobjectis theunit of modularityand is defined by the services thairitvides encapsulating

astate and a set of services thatdatjuiresfrom other objects. To require a service, a client object
must identify the server object to perform it; thus every object has a unique identifier and may be
referenced unambiguously.s&rviceis an abstraction of an operation or an accessatirdoute

/ componendf the state of an object.

Each service hassignature (expressed using an Ada like syntax) which defines the number and
type of its arguments. The set of signatures constitutes the provided interface; similarly, the re-
quired interface comprises the set of signatures of the required services. Communication between
objects - the USE relationship - is only possible by service requests, which are similar to Small-
talk method calls or Ada procedure or task entry calls:

» there is a many-to-one connection pattern, reflected by the naming scheme.
» the provider of the service must be named by the client.
* the name of the client is not directly known by the server.

» aclient object requesting a service from a server object is said to use the server and this re-
lation is represented by a bold use arrow.

* information items can be exchanged between communicating objects; the associated infor-
mation flow may be bidirectional and is represented by arrows along the use relationship one
(see Figure 3 -)

ASER / A CLIENT
by Supervisor ,
— 29| Start
T Z9| Stop
ltem
|
-~ o Y
Info Y
a SERVER N
— 29 Start
asmp
Put
T 2P Get
Get_Status

g /

Figure 3 - Objects providing and requiring services and exchanging information items

Communication protocolsiay be achieved by attaching execution requests and constraints to a
given service. Two kinds of constraints are defined:

» state constraintgservice activation constraints relying on the semantics and internal state of
the object) are represented through non labelled trigger arrows.

» protocol execution constrain{sepresented by text labels attached to a trigger arrow) which
define that the client requesting process execution is suspended after its request :

- until full completion of the requested service (Highly Synchronous Execution Request or
HSER protocal

Copyright[d 1995-96 by HOOD Users Group page 4

(page -5
HOOD USER MANUAL 1.0 HUM-1.0

- until completion of the request processing by a server process (Loosely Synchronous Ex-
ecution Request &SER protocol)

- until runoff of a time delay or until full completion of the requested serTiGER_HSER
protoco)

- until runoff of a time delay or until completion of the request processing by a server pro-
cess TOER_LSER protocpl

- or not suspended (ASynchronous Execution RequesSBR protocol)This kind of ex-
ecution request corresponds to classical message passing communication.

1.1.3.2 Control Structures

HOOD allows the precise description of the dynamical behaviour attached to the execution of
services (with or without attached execution constraints) thrpragiessesvhich are ultimately
implemented on target machine processors. The behaviour of processes is captured through two
orthogonal concepts:

» the OPeration Control Structure (OPCS, one by service/operatjamhich describes how
a sequential process executes within an operation.
Example: For a FILE object wittead andwrite constraints operations, the OPCS ofréed
operation consists in reading a file contents.

» the OBject Control Structure (OBCS one per objeayhich controls the activation and trig-
gering of constrained operations, whereas non constrained operation execute directly under
the client requesting process (see Figure 4 -).

/A N
O BCS interprocess

ASER_by_IT communication
— and synchronisation
T e : Op_1 . a
Cleion L Exécution Mode Op_1: OPCS TP
HSER_TOER 2s - on.2 Op_2: OPCS
»| Operation_2 Exécution Mode Y Other
Internal OPCS H—»| |Reauired
‘ Operations
= Operation_3
Op_3: OPCS
Operation_4 Op_4: OPCS H—»

N J

Figure 4 - HOOD Object execution model

Copyright[d 1995-96 by HOOD Users Group page 5

HOOD USER MANUAL 1.0

page -6
by HUM Working Group

This model supports:
A complete separation of reactive and transformational parts.

1.1.3.3

An easy mapping to ADA tasking.

The possibility of prototyping the dynamics.
The possibility of expressing the dynamic behaviour using other formalism.
The definition of execution mode at server level (not at client side)

The Include relationship

An object €alled a parent or a non-terminal objectjay itself be defined as the composition of
other objectsdalled child objects Provided services are thenplemented_bghild provided
services. Themplemented_byelationship is represented by a dashed one-to-one arrow.

Child objectsare represented as objects within the parent internals, and may require services
provided by uncles (objects which are used by their parents) represented as a connection port

attached to the parent boundari€éerminal objectsare objects that are not further decom-
posed into child objects.

Environment objectare objects that do not belong to the current parent-child hierarchy and

are represented as uncle objects with an “E” in left side

Parent_Object

/

Operationl
Operation2
{Child_C_ops}
{Op_set :

{C_ops}
{D_ops}

}

Operation4

Operation3 | .. i

Object C

v {opes_1}
| ey foPES2)

\Dataflowl

Operationl
Operation2
Operation3

Operationl
{opes}

Operation2
Operation3

T Dataflow2

Y

Uncle_1

Copyright[d 1995-96 by HOOD Users Group

Figure 5 - Representation of Parent, Child Uncle and Environment objects

page 6

(page -7
HOOD USER MANUAL 1.0 HUM-1.0

1.1.3.4 Types, Data and Attributes

Data can only be exchanged between objects which are related by a USE relationship. Data may
be:

» either instances of target language types (Ada, C, Fortran or Assemblers)

» orinstances of abstract data typesich are defined in another HOOD object, from which
the type definition is then required. Appendix3 gives a detailed illustration of a Stack imple-
mentation as OOD Abstract Data TypéHADT) object.

Types

HOOD enforces a flat typing structure as supported by most target languages. Types are declared
either:

* intheProvided Interfacef the current object. In that case, they must be related to parameters
of provided operations. An object should not provide any type which is not an operation pa-
rameter type.

* initsinternals
» orthey are provided by another object (environment or HADT ones)

Data (or variable)

Data may only be declared in:

» thelnternalparts of a terminal object. This restriction prohibits the definition of architectures
with global data, recognized as poorly reliable and maintainable ones.

» thelocal datapart of an OPCS (or OBCS) in which case this data is a temporary one and only
exists during the execution of the OPCS.
For example, a state data shall be declared as much as possible locally within the OBCS in
order to not be used by the OPCS.

Attributes

Attributes of an object are data that define invariant properties of an object. While some object
models define attributes as a valued data readable by chéd@D unifies all access to an ob-

ject through operationgdence attributes of an object in HOOD are modelled as provided oper-
ations (possibly returning an attribute value).

1.1.35 Class Objects

A HOOQOD class obje(ﬁis defined as a template for objewttich may be parameterized by ser-
vices (types, constants and/or operations) and allowing to factor the descriptions of identical or
similar objects.

2The term class object came out as the OOP terminology was not well established. HOOD CLASS object shall not be confused
with OOP classes, but are templates or generic objects (similar to generic Ada packages). A HOOD object has always the mean-
ing of “module”.In order to avoid misunderstanding with OOP terminology the terms “class instance” should always be

used to designate an OOP object instance

Copyright[d 1995-96 by HOOD Users Group page 7

(page -8
HOOD USER MANUAL 1.0 by HUM Working Group

A class object is defined as a separate object(top-level object of a parent-child hierarchy),
and may itself be decomposed only into objects and/or instances of other class objects. (see Fig-

ure 6 -)
(A_CLASS N\
oAb)
| OP1 LIST: LIST MNGT
[
Opl an object, instance
—J
Op2 of another class
OP3 N J
(TABLE ‘ \
| E TEXT_IO
] a child
object data_out
T S—» F Formal_Parameters

Figure 6 - A class as root object using environment and formal parameters object

1.1.3.6 Virtual Node Objects

The Virtual Node (VN) concept is the extension of the object concept (meaning a software mod-
ule) to the system level (i.e. an executable, a process, a sub-system, a system...). The VN defines
anindivisible partition of the memory space and software units for distribution.

Links between objects map procedures calls, even though links between VN map communication
protocol. Communication between VN is only through protocol constrained operations. Some
projects have used the VN concept to design a system where software, hardware and human ac-
tivities have to contribute. In the same way than objects, a man or a hardware may provide ser-
vices in response to requests.

A VN hierarchy (or Virtual Node Tree, VNT) gives the decomposition of a system into elements
providing services and which constitute the whole system. Thus a parent VN may be decomposed
into child VNs. At the lower level, a terminal virtual node consists in a system element which
may either implemented by software, hardware or human actions. In case of software, the HOOD
method allows to present the set of objects which are necessary to build that VN.

Thus, a terminal virtual node implemented by software is decomposed into those objects. We say
that thoseobjects are allocated to the terminal VN This is not an include relationship but an
allocation relationship. We can thus say that a terminal virtual node may map an executable (a
UNIX process for example) built after compilation and link of all allocated objects.

Finally several VNs can be allocated to a physical processor, but one terminal VN cannot be dis-
tributed across several ones.

1.1.4 TEXTUAL FORMALIM

Each HOOD object is described in an associated Object Description Skeleton (ODS) which
structures its properties into both informal and formal descriptions. Formal notations can be
checked against informal descriptions and by tools.
An overview of the ODS is given in Figure 7 - below.

Copyright[d 1995-96 by HOOD Users Group page 8

",

(page -9
HOOD USER MANUAL 1.0 HUM-1.0

| ODS Structure |

| Visible Part |
. . May be an active or passive objgct,
Object Declaration a virtual node or a class
.. Informal text describing what the object dqes.
Description (Object functional specificatiom)
Implementation Describe any target implementation constrdints
Constraints
Provided Resources provided TO other objects:
Interface Types, Constants, Operations (sets), Exceptions
Required Resources required FROM other objegts:
Interface Types, Constants, Operations (sets), Exceptjons
Data flows coming from required objects
Flows Exception flows coming from required objefts
Informal description of object behavigur
OBCS list of constrained operations
| |
\ Internals |
Implementation of Private or incomplete provided
Provided types and constants constants and types are defingd
Definition of internal Those definitions are not visible
types, data & operations from outside
Describes implementation jof
OBCS the object behaviour

Describes implementations for
OPCS provided and internal operations

Figure 7 - Structure of a HOOD Object

Copyright[d 1995-96 by HOOD Users Group page 9

(page -10
HOOD USER MANUAL 1.0 by HUM Working Group

OBJECT <Object_Name> is<Object_Type>
PARAMETERS -- Only for Class instancgs
TYPES, OPERATIONS, CONSTANTS

DESCRIPTION

-- Text in natural language giving all information for understanding and maintaining the object
IMPLEMENTATION_CONSTRAINTS

Natural language text giving constraints (memory limits, cpu, performances) for the object.

PROVIDED INTERFACE
-- Set of element provided to client objects. They are followed by a description in natural language

TYPES -- HOOD identifier,
CONSTANTS -- HOOD identifier,
OPERATION_SETS -- HOOD identifier
OPERATIONS --signaturé in Ada,
EXCEPTIONS -- HOOD identifier
OBCS -- Only for active objects
DESCRIPTION

-- Text in natural language describing the behaviour of the object
CONSTRAINED OPERATIONS -- Sub set of provided operations which are constrained

DATA_FLOWS

--Textual Description of Data labels along the use relationship
EXCEPTION_FLOWS

--Textual Description of Exceptions labels along the use relationship

REQUIRED INTERFACE
For each Required Object, the subset of elements provided by the server object and really used in the curr¢nt object
TYPES, CONSTANTS, OPERATIONS, EXCEPTIONS

INTERNALS

OBJECTS? - List all child objects implementing the object

TYPES?, CONSTANTSS, DATA%, EXCEPTIONS®
--definition in target language of both provided elements (if not defined in the visible part) and internal ¢gne

OPERATIONSS - list of operation (with their signature in Ada) internal to the object

OBCS --Only for active objectg
PSEUDO_CODE®--with suitable notation
CODE -- in target language
OPERATION CONTROL STRUCTURES -- Only for terminal objectp
For eachOPCS’
Description

Used_Operations -- Operations (internal or external) used by that operation
Exceptions_Propagated
Exceptions_Handled
PSEUDO_CODE -- in PDL
CODE -- in target language
END <Object_Name>

Lsignature = syntactic specification of an operation. By default it is expressed in Ada syntax, what ever target lqnguage
2This field is empty for terminal objects

,?."Th se field& Broviqe for %efir?ition of imrglen]entation of associated structures in terminal objects, and for deffnition of
implemented_by’ relationship for non terminal ones.

4This field only exists for terminal objects.

5 This field declares the “i

: implemented-by” links of parent operations down to child ones, For terminal objects ddditional
internal operations may be d%cfgre(}%ereyln the progess of é%ep—wse refinement o?prowdedpoperatlon conjﬁ‘rofsct uctures.

6The notatjon be a graphical one or textual one, allowing to specify formally control (Ada, Petri nets, Finite [state Au-
tomata, stereﬁ%nempor%ﬁ%glc an prowée ?or automatic ggener tlonf% co ae/&msﬂore etails). '

"These subfields are filled for each operation internal or provided ones.

Figure 8 - ODS Outline
Copyright[d 1995-96 by HOOD Users Group page 10

(page -11
HOOD USER MANUAL 1.0 HUM-1.0

7,

The different descriptions fields of the ODS allow to capture and refine object properties, and can
be processed by dedicated toolsets in order to:

* generate target code units automatically
* generate various documents for verification (cross reference tables, dictionaries, indexes)

1.1.5 AN ODS ILLUSTRATION- THE STACK OBJECT

In the following we give an illustration of an ODS associated to a terminal object called STACK,
modelling a STACK abstract data type and which is represented as Figure 9 -, with two opera-
tions PUSH and POP constrained by the object’s internal state.

/A STACK "\

HSER
PUSH
HSER
~ L POP
STATUS
N—

Figure 9 - Graphical representation for the active object Stack
The STACK object behaviour can be modelled by a state transition diagram as in Figure 10 -,
where transitions are exclusively associated to operation execution.

POP
not_empty not_full

or
e PUSH

FULL

Figure 10 - Object behaviour for STACK
The OBCS implementation can be reduced in this case into one Ada task implementing the state

transition diagram and the associated Ada code could be described in the OBCS CODE field(see
Figure 11 -).

Copyright[d 1995-96 by HOOD Users Group page 11

(page -12
HOOD USER MANUAL 1.0 by HUM Working Group

The ODS of Figure 11 - shows the declarations of OBCS, and declaration of provided and re-
quired types of object STACK.

OBJECT STACKIS ACTIVE
DESCRIPTION
-- abstract data type STACK with no encapsulation of data instances
IMPLEMENTATION_CONSTRAINTS
--The target system shall be an Ada system with full Ada83 tasking
PROVIDED_INTERFACE
TYPES
T_Statuss (BUSY, IDLE, UNDEFINED);
-- definition of provided type to hold the status of the stack code.
type T_DATA is array (integer <>) of ADT_Element.T_Element;
--data structure to hold values of the type
type T_STACK(MAX: integer) is --type STACK implementation
record
DATA: T_DATA (1 .. MAX); -- only needed space is declared
TOP:integer:=0;
SIZE:integer:=MAX;
ETAT: PROJECT_ENV.T_STATES;
end record;
-- a client declares stack objects as
--Client_Stack: T_STACK(150);
OPERATIONS
PUSH (STACK:in out T_STACK; Elementin T_Element);
POP(STACK:n out T_STACK; Elementout T_Element);
STATUS(STACK:in out T_STACK)return T_Status;
EXCEPTIONS
X_FULL raised by PUSH when more then MAX elements in the STACK
X_EMPTY raised by POP when no elements in the STACK
OBJECT CONTROL STRUCTURE -- visible part of OBCS
DESCRIPTION
PUSH and POP operations should only be activated when the state of STACK is non(EMPTY) for POP or n(FJJLL)
for PUSH
CONSTRAINED_OPERATIONS
PUSH is constrained by HSER. -- HSER is additional to state constraints
POP is constrained by HSER- -- because the access must be protected in a multi-client/ multi thread context

-- END OF STACK USER MANUAL

REQUIRED_INTERFACE
OBJECT ADT_ELEMENT
TYPES
T_Element;--| STACK requires type T_Element, provided by object ADT_ELEMENT.
OBJECT ADT_SEM
TYPES
T_SEM;--STACK requires type T__SEM, provided by object ADT_SEM.
OPERATIONS
P,V;
OBJECT PROJECT_ENV
TYPES
T_States;--STACK requires type T_STATES, provided by object PROJECT_ENV stores basic type definitions for
this project (alittle more than the Ada standard package)

INTERNALS
-- not shown here, see below

Figure 11 - ODS for STACK (User Manual)

Copyright[d 1995-96 by HOOD Users Group page 12

page -13
HOOD USER MANUAL 1.0 HUM-1.0

20D

The INTERNALS part of the STACK ODS in Figure 12 - shows the declaration of internal types,
data and OBCS code.

INTERNALS -- hidden part of the object:
OBJECTS None; --NO CHILD OBJECTS
TYPES None; -- no internal types
CONSTANTS None; -- no internal constants
DATA
GARDE: ADT_SEM.T_SEM:=FREE; --exclusion semaphore
STATUS: T_Status; -- class variable

OPERATIONS None; -- no internal operations
OBCS

PSEUDO_CODE

--see OBCS STD in figure A2.2

CODE --of OBCS --

task body OBCSis

begin
loop --
select-- choice according to current state see Figure 10 - above
whenNot_EMPTY | FULL =>
acceptPOP (One_Elementut T_Element)do
OPCS_POP (One_Element);--associated OPCS body
end POP;
or when not(FULL) =>
acceptPUSH (One_Elemenin T_Element)do
OPCS_PUSH (One_Element);-- associated OPCS body
end PUSH,;
end select
end loop;
end OBCS;

OPERATION CONTROL STRUCTURES
OPERATION STATUSreturn T_Statuss -~OPCS of POP
DESCRIPTION
Get status of class STACK code
USED_OPERATIONS None:
PROPAGATED_EXCEPTIONS -- None;-
PSEUDO_CODENOone; - --see code;
CODE-- in Ada
begin
return STATUS;
END --of opcs STATUS
-- see other OPCS on next page

Figure 12 - ODS for STACK (Internals)

Copyright[d 1995-96 by HOOD Users Group page 13

HOOD USER MANUAL 1.0

page -14
by HUM Working Group

OPERATION POPis --OPCS of POP
DESCRIPTION
Remove an Element from the data structure T_DATA
USED_OPERATIONS
None:-
PROPAGATED_EXCEPTIONS
X_STACK_UNDEFINED;
PSEUDO_CODE-
if [the STACK is not EMPTYthen
[put STACK in BUSY state
[remove Element from STACK_DATA]
[put STACK in IDLE state]
else
[put STACK in UNDEFINED state]
end if;
CODE-- OPCS_body is
begin
if STACK.TOP>Cthen
STATUS:=busy; -- STACK code is BUSY
Element:=STACK_DATA(STACK.TOP);
STACK.TOP:=STACK.TOP-1;
STATUS:=idle;-- STACK code is IDLE
else
STATUS:=undefined; --STACK code UNDEFINED
raise X_EMPTY:; --impossible case
end if;
END --of opcs POP

OPERATION PUSHis --OPCS of operatioRUSH
DESCRIPTION
Put an element onto STACK
USED_OPERATIONS None;--
PROPAGATED_EXCEPTIONS
X_STACK_UNDEFINED;--
PSEUDO_CODE-
if [the STACK is not FULL}then
[put STACK in BUSY state]
[PUT Element in STACK]
[put STACK in IDLE state]
else
[put STACK in UNDFINED state]
end if;
CODE -- -- OPCS_body
begin
if STACK.TOP<STACK.SIZE_STACHKhen
STATUS:=busy; --class code in BUSY state;
STACK.TOP:=STACK.TOP+1;
STACK_DATA(STACK.TOP):=Element
STATUS:=idle;--class code in IDLE state
else
STATUS:=undefined; -class code in UNDEFINED state
raise X_FULL; --impossible case
end if;
END --of opcs POP

END_OBJECT STACK;

Figure 13 - ODS for STACKSs (Internals continued)

Copyright[d 1995-96 by HOOD Users Group

page 14

(page -15
HOOD USER MANUAL 1.0 HUM-1.0

1.1.6 FROM ARCHITECTURE TO TARGET IMPLEMENTATION

HOOD defines code generation rules allowing the definition of target units and modules by ex-
traction of code fields from the ODS:

e HOOD entities declaration such as OBJECTS, PROVIDED REQUIRED INTERFACE
(TYPES, OPERATIONS and EXCEPTIONS) are “target language independent” and can be
used to build a target unit architecture using visibility and encapsulation mechanisms as
available in the target language/system.

* The associated body fields are “target language dependent” and are directly included in the
right place within the target skeleton architecture.

- mapping HOOD objects to target uniSncapsulation mechanisms provided by the lan-
guage and target environment are used. For e.g. a Ada package, or a C or C++ module(de-
fined by two files with extension.h and.c) is associated to each HOOD object.

- implementation of object relationshigBlCLUDE relationships will be implemented by
encapsulation mechanisms, visibility mechanisms such as the use of Ada “with” clauses,
and possibly direct file inclusion at source code level. USE relationships will be imple-
mented trough target language mechanisms controlling intra and inter unit visibility, and
possibly by using code inclusion. (as e.g. in C or C++).

HOOD has standard code generation rules for the Ada language, since this latter comprises a
tasking model, thus making the generated code as an executable model on Ada targets, but also
a specification model for alternative implementations on other targets. Specific rules for target
systems other than Ada are described in Section 2.12.

OBJECTS Ada Units
OBJECTS passive package
OBJECTS active package
OBJECTS active (terminal) package which includes one or more task unit
Operation (non constraint) procedure or function
Operation (constraint) task entry
Exception exception
CLASS OBJECTADT (package)meneric package
CLASS OBJECT INSTANCES package instantiation
RELATIONSHIPS
USE with clauses at the lower level of visibility
INCLUDE nested or withed packages

Figure 14 - Mapping between HOOD and Ada entities

1.1.6.1 General Implementation Rules

The code generation rules differ for parent or for terminal objects:
» for parent objectsthe associated code is generally a specification unit mapping the provided

interface of the object. These specifications are implemented esiagesAda clause’
onto specification units associated to child terminal objects as illustrated in Figure 16 -.

» for child objectsby default are generated as “flat” Ada packages not included in parent pack-
ages. As a result parent packagegti” those associated to their children as illustrated in

3-except fortype renaming which is not supported in Ada Parent types may be implemersigtygsesandattribute access
functions to terminal child types. But a standard solution is to make parent unit have visibility on terminal child types through
with clauses. See also recommendations of HADA]

Copyright[d 1995-96 by HOOD Users Group page 15

(page -16
HOOD USER MANUAL 1.0 by HUM Working Group

Figure 15 - and Figure 16 -.

4 PARENT N\
/ CHILD1 Y\
lX

X R

N

CHILD2

J
N y

Figure 15 - Code generation principle for Parent object

with CHILD1,; --visibility on CHILD1 generated as a library unit
with CHILDZ; --visibility on CHILD2 generated as a library unit
packagePARENTIs
-- specification unit associated to object PARENT
procedure X renamesCHILD1.X;
procedure Y renamesCHILD2.Y;
end Parent;

Figure 16 - Code generation principle for Parent object (standard generation)

An alternative solution is to nest the child packages into the body of the parent padkege
specifications are then implemented by extra code mapping child ones, what might become rather
inefficient as illustrated in Figure 17 -.

package bodyPARENTIs -body associated to object PARENT

packageCHILD1 is --specification unit associated to object CHILD1
procedure X;

end CHILD1

packageCHILD?2 is --specification unit associated to object CHILD2
procedureY;

end CHILDZ2;

procedure X is

begin
CHILD1.X; -- call to CHILD operation

end X;

end PARENT;

Figure 17 - Code generation principle for Parent object (Nesting Child packages in parent Body))

This solution has however to be used for children associated to generic packages in order to give
visibility to the formal parameters (parameters of generic Ada units).

Copyright[d 1995-96 by HOOD Users Group page 16

(page -17
HOOD USER MANUAL 1.0 HUM-1.0

1.1.6.2 Implementation of Constrained Operations

When an operation execution is constrained, its activation is related to the object state and/or to
a given communication protocol to be enforced between the current object and the client. The
implementation principle, illustrated in Figure 18 -, is to introduce additional code upon the body
of an OPCS, which will handle these constraints as the body of the associated operation will ex-
ecute.

execy;
CLIENT Process tion reqy e,

OBCS

by

OPCS_BODY part

Figure 18 - HOOD 3 Code structure for constraint operations

The idea is that most tie code associated to the constraints could be automatically gener-
ated and can be defined once for also that the designer and coder has only to do with the core
OPCS body.

Moreover, this separation allows to do feasibility analysis, prototyping of real-time behaviors
completely in parallel with the development of the functional code of a system (the pure opcs
bodies)

The implementation schema is that the OBCS is implemented as a (or more) target unit (in Ada
it is a package or task generally named OBCS) which handles execution requests and operation
execution via calls to an associated procedure named by convention OPCS_<Operation_Name>.

Figure 19 - below illustrates these principles for an active object O with four constrained opera-
tions S, X,Y and W.

By convention, there is one such OBCS per object, but in case of resource shortage, its is always
possible to group several OBCS into one. HOOD standard generatidi|raefne the OBCS

as an Ada package, possibly reduced to one task unit, and the OPCS header code as a rename of
an OBCS entry hiding the OBCS to clients, whereas the OPCS body code is defined in a proce-
dure called OPCS_OpName. The standard scheme may be quite resource consuming especially
when guards are used to handle state constraints; accordingly a schema based on FSM (Finite
State Machine) has been defined and detailefigpendix A3.2.1

Copyright[d 1995-96 by HOOD Users Group page 17

page -18

HOOD USER MANUAL 1.0 by HUM Working Group
A @)
= S
ASER Z
LSER Z X
HSER Y
—— W /
\
packageOis
task OBCSis
entry S; -- state constrained operation
entry X; -- ASER constrained operation
entry Y; -- LSER constrained operation
entry W; -- HSER constrained operation
end OBCS

procedure SrenamesOBCS.S

procedure X renamesOBCS.X

procedure Y renamesOBCS.Y:

procedure W renamesOBCS.W
end O;

package bodyOis
procedure OPCS_Ss separate;
procedure OPCS_Xis separate;
procedure OPCS_Yis separate;
procedure OPCS_Wis separate;

task body OBCSis
begin
loop
select

acceptS;--State constraint
OPCS_S--return with operation executed if State was OK
-- state can also be handled as guards applied to the entry
or
acceptX;-- State constraint and ASER constraint
--return without execution if State is not OK
-- state can also be handled as guards applied to the entry
OPCS_X --ASER is roughly implemented in Ada
or
acceptY do; --LSER constraint
-- save parameters
endY; -- release client process
OPCS_Y
or
acceptW do --State constraint and HSER constraint
--return without execution if State is not OK
-- state can also be handled as guards applied to the entry
OPCS_ W
end W; --release client process
end select;
end loop;
end OBCS
end O;

Figure 19 - Code generation principles for terminal active object

Copyright[d 1995-96 by HOOD Users Group page 18

(page -19
HOOD USER MANUAL 1.0 HUM-1.0

1.2 THE HOOD DESIGN MODEL

The HOOD method gives a framework for the project design organisation. Principles of that or-
ganisation are developed in that section. They will be the basis for the HOOD design process pre-
sentation.

1.2.1 SYSTEM TO DESIGN

Before going into the HOOD design process, we first introduce the System To Design notion
(STD). This is the System (in the large sense) which has to be designed from a given specifica-
tion. It may be a part of the whole project.

A HOOD System To Desigr(STD) may be first seen as an object defined by its interface with

its environment. The environment is considered as an other part of the project, not designed for
the purpose of the current system, and for which the root is seen as an environment object from
the STD. The object is then decomposed into child objects, which can themselves be further de-
composed (until the specifications of child objects can be directly implemented in the target lan-
guage). A STD can thus be represented as a root object of a [d&sjh treHDT) where
branches represent parent objects decomposed into child objects, and where leaves are terminal
objects which are no more decomposed.

Figure 20 - hereafter represents a STD as a root of a hierarchy of objects within a whole project
including other hierarchies (other HDTS).

PROJECT

- Element of the system to design
I:l Element of the system used by the STD (through its root)

I:I Element of an other system of the Project, not used by the STD

Figure 20 - A System To Design within a whole project (Client/server use relationships are not shown)
Thus, a project is defined by a set of root objects, each of them being considered in turn as the

STD by a development tearall others appearing as potential environment objects for this par-
ticular system.

Copyright[d 1995-96 by HOOD Users Group page 19

(page -20
HOOD USER MANUAL 1.0 by HUM Working Group

1.2.2 SYSTEM CONFIGURATION

In order to manage HDTs through interface descriptions still consistent with their environment,
a HDT is defined within anbject spaceomprising the current system to design and associated
environment hierarchiesf objects.

Classe$define templates of objects. Classes are not objects and cannot be used. Thus, the class
hierarchies (Class Design Tree or CDT) cannot be defined within the object space. The CDT are
described in an other space: the claggct space

Following similar description principles, the Virtual Node hierarchies (VNT) are defined in a
separatedvirtual Node spaceallowing to define distributable entities, memory partitions
heavyweight processes as defined in [3].

Finally, VNs have to be allocated to physical nodes of the physical architecture. This architecture
is defined as thBhysical space

A whole project organisation may thus be defined through the HOOD design model (see Figure

21 -) as:

» A system to design hierarchy (HDT associated to the STD), which is an emphasised part of
the object space and which defines orthogonal client-server and composition relationships
between objects. Instantiation relationships to class objects may exist in this HDT as some
objects may be defined as replication of templates.

» A set of hierarchies of HDTs appearing as environment to the current STD, and which are
part of the object space and allow to describe (formally) in an homogeneous framework and
notation, the external used entities by the STD.

» Asetof class hierarchies or CDTSs, which are part of the class space and which define param-
eterized reusable structures and templates, organised and structured by client-server and in-
clude relationships as defined above. The class space includes all class which are instantiated
within the HDTSs of the object space.

» Asetof VN hierarchies or VNTSs, which are part of the Virtual Node space and which define
the potential granularity for partitioning onto a physical architecture of processes or ma-
chines.

» The Physical architecture on which terminal virtual nodes are allocated.

The scopeof a HOOD design model is controlled through the concefiystem Configuration
which defines all root of hierarchies describing the system (Object hierarchies, Class hierarchies
and Virtual Nodes hierarchies).

4Classes in HOOD4 are termed GENERICS, thus avoiding a clash with the OO terminology

Copyright[d 1995-96 by HOOD Users Group page 20

page -21

20D

257
z \\“wo\%

D
AV &Y &Y &Y &

)

7777

0, 222

| Architecture

ysica

hy

Virtual Node Hierarc

21 - The HOOD design model into a set

page 21

Copyright[d 1995-96 by HOOD Users Group

(page -22
HOOD USER MANUAL 1.0 by HUM Working Group

1.3 THE HOOD DESIGN PROCESS

The HOOD method proposes a process to guide the designer in his job. This process allows to
get a good design what ever the size and the complexity of the project. This approach orients to
the best choices. Two different processes are imbricated:

* a general process driving the development approach, called “Overall HOOD Design
Process”in the following This process describes the approach and activities to perform
along the architectural design phase in order to organise the system according to the devel-
opment constraints of the project (sub-contracting for example). It allows to define several
models of the system down to the system configuration. This approach is more detailed in
Section 1.3.2 below,

» the basic HOOD Design Processhich defines the activities to decompose a given object
into children, from a top object to all terminal objects, and to get thus a HOOD Design Tree
(HDT or CDT). This process is applicable for all objects and classes and is more detailed in
Section 1.3.1 below.

1.3.1 THE BASIC HOOD DESIGN PROCESS

The basic HOOD design process consists in building a HOOD Design Tree (HDT or CDT). Itis
globally top-down. The system to design is first defined as a high-level objectroatietject

and then is broken down into several lower level objects up to they can be directly implemented
by target language units and environment services.

As seen in Section 1.2, the system to design can be representétO@Tadesign treavhere
branches represent parent objects broken in children and leaves represent terminal objects, which
are no more decomposed.

The process of decomposing one object into child objects is callbdsieedesign stepThus,

it is necessary to perform a succession of basic design steps to build the whole HDT.

root OBJECT system
to
- design
[|
OBJECT A OBJECT B OBJECT C
Step 3
[] | | |
OBJECT G OBJECTH OBJECT | OBJECT J OBJECT K

Figure 22 - HOOD Design Tree as decomposed from the ROOT object
Copyright[d 1995-96 by HOOD Users Group page 22

(page -23
HOOD USER MANUAL 1.0 HUM-1.0

1.3.1.1 The Basic Design Step

Originally inspired from OOD techniquBERARDS85] [BOO86], [BERARDS85] The basic de-

sign step allows to decompose a well defined object (in term of provided and required services,
behaviour and functions) into children. It comprises a set of elementary activities allowing to
continuously transform an object from its definition up to its implementation. Some results of
those activities (textual and/or graphical pieces) will later be assembled to setup ODS and design
documents. The basic design step activities are structured according to life cycle phases.

The method discussed hereafter will not find a design solutiphut will help the designer to
build the best one (if any) according to project constraints.

The basic design step consists in a set of (initially) consecutive and different activities:

» Activity 1: Definition and Analysis of the Problem: This activity consists in well understand-
ing the requirements before starting the design,

» Activity 2: Elaboration of an Informal Solution Strategy: This activity consists in describing
how the system is working,

« Activity 3: Formalisation of the Strategy: This activity consists in organising (through a
HOOD diagram) the design of the solution previously described,

» Activity 4: Solution Refinement: This activity consists in refining the previous solution tak-
ing into account particular project constraints,

» Activity 5: Formalisation of the Solution: When the previous refinement is finished, this ac-
tivity consists in detailing the solution in terms of textual descriptions (ODS),

» Activity 6: Solution Analysis and Justification

Main ideas of that process are to quickly build a first solution (end of third activity) which is the
basis for a refinement(activity 4). The method will constrain this solution according to good soft-
ware engineering and design principles in order to achieve a better solution. The fourth activity
then consists in modifying this solution according to other constraints in order to get the final so-
lution.

Figure 23 - below gives a summary of activities of the basic design step and main outputs, where-
as a detailed discussion is given below.

Outputs of activities are produced during the basic design step as text sections, but may not all
be included in a relevant ADD. It is generally interesting to keep that information for the project
history of for design justification (Activity 6).
In order to ease readability of the design documentation, each activity output is numbered. A pos-
sible numbering convention prefixes the activity with & H
» identify activity outputs as:

- H1 for Problem Definition

- H2 for Informal Solution Strategy

- HS3 for Formalisation of the Strategy

» identify subsections activities as H1.1 H1.2, H3.1, H3.2 etc

5H for HOOD Design Step

Copyright[d 1995-96 by HOOD Users Group page 23

(page -24
HOOD USER MANUAL 1.0 by HUM Working Group

SRD or ODS
SRD Requirements:
* Functions (SADT, SA)
WHAT ? C PROBLEM L gfha:/iour ((:/I?A\L)) Petri)
ructures
DEFINITION Parent ODS (visible part)
A
Y Rewritten and completed
HOW ? / ELABORATION of an requirements
INFORMAL SOLUTION (designer point of view)
STRATEGY

ISR DESETNei Aﬂ\‘ Textual Description

of Operations of Operations
FORMALISATION
of the STRATEGY
Objects List
Operations List
First HOOD Diagram
CSOLUTION REFINEMENT | '

Actual Operationsg

< FORMALISATION ;7_ Final HOOD Diagram
of the SOLUTION —_
\ J Parent ODS (completed)
N Children ODSs (visible part

< SOLUTION ANALYSIS >

Figure 23 - The HOOD design activities and associated outputs

T

Activity 1: Problem Definition
Activity Inputs

A basic design step may start either after a specification phase (beginning of the design phase),
or after a previous design step (during the design phase).

When starting frona specification(SRD), the designer has to understand and classify require-
ments (functional, behavioural, structural and interfaces) and the current activity is essential.
When starting during the design, frarchild ODS, the designer has to understand information
described within the parent ODS visible part (Object description, provided and required interfac-
es, OBCS description). Requirements are already reorganized and are at a lower more detailed
level.

Copyright[d 1995-96 by HOOD Users Group page 24

(page -25
HOOD USER MANUAL 1.0 HUM-1.0

ctivity

“Understand the problem to solve before jumping on a solution”
“Design Oriented Analysis”

The goal of this phase is to integrate all facets of the problem, before devising a solution. Rec-
ommendations here are to make the designer state himself the problem, and to analyse and re-
structure the requirements with respect to his own designers perception.

« Statement of the Problem(SOP): The designer states the problem in one correct sentence
giving a clear and precise definition of the problem as well as the context of the system to
design.He must identify objectives of the current design (in terms of portability, reusability,
etc...).

* Analysis and Structuring of the Requirement Data The designer gathers, analyses and or-
ganises all the information relevant to his problefarifying all points which are not yet
clearWhen starting from high level requirements, his first task is to define the environment
of the system-to-design (provided and required interfaces). Then, he organizes the require-
ments intdfunctional, behavioural and non-functior@es (such as performances) and pro-
duces a synthesis. He perfordesign sensitive analysigpon them and possibly produces a
user manual outline of the system-to-design.

NB: It is here that the transition between requirement analysis (description of the WHAT), and
the design (description of the HOW) is made.

Activity Outputs(H1)

» Statement of the Problem(H1.1):
- Description of the problem and its context in a few sentences.
- List of main design objectives.
* Analysis and Structuring of the Requirement Data(H1.2):
- analysis and definition of interfaces
- HOOD context diagram-
- analysis of functional constraifits
- analysis of behavioural constraihts
- analysis of structural constraifits
- analysis of non functional constraifts
- user manual outline

Only the System to design environment and the statement of the problem may have to be included
in a relevant ADD.

6.Functional constraints are constraints not related to any implementation; they are just a result of the pure functiaal analysi
"pehavioural constraints are mostly analysed, expressed using state transition models
8data model constraints define all relationships between data identified at analysis level.

9these are all constraints related to the particular target and context of the project (performances, reliability, digtdiution,
tainability, etc.)

Copyright[d 1995-96 by HOOD Users Group page 25

(page -26
HOOD USER MANUAL 1.0 by HUM Working Group

Activity 2: Elaboration of an Informal Solution Strategy (ISS)

Activity Inputs

At this stage, all necessary elements are well organized (either in a note coming from the previous
phase, or in the child ODS coming from the previous design step) and the design activity may
really start.

Activity

“QOutline a solution, put it down as a text and work it out”

This phase has as goals the expressiarsofutionthat the designer should have started to imag-

ine (tophantasmabout) from the earlier phases. The designer shall identify the main abstractions
and actions and give a scenario of solution accordingly.

Such a strategy shall be expressed in natural language in order to explicittad@athe solu-

tion will work , without requiring any organisation (don’t speak about objects in a first issue). The
purpose is to explain what happens when the current object services are required in terms of data
and actions on those data.

Good exampleOn IT reception from the Start push button, the EMS inits bargraphs, creates and
starts a timer which triggers the monitoring each second.

Bad exampl&: The EMS is composed of a Sensor object which encapsulate all actions on the
physical sensors.

This activity will not allow to build the final design but a first issue of that design. The designer
has mainly to consider the quality of the design more than its efficiency (this will be the purpose
of the next activities). Design quality relies on ISS text (actions and data).

Activity Outputs(H2)

A clear and concise text expliciting the solution. This text will have to evolve as the design ma-
tures during the design step as well as to be consistent with the graphical description elaborated
during the third activity.

10The structure of the system is described; we still do not know how it works!

Copyright[d 1995-96 by HOOD Users Group page 26

(page -27
HOOD USER MANUAL 1.0 HUM-1.0

Activity 3: Formalisation of the strategy

Activity Inputs

Input of the current activity is an informal textual descriptioa gblution scenario

Activity

“Refine and work out your solution”

This phase has as goals the extraction of the major concepts of a solution strategy in order to
come smoothly to a formalised description of the previous solution through a HOOD diagram.
The idea is that a solution which can be expressed clearly in natural language is an almost mas-
tered solution.

A good set up of the previous activity leads into identification of objects through nouns and op-
erations provided by those objects though verbs. Thus, the current activity may consist in:

» identifying nouns (ex: «The user requires a chocolate from the vending machine»):
- nouns which provide services are generally good candidates for objects (ex: «vending ma-
chine» provides services),
- nouns which does not provide services define main dataflows of the design (ex: «choco-
late» does not provide service. It is a data coming from the vending machine to the user).

» identifying verbs: All verbs are operations. Those operations use and/or return data (Ex: «re-
quires» verb allow to define the require operation. It returns «chocolate» data).

» grouping operations and verbs This task, started from the two previous lists of objects and
operations gives a structured representation of the strategy and helps completing a graphical
description of the solution (ex: The «require» operation is provided by the «vending ma-
chine» object).In certain cases, it is difficult to join operations to objects and it could be in-
teresting to add objects (such as controller, monitor, scheduler) to encapsulate those
operations.

» drawing graphical representation of the designThis task consists into drawing, (within
the parent object), objects identified during this activity with their operations, using the
HOOD graphical formalismJselinks between child objects (and potentially uncles or en-
vironment objects) anithplemented_blnks between parent operations and children oper-
ations are identified. Dataflow (or exception flows) along the use links should also be

identified according to the understanding of the activities/functions allocated to the]&bjects
Activity Outputs(H3)

The produced graphical HOOD diagram must be consistent with the ISS text (H2).

UThis understanding can be gained if the ISS text was well written or is well understood.

Copyright[d 1995-96 by HOOD Users Group page 27

(page -28
HOOD USER MANUAL 1.0 by HUM Working Group

Activity 4. Refinement of the solution

Activity Inputs

Current solution of the design expressed with consistent textual description of the ISS (H2) and
graphical description (H3).

Activity

“Review and agree on your solution, before formalizing it!”

Output of the previous activity may not be considered as the final HOOD design but as a prelim-
inary version used to support discussion between designers. Indeed, designers have to introduce
specific project constraints, behavioural and dynamic ones (attributes relative to parallelism, syn-
chronism, periodic execution), or even build prototypes to check particular points and then to
modify the solution.

Thus, this activity has to be included between the formalisation of the first solution and the final-
ization of the last one. Advantage of the previous activities are that all designers work from a
same design (graphical and textual) which has a good quality level.

It is relevant to stress that the graphical description goes with the textual descriptions (and vice-
versa) and that the consistency between these two kind of representations shall always be en-
sured.

This activity also consists into review and author/reader cycles on produced HOOD diagram and
textual descriptions.

An important part of that activity consists in expressing reasons of design decisions (scenario and
organisation) which may be questionable or is not obvious. This allows to justify the design
choices and to achieve reasons of those choices.

Activity Outputs

Outputs of this activity are a consistent:

» textual description of the solution scenario,

» graphical description of the solution organisation,
» justification of design decisions.

Copyright[d 1995-96 by HOOD Users Group page 28

(page -29
HOOD USER MANUAL 1.0 HUM-1.0

Activity 5: Formalisation of the solution

Activity Inputs

Once the formalisation of the strategy has been completed, the solution is well defined through
the textual ISS, the objects, provided and required interfaces identified through the HOOD dia-
gram, the designer can formally capture his solution.

Activity
“Detail the solution through ODS”

The goal of this phase is to achieve a description of the solution with the detailed characteristics
of the objects being formalised in the ODS fields. The capture of this formal description consists
in filling each field of theDbject Description Skeleton(see Section 1.1.4 above). In order to
have knowledge of the environment of the ODS to be filled, it is important to fill ODS from bot-
tom (objects which does not use other objects) to top (objects which are not used).

The designer should:

» describe the object in terms of «what the object does»,

» define constraints operations and describe the OBCS (if any) explaining the synchronisation
and relationships between constrained operations,

» describe the provided operations (and Operation_set) «what the operation does and error cas-
es»,

» refine the subset of operations really required (required interfaces),

» define parameters of provided operations and deduce provided types and exceptions,
» define and describe provided types and deduce potential provided constants,

» describe provided constants and exceptions.

Informal comments may be added to describe the semantic behaviour, to provide useful informa-
tion for further implementation or to justify possibly implementation decisions.

Activity Outputs(H4)

Note: The way the ODS are completed will depend of the functionalities of the toolset used. In
the worst case, one has only a textual ODS editor and the designer has to complete the fields of
an ODS skeleton text.

However a HOOD toolset provides facilities that help and automate the filling of the ODS fields
that were already created as the graphical description was elaborated. Some toolsets even gener-
ate automatically some fields (REQUIRED INTERFACE) as they analyse relevant fields of the
ODS.

At the end of this phase, the ODS of the parent object is fully and formally described (ODS in-
ternals part is completed) and child ODSs are preliminary filled (ODS visible part is completed).

Copyright[d 1995-96 by HOOD Users Group page 29

(page -30
HOOD USER MANUAL 1.0 by HUM Working Group

Activity 6: Analysis of the Solution

Activity Inputs

Any outputs of the previous phases.

Activity
“Critically Review the solution”

This phase is the key for quality insurance. After each decomposition, one have to verify the cor-
rectness of the solution. Different activities are foreseen:

» Design Justification,

* Re-structure the solution for a best design quality: minimize top level objects (not used),
maximize bottom objects (highly used), maximize consistency and minimize coupling, avoid
cycles, etc...

» Consistency and Completeness Validation,

» Identification of Re-usable Objects,

» Identification of Potentially Generic Objects,

» Post-Analysis Design Update possible updates in design step M and M-1

» Traceability entries: this is the right time to define which requirement the current design is
fulfilling. The designer can thus define entries in a traceability matrix or directly within the
ODS,

* Risk analysis in order to identify critical issues in the solution in terms of technical and man-
agement risks. For technical risks concerning failure management, detection means and re-
covery actions have to be studied and the solution have eventually to be updated.

Activity Outputs

Associated texts may be put in the DESCRIPTION ODS fields as informal text.
Activity 7: Continue the decomposition

For each identified child object, analyse if it has to be decomposed and then restart the activity
1. In the other cases, see Section 1.3.1.3. below.

Copyright[d 1995-96 by HOOD Users Group page 30

(page -31
HOOD USER MANUAL 1.0 HUM-1.0

1.3.1.2 The Basic design step applied to a root object

Unlike the other objects, the root object (STD) must be defined prior to be decomposed. Thus,
the «Problem Definition» activity needs to define the interfaces (provided and required) of the

root object. The designer puts the emphasis on the environment of the System To Design (STD);
he has to produce a diagram showing the STD within its environment.

1.3.1.3 The Basic design step applied to terminal object

The basic design step applied to the terminal objects is shorter and consists in detailing the inter-
nals with declarations, internal operations and pseudo-code. Each basic design step activity is re-
stricted as follows:

Activity 1: Problem Definition
The designer should gather all the information related to the terminal object.
Activity 2: Elaboration of an Informal Strategy

The purpose of this activity is to provide a short description for the internals OBCS and OPCS(s)
of the object, derived from their description in the ODS visible part. Those description are im-
plementation oriented. The designer has also to give internal declaration (not defined in the ODS
visible part).

The goal defined in the general scheme of creating a solution strategy is not applicable here, as
the terminal object is not decomposed any more.

Activity 3: Formalisation of the strategy

This activity consists in giving, for each OPCS (corresponding to provided operations) and
OBCS, a detailed description of implementation with a pseudo-code. This description highlights
control structures.

Activity 4. Refinement of the Solution

From the previous OPCS description, the designer has to identify new internal types, constants,
exceptions, and new internal operations in order to complete the ODS internals description.

Activity 5: Formalisation of the Solution

This activity consists in finalize description and definition of internal declaration (types, con-
stants, exceptions and data), description and pseudo-code of OBCS and OPCSs.

Activity 6: Analysis of the Solution

Applied to the internals of the ODS, this activity consists in a author/reader cycle on Control
Structures algorithms. Analysis will also highlights introduction of internals declarations (types,
constants, exceptions data) and internal operations.

Copyright[d 1995-96 by HOOD Users Group page 31

(page -32
HOOD USER MANUAL 1.0 by HUM Working Group

1.3.1.4 The Basic design step applied to the other types of object

The way the HOOD basic design step is applied to other types of objects may slightly vary:

* Op_control: An Op_control is a terminal object which is used to map parent operation to mul-
tiple child operations. Activity 2 to 4 are relevant for such an object. In Activity 2 “Elabora-
tion of an informal strategy”, a description of the object is provided. In Activity 4
“formalisation of the solution” the relevant fields of the ODS are filled.

* Environment object: If the Environment object does not already exist (reuse objects), the pro-
vided interface of the ODS should be created in Activity 4.

» Class: Each Class should be designed separately as a root object of a new system to design
outside the design in which its instances are used. There is no basic design step to be per-
formed for an instance of a Class.

» Virtual node: The basic design step performed for the Virtual Node follows the general
schemes of a non-terminal object.

As an illustration of the basic design step activities a simple example is detailed in Section 1.5
below.

1.3.2 THE OVERALL HOOD DESIGN PROCESS

The previous basic HOOD design process allows to build a unique HDT. In order to take into
account project management constraints such as subcontracting, parallel development, reuse,
system design, etc... The designer has to include new principles allowing to build the whole sys-
tem configuration, with the different spaces. The overall HOOD design process thus consists in
(see also Figure 24 - below):

» defining the system-to-design as an “interface” with respect to its environment
[0 define a root “STD” object and environment objects

If one plans taeuseobjects or classes from a previous project, they will have to be included
in the system configuration
[0 define the system configuration

» performing the first basic design step (decompose the root STD into child objects)
0 update the system configuration

If child objects are similar or reusable,
If child objects have to be sub-contracted, they will have to be included in the system config-
uration
[0 update the system configuration
» iterating basic design steps up to a level of detail enough for direct implementation and cod-
ing.
The basic design step is applied in the same way whatever the level of design. It provides activ-
ities to be performed by the designer, thus allowing for large systems improvement of the man-

agement procedures by allowing the distribution of design and development as well as the
definition of milestones providing unique visibility over work progress.

Copyright[d 1995-96 by HOOD Users Group page 32

(page -33
HOOD USER MANUAL 1.0 HUM-1.0

CDT

Basic
O Design
Steps
SDT
HDT Basic
Design
Steps

Basic

Design / cDT

Steps - v~
Basic VNT, asic
Design O Design
Steps Steps

Figure 24 - Application of Basic Design Steps to the system configuration

The general principles of the HOOD design approach are top-down in order to reduce and master
complexity. Moreover HOOD offers to a designaliant-server modebf representation at dif-

ferent levels of abstraction and refinement, thrguayient-child compositigrbut always keep-

ing consistency with initial representations of the design.

Such properties are exploited in the framework of complex system developments, by producing
successive refinements of an initial model down to the operational one with good traceability and
high reuse potential. The development approach is thus based on the following principles:

» Elaboration of an initial model or logical solutiofthis model is an abstraction of a solution
structured into HOOD obiject hierarchies, where target implementation related elements are
ignored. Such a solution should be fully independent from target and non functional charac-
teristics (languages, targets, efficiency, distribution,...),

« Refinement of initial model$1OOD refinement may simply add more details to existing
characteristics, or may also add new objects and/or hierarchies of objects in the models, thus
allowing refinement trading off with non functional constraints such as existing of-the-shelf
software, target constraints, as welbastom-up reusingdevelopment approaches.

Although such an approach is the technical way to go, designers are generally reluctant to apply
it. They often fear having to break the initial model when they adapt and refine it according to
their specific target or project constraints. We believe however that it is always easier to develop
a simplified system (and possibly redevelop it) than to start a system integrating all constraints
from scratch. Whatever the case, developing an initial HOOD model is efficient in that:

» it provides at hand a prototype of a solution that highlights the logical properties of the sys-
tem. It is then possible to reason about, instrument, prototype about the con3tnais tde-
sign decisions can be justified, and the testing process can be made more.efficient

» it provides a logical model, possibly definingganeric architecture that can be reused on
similar applications

Copyright[d 1995-96 by HOOD Users Group page 33

(page -34
HOOD USER MANUAL 1.0 by HUM Working Group

The HOOD development approach, producing first logical models reflecting pertinent abstrac-
tions of a solution domain, in target independent way, is, at our knowledge, the only one leading
to solutions that take into account the following set of constraints:

* independence with respect to target hardware configurasieaguirement which is more an
more expressed on large projects.

» portability for several targetsalso a growing demand on large projects where identical soft-
ware pieces are running on different targets and sites.

» reusability on frozen parts of a given application donfeguise of high level architecture and
or parts of the designs),

* maintainability,which is most improved when the design is easily understandable.

This process allows to define the system configuration and associated elements. Associated ac-
tivities may be further grouped into phases, according to the technical area of concern:

* phase 1: Logical architecture
By logical one should understand “non physical” that means that a HOOD design shall first
be produced, ignoring all physical and implementation details and constraints. The principle
of the approach is to produce first a solution as if non constraingpdsing we have an ide-
al with unlimited power reliable targeand then rework it to add complexity for dealing with
specific non functional constraints such as performance, reliability, distribution....

* phase 2: Infrastructure
By Infrastructure one should understand the support software associated to the logical archi-
tecture e.g communication services, operating system, archiving system,...

» phase 3: Distribution
One should understand distributing the software associated to previous architectures and
HOOD objects over a physical network of “logical processors”or VNs.

* phase 4: Physical architecture
One should understand here the allocation of the logical processors identified in phase 3 onto
the physical architecture consisting of physical processors inter-connected through commu-
nication channels.

The four activities of that process are shown in Figure 25 - below:

LOGICAL
HOW ?
ARCHITECTURE INFRASTRUCTURE

J DISTRIBUTION

| Functional requirements | Non Functional Requirements
Physical constraints

| pistrRIBUTED
ARCHITECTURE
Implementation constraints

¢ Communication means

PHYSICAL WHERE ?
ARCHITECTURE ’

Figure 25 - Full Design Activities Overview

Data sharing
Performance constraints

o

Copyright[d 1995-96 by HOOD Users Group page 34

7,

(page -35
HOOD USER MANUAL 1.0 HUM-1.0

The phase 2 may become insignificant if an existing (OS for example) or reused infrastructure
(real time monitor) is used.

These «Full Design Activities» are summarized in Figure 26 - and more detailed in the following
sections.

Functional constraints))
Non Functional constraints

¥ 7
\ /
\ /
\ /
\ /
\ /
\ /
\/
\/

v

D Logical Archltecture D Infrastructure
% CDTS,
Basic
Design
DT teps
Si Basic
HDTSj Design
Steps
Basic F
Desig I CDTs;
Steps / — ’
asic
VN Design
Steps
[] Distributjon I /
PN1 PNZ2
[] Physical Architecture PN3

Figure 26 - Full Design Activities applied on the HOOD Architecture

Copyright[d 1995-96 by HOOD Users Group page 35

(page -36
HOOD USER MANUAL 1.0 by HUM Working Group

1.3.3 PHASE 1: LOGICAL ARCHITECTURE

This phase is done by the application of HOOD design steps, where the decomposition is pro-
duced as a grouping of HOOD objects directly supporting the system to design functionalities,
without taking into account the “non-functional constraints”. The resulting design defines the
main HOOD Design Tree.

These steps are specification (application) driven. Implementation constraints should not be con-
sidered during this phase. At the end of each design steps, similar objects, reusable objects, serv-
ers or sub-systems are identified.

Similar objects or reusable objects may be implemented as Classes. Each class is then decom-
posed by the application of HOOD design steps. The different Class Design Trees are built.

Servers or sub-systems may be implemented as other root objects (environment objects for the
main HOOD design tree). These root objects are decomposed into other HDTSs.

The corresponding System Configuration is built step by step with the different HDTs and CDTs
built during that phase: they constitute fhaplicative Environment of the system configura-
tion.

1.3.4 PHASE 2: INFRASTRUCTURE ARCHITECTURE

This phase may begin shortly after the logical architecture from the needs identified during that
phase or from some non functional requirements such as implementation constraints or perfor-
mances requirements. It consists of the following activities:

» Creation of the VN tree (not necessary at the beginning). The root VNs may be identified
from the analysis of:
- some project structure constraints such as partitioning into assemblies or sub-systems,
- some implementation constraints (channel throughout) onto predefined physical nodes.

» Identification of communication protocols needs between the different VNs. These protocols
are implemented in specific root objects (HDT) and considered as environment objects for
the applicative environment.

» Depending on the project, these root objects are part of the system to design. In that case they
are decomposed by the application of HOOD design steps which define new HOOD Design
Trees. This decomposition is implementation driven.

* Identification during each design steps of:
- similar objects or reusable objects; these objects may be implemented into class objects,
- servers which define new HDTSs.

HDTs and CDTs defined during that phase constituterpementation Environment and the
System Configuration is completed accordingly.

Copyright[d 1995-96 by HOOD Users Group page 36

(page -37
HOOD USER MANUAL 1.0 HUM-1.0

1.3.5 PHASE 3: DISTRIBUTION

This phase deals with the distribution aspects. The logical architecture has to be mapped to the
infrastructure architecture. This mapping is mainly driven by performance issues such as com-
munication overload, time constraints. It consists in the following activities:

» afurther refinement of the VNTSs identified in phase 2,
» an allocation of objects from HDTSs to terminal VNs of the VNT.

During that phase, the analysis of performance constraints may lead to reallocation of objects
onto different VNs or to the creation of new VNs. The analysis of data sharing conflicts may lead
to further decompositions of the objects or to allocation of objects in a same VN.
Implementation or logical USE links may also be identified. Interfaces between the different VNs
have to be minimized.

During that phase, some modification on the logical architecture can be foreseen mainly to solve
data sharing conflicts or to add new objects in the implementation environment.

1.3.6 PHASE 4: PHYSICAL ARCHITECTURE

This phase consists in the allocation of the VNs onto the physical architecture. It consists in the
following activities:

» identification of physical nodes (PNs),

* identification of communication channels and of the associated communication protocols,
» allocation of VNs to PNs,

» verification of compatibility between channels and use relation between VNs,

» performance evaluation e.g. estimation of communication overload, response time and
throughputs, CPU overload... Specific performance evaluation support such as queuing net-
works, temporised Petri-nets, worst case execution time estimation techniques...can be used
during that phase.

Most of the time, the physical architecture is imposed. In that case, this phase consists only in the
allocation of VNs to PNs and in the verification of performances constraints.

Copyright[d 1995-96 by HOOD Users Group page 37

(page -38
HOOD USER MANUAL 1.0 by HUM Working Group

1.4 INTEGRATING HOOD IN THE LIFE_CYCLE
ACTIVITIES

141 OVERVIEW

From requirement to design, the HOOD basic design step identifies a sub step which is the anal-
ysis and structuring of the requirements. This phase allows to trace the requirements implement-
ed in the design and leads to the concept of “Z” life cycle. In this life cycle, the design starts with
a high level specification, then each terminal object is specified before a further breakdown is ap-
plied on the object and so on until the detailed design may be performed on the object.

From design to code, the HOOD textual formalism allows possibly automatic translation into
Ada C++ or C.

During the design process HOOD can be easily integrated with a reuse environment.

For large projects, HOOD facilitates the share of work and sub contracting by a clear separation
of the interfaces of the objects from their internal.

1.4.2 SPECIFICATION TO DESIGN

HOOD is not aimed to support requirements analysis. It has been recognized that methods as
IDEF, structured analysis (SA), OMT,00A... are more suitable to establish the functional break-
down of a system with the customer and user point of view. Therefore, there is the need to estab-
lish a mapping between the functional breakdown and the HOOD design objects tree which
represents the designer point of view. Unfortunately there is no trivial relationship between both
representations.

Although there is no automatic way to find HOOD objects from the functional requirements
analysis, some heuristics have been established for the case of the IDEF method:

» the set of IDEF data inputs and outputs may be mapped into the HOOD objects and data
flows,

» the set of the IDEF actions may be mapped into the set of operations of the HOOD design.

Other methods such as Petri Nets, State Transition Diagrams are used for Real Time system spec-
ification (SA-RT) and may provide essential inputs for describing the behaviour of HOOD active
objects (through the OBCS).

For large projects, such as space software projects, the joint use of functional analysis and archi-
tectural design approaches is very fruitful.

For such systems it is useful to establish an overall architectural design which needs to be refined
with the help of a functional analysis. This is the concept of “Z” strategy which mixes the func-
tional and the architectural analysis (see Figure 27 -). Each terminal object of the level 1, which
may correspond to a large subsystem will be decomposed according to a functional analysis with
a method as IDEF. Then a further architectural design step is applied on each object. This process
is done until the level of complexity of the identified objects allows to start the detailed design.
One can see that this strategy is fully compliant with the HOOD basic design step.

Copyright[d 1995-96 by HOOD Users Group page 38

(page -39
HOOD USER MANUAL 1.0 HUM-1.0

SWRD
i System Level
Requirement Architectural
Analysis Design
SRD ADD
' Sub-System Level
I : | N
Requirement Architectural
Analysis Design
SRD L ADD
: Assembly Level
—
[H
I
A unique and Consistent
I HOOD Design
I I
Requirement S| Architectural To detailed design

Analysis Design

SRD L ADD

Product Level

SRD Software Requirement Document
ADD Architectural Design Document

Figure 27 - The “Z" strategy
This strategy leads to establish a set of requirement documents (SRDs) of a manageable size in-
cluding some independent specification models whereas the HOOD design models included in
the different ADDs are completely consistent (Figure 28 -) and parts of the system to design mod-
el. The traceability of requirements through the design is much easier as it is made level by level.

Requirements Design

% ==

L3

",' = 7 7
= —

=

—> Specification Process
— > Design Process
“Include” Relation

Figure 28 - The different models in the “Z” life cycle

Copyright[d 1995-96 by HOOD Users Group page 39

(page -40
HOOD USER MANUAL 1.0 by HUM Working Group

1.4.3 DESIGN TO CODE

HOOD provides translation rules which allow to make more easier the design to code mapping,
specially when the coding language is Ada. HOOD does not remove the programming phase but
helps the programmer by giving him the possibility to concentrate on local algorithmic and cod-
ing problems within the scope of well-defined Ada units whose the interfaces and the body skel-
eton are directly derived from the design objects.

The apparent equivalence of the concepts in the HOOD method and Ada constructs does not im-
ply passive object and active object are just another word for package and task. Indeed, objects
are implemented by an Ada package, but in a very well-defined form with precise properties.
When the coding is not done in Ada, specific translation rules must be defined for the target lan-
guage but the overall approach remains the same.

A set of PRAGMASs is defined to give the designer a better control of the translation scheme. This
allows a development process in which the detailed design is a stepwise refinement of the archi-
tectural design then the code editing is the refinement of the detailed design. So the designer and
the coder see only the HOOD structure and the ODSs, the final translation into Ada being done
just at the end of the code phase or for design prototyping purposes.

With a such approach, code and design are always consistent

144 TESTS AND VALIDATION

1.4.4.1 Unit and integration tests

The unit and integration tests of parts of code developed using HOOD are done respectively
against the detailed design and the architectural design. The HOOD object concept has obvious
benefits for testing:

» from the definition of object interfaces (provided/required) it is possible to set-up a test en-
vironment

» information hiding inherent to objects, insures to have limited interaction with the test envi-
ronment

A typical HOOD obiject test environment (Figure 29 -) will be composed of:
* atest monitor in charge to trigger accessible operations defined in the provided interface
» atest simulator in charge to simulate the operations defined in the required interface

Objects to be Tested ‘1'

Provided interfaces J

¥
Required interfaces

Simulator

Test Simulator i

Figure 29 - Test environment generation

Copyright[d 1995-96 by HOOD Users Group page 40

(page -41
HOOD USER MANUAL 1.0 HUM-1.0

The relevant code for the test monitor and test simulator may be automatically generated from
the analysis of the design.
Thus, HOOD may support several testing strategies:

* module testing is defined as the activity of validating the behaviour of an operation with re-
spect to its interface specification.

* a bottom-up test strategy would start with objects that are only used

* atop-down test strategy would require main control flows to be completed, and stubs provid-
ed for other operations

* asub-tree approach would allow parts of the HOOD hierarchy to be developed as sub-trees,
providing successively more functionality across the design.

1.4.4.2 Verification and Validation

One of the major problem encountered during the development of RT&E (Real Time and Em-
bedded) systems is the V&V (Verification and Validation) activity during all the life cycle phases
in order to detect errors very early during the development. Early verification allows to go further
in the development steps from a consolidated and validated basis. A key feature of V&V activity
is the verification of the dynamic behaviour of the system under design.

Techniques in software verification can be classified into two categories:

» Verification by simulation is running a system or a subset of the system with a selected set
of input data and evaluates its response. Testing and/or prototyping are verification by sim-
ulation.

» Verification by proofs is making some mathematical proofs on intrinsic properties of a sys-
tem and/or on the behaviour invariants of a system when going toward its final implementa-
tion. These proofs can be done only if one uses a formal language, which allows logic calculi.

These two kinds of verification are complementary ones. Simulation is interesting to reveal un-
expected behaviour of a system, clean up bugs and get a better understanding of the system. Com-
pletely proven developments are quite too costly to put into practice, but must be planned for
critical RT&E systems.

The HOOD design process decomposes the design activity into basic design steps which facili-
tates the implementation of the V&V activities. After each step, a validation of the design is pos-
sible through informal techniques such as inspection, walk-through and reviews or verification
techniques such as design prototyping and design simulation.

Design validation and verification procedures in HOOD should be based on the separation (in
time) between the external description of an object and the availability of its implementation.
Two complementary activities are performed:

» step verification, ensuring consistency of one object decomposition

» level verification and validation, ensuring consistency of a complete level decomposition
(i.e. several objects together).

Step verification mainly consist of:

» checking the object interfaces,

» checking parent-child signatures,

« tracing the mapping of requirements behavioural models into Object Control Structure de-
scriptions.

Copyright[d 1995-96 by HOOD Users Group page 41

(page -42
HOOD USER MANUAL 1.0 by HUM Working Group

Level validation is performed in order to check the consistency over several design steps togeth-
er. The definition of a design prototyping by implementing each terminal object allows to set-up
a test and pre-integration environment for each object with respect to its brothers.

1.4.5 HOOD AND REUSE

Reusability is today a topic of primary practical importance. In this area it appears that, reusabil-
ity of design is the most realistic approach since reuse of code is often to much target computers
and data management systems dependant

The use of HOOD greatly facilitates the software reusing process at the design stage. Studies are
being conducted in the ESPRIT and EUREKA research programs to enhance the strategy of de-
sign in that direction and to develop relevant environments.

Reuse consists of two major activities:

» design a current system to be reusable in other projects
* reuse parts of previous projects during the current system design

HOOD is a globally top-down process while reuse is globally bottom-up. So the reuse process is
included in the basic design step by the definition of different scenarios for reuse of design. After
the formalization of the solution, one can identify the possible areas in which reusable designs
i.e. objects could be reused. Then, the designer researches in a component library the objects
which could solve his problem. This search gives a short list of candidates and a “design to tar-
get” tries to include those candidates in the current design. This process is similar to the design
process for hardware components including commercial chips (IC, VLSI...).

The encapsulation principles in HOOD fit quite well on this scenario in the sense that the user
does not need to know the internals of an object and is only concerned with its provided interface
which describes how to use the object and its required interface which describes the context and
the environment requested by the object to provide the services.

More details on these topics are given in Section 2.10 of this document.

1.4.6 HOOD AND SUBCONTRACTING

There is a clear need to properly manage SW development in the context of large systems involv-
ing many contractors and subcontractors. In this context, HOOD may be used according either
to the “prime” point of view or to the “subcontractor” point of view.

The “prime” HOOD activities are mainly concerned with:

» responsibility of high-level design,
* interface validation,
* identification of HOOD sub-trees, subject to subcontracting,

* prototyping activities, by simulating subcontracted software parts mainly to validate the dy-
namical behaviour of the system,

» integration by replacing simulated code by delivered final code.
The “Subcontractor” HOOD Activities Are Mainly Concerned With:
» responsibility of a complete hood sub-tree,

» internal design activity performed according to the interfaces defined, validated and agreed
with “prime”,

Copyright[d 1995-96 by HOOD Users Group page 42

(page -43
HOOD USER MANUAL 1.0 HUM-1.0

» possible pre-integration activity.

1.4.7 PHASED INCREMENTAL LIFE CYCLE

On large projects, requirements definition isca@ monotone function of the development pro-
cess:requirements become more and more precise and mastered as the project goes forward.
Large projects developments have been compared to “cathedral building” and such top-down de-
velopment are now more and more questioned.

The risk of such projects can however be limited and at the same time conforming their develop-
ment to an organisational (management model) model of the V cycle, by splitting the project into

phase¥’, each of which is conducted as a subproject with deliverables and possibly an own V
life-cycle. In order to achieved some efficiency inputs of a phase may be taken from outputs of a
previous one.

The way the initial partitioning is done is of course of prime importance for the success of the
project, but hood recommends to follow a phased approach in order to limit this risk:

» start first by defining a logical partitioning that highlights relevant abstractions of the solu-
tion (phase 1),

» refine down the logical model and start to build the infrastructure model and the distribution
model to a verifiable, executable model on a ideal target (phase 2),

» adapt, refine further and tune on the final target by refinement of both model taking into ac-
count the physical model (phase 3).

m— —
Bl L]

—
=]

] []

PHASE1
PHASE2 > PHASE3
- L
Phase 1 Phase2 Final .
delivery v deliveryv deliverﬁ Tﬁe

Figure 30 - Phased Incremental Development Approach For Complex Systems

12'Experience has shown that an “appropriate” duration for such phases should be less than one year.

Copyright[d 1995-96 by HOOD Users Group page 43

(page -44
HOOD USER MANUAL 1.0 by HUM Working Group

Copyright[d 1995-96 by HOOD Users Group page 44

(page -45
HOOD USER MANUAL 1.0 HUM-1.0

1.5 A HOOD EXAMPLE

In this section we shall illustrate a HOOD design, not a full fledged one, but trying merely to il-
lustrate a full design step.

151 PRESENTATION OF THE EMS SYSTEM

The EMS is a software to monitor car engine parameters , to display them on a bargraph and
trigger an alarm if associated values are out of range. A detailed requirement of the EMS is given
in APPENDIX A1l -of this document.

1.5.2 EMS SOLUTION

A solution of the EMS software is defined by applying a basic design step.

1521 Statement of the Problem (H1.1)

Design and develop a software to controls sensors and display associated values of a car engine.

1522 Analysis and Structuring of Requirement Data (H11.2)

» Analysis and definition of the EMS Environment
The EMS software is running on the CPU, using an Input/Output and a Timers drivers.
The EMS is defined as an interface to its environment:

- Start, Stop Acknowledge are provided operations which are triggered by IT (handled by
the ADA Real Time Monitor) as the driver/operator will push the associated buttons;

- The interface to the ADA RTS is represented as two environment objects associated to the
TIMER and the 1/O boards

/A | EMS

ASER_by_IT
start push-button E | Timers_Driver
ASER by IT | Start
stop push-button
ASER by IT Stop
ack push-

utton .
~ 9| Acknowledge E | 1/O_Driver

1 Questions raised and answered during this activities

How to take into account the hardware interfaces (from push-buttons, sensor failure...)?

Which is the EMS software environment? Which is the range for oil, fuel and water? How to display a fault (sensor failure or
value out of range)? How to take into account several sensor failures or several values out of range?

How to stop the Alarm (with Ack push button, when fault has disappeared)? What about an existing Alarm after a start? How
and When to start and stop the system? The Acknowledge shall stop the Alarm for all faults which have set it.

Copyright[d 1995-96 by HOOD Users Group page 45

(page -46
HOOD USER MANUAL 1.0 by HUM Working Group

» Analysis of Functional Requirements:
The function to performed by the EMS are:
-acquire the data from the sensors F@ndle ACQUISITION
-compute the mean value
-compare it the limit values of pressure, temperature and levehasde LIMITS
-display the values in green if ok, in red if not, flashing it failure hardle DISPLAY
-trigger the alarm ==handle the ALARM
- handle sensors or display faults =handle the ERRORS

* Analysis of Behavioural Requirements:
The EMS can be started and stopped, at any time, independently of the car engine.The

EMS can be started and stop@gdiny moment by pushing the associated push buttons, in-
dependently of the car engine.

- A start when the EMS is running shall haae@impact on the EMS.
A stop when the EMS is stopped yet shall hawempact on the EMS.

An acknowledge when the alarm is switched off or the EMS stopped shahdawpact
on the EMS.

- When the Alarm is set, iemains displayedntil the ack push button is pushed or until the
corresponding fault has disappeared.

The Alarm shall be set only for a new fault (when the same fault has previously disap-
peared).

Alarm is restarted after a start (an ack before the previous stop shall be ignored).
Figure 31 - below summarizes the behaviour of the EMS system.

O
Start
- Acknowledge
>
Start Y
EMS nominal Sensor failure
.,
Bad value | EMS alarmed
+ valid value (gﬁ'%?eOSFHF\;V alarm
' Start
Start Stop
EMS stopped

Stop

Figure 31 - State Transition Diagram modelling the behaviour of the EMS system

Copyright[d 1995-96 by HOOD Users Group page 46

(page -47
HOOD USER MANUAL 1.0 HUM-1.0

* Analysis of Non-Functional Requirements

- The EMS must be reliable. More sensors might be handled. The EMS system might be
connected to a general vehicle control system.

- The values shall bemoothly displayed on the bargraphs (particularly in case of sensor
failure). Thus the display device shall continuously evolve.

* User Manual Outline
The values of water temperature, oil pressure and fuel level are displayed in green light on
three different bargraphs. In case of sensor failure, the corresponding bargraph flashes in red
light and the alarm is started. In case of a value is out of range, the bargraph displays the value
in red light and triggers the alarm.
The EMS can be started and stopped by using start and stop push buttons.
The alarm of the EMS may be switched off by the ack push button.

1.5.2.3 Informal Solution Strategfy/(H2)

On IT reception from the Start push button, the EMS is started: the Ctrl_EMS inits the bargraphs,
starts the alarm and the sensors and creates and starts a timer which triggers the monitoring each
second (monitoring timer). Initialisation of bargraphs switches on the hardware bargraph through
the 1/0 driver. Starting the alarm switches off the hardware alarm through the 1/O driver. Starting
the sensors starts the hardware sensors and creates and starts a timer which triggers the sampling
at 10 Hz (sampling timer).

When the sensors are sampled every 1/10 second by a signal from the timer, the values and the
status (malfunction) of each sensor are get from the hardware sensors (through the I/O driver).
Every second, the monitoring activity is triggered by a signal from the timer: the Ctrl_EMS ac-
guires the status and the mean values of oil pressure, fuel level and water temperature from sen-
sors. It compares them with the limited values.

If a mean value is out of range or a sensor has failed, the Ctrl_EMS switches the alarm on (with
the type of sensor and the type of failure). If there is no failure and the mean value is correct, it
displays each mean value on the appropriate bargraph, sets the colour in green, stops flashing and
switches the alarm off. If a mean value is out of range, the corresponding bargraph is displayed
in red light. If there is a sensor failure, the corresponding bargraph flashes in red light. An even-
tual malfunction of the hardware bargraphs or the hardware alarm is of no effect on the
Ctrl_EMS.

On IT reception from the Ack push button, the alarm is acknowledged.

On IT reception from the Stop push button, the EMS is stopped if it was not: the alarm, the mon-
itoring timer and the sensors are stopped and the bargraphs are switched off. Switching the bar-
graphs off stops the hardware bargraphs (switches light off and put values to zero through the I/
O driver). Stopping the alarm stops the hardware alarm through the I/O driver. Stopping the sen-
sors stops the hardware sensors (through the 1/O driver) and stops the sampling timer.

2Note that this strategy is the ultimate one found after refinement of earlier outlines as the candidate child
objects and associated operations were described and refined in «Formalization of the Strategy activities»

Copyright[d 1995-96 by HOOD Users Group page 47

(page -48
HOOD USER MANUAL 1.0 by HUM Working Group

1.5.2.4 Formalization of the Strategy (H3)

1.5.2.4.a Identification of objects (H3.1)

Object BARGRAPHS:
The bargraphs object allow to display values, in red or green with or without flashing, on appro-
priate display devices.It also provides all means to start and stop the hardware display device.

Object CTRL_EMS:

This object is the controller of the EMS. It starts and stops all the constituents objects of the EMS
and controls the monitoring.

The Ctrl_EMS inits the bargraphs, starts the alarm and the sensors and creates and starts a timer
which triggers the monitoring each second (monitoring timer).

Object SENSORS:

This object samples oil pressure, water temperature and fuel level at 10Hz and stores the read
values of the three sensors at any moment. It may provide the mean of stored values of a sensor.
It also provides all means to start and stop the hardware sensors.

Object ALARM

The Alarm object manages a set of software alarms. One hardware alarm is associated to those
software alarms. It is possible to switch a software alarm on or off at each time. The hardware
alarm is started when an unset software alarm is switched on (set). The hardware alarm is stopped
when the set of software alarms are switched off (unset) or when acknowledged by the user. In
that case the status of the set software alarms are not modified.

1.5.2.4.b Identification of operation (H3.2)

Object Input_Output_Driver:

« Put The Put operation allows to write information included in the provided descriptor to
the hardware device corresponding to the specified one.

» Get The Get operation allows to copy the current information, provided by the hardware
device corresponding to the provided one, into the provided descriptor.

Object CTRL_EMS:

» Start creates the monitoring timer, initialises the alarm, the sensors and the bargraphs which
are used during the monitoring.

» Stop; stops the monitoring timer and switches off the alarm and the bargraphs and stops the
Sensors.

* Monitor ; acquires the values of each sensor. Those values are displayed on the appropriate
bargraph. In case of a value is out of range, this operation switches the alarm on and gives
the red colour to the bargraph. If there is a sensor failure, the alarm is switched on and the
bargraph flashes in red colour. In other cases, the values are displayed in green colour.

Object SENSORS:
e Start; initializes the hardware sensors.

» Sampleis in charge of the Sensors sampling. It gets the current values of each hardware sen-
sor and stores them into an internal database.

* Acquire returns the mean of the ten last stored values of a sensor. It returns a

Copyright[d 1995-96 by HOOD Users Group page 48

(page -49
HOOD USER MANUAL 1.0 HUM-1.0

SENSOR_FAILURE exception in case of hardware sensor problem.
Stop stops the hardware sensors.

Object BARGRAPHS:

Init ; initializes the hardware bargraphs. Bargraphs are switched on in green colour without
flashing and with a null value.

Display displays the input percentage value in the corresponding hardware bargraph. The
colour and the flashing are not modified.

Set_Coloursets the corresponding hardware bargraph in the specified colour. The displayed
value and the flashing are not modified.

Flash allows to flash the corresponding hardware bargraph. The colour and the displayed
value are not modified.

Switch_Off switches the hardware bargraphs off.

Object ALARM:

Start switches the hardware alarm and the software alarms off.
Acknowledgestops the hardware alarm without unset the set software alarms.

Switch_On switched the specified software alarm on. If this alarm was not yet set, the hard-
ware alarm is started (if it was not). In the other cases, nothing is modified.

Switch_Off The Switch_Off operation switched the specified software alarm off. If the hard-
ware alarm is yet started and all the other software alarms are unset, the hardware alarm is
stopped.

Stop; switches the hardware alarm off.

1.5.2.4.c HOOD DIAGRAM of EMS DECOMPOSITION (H3.4)

EMS
/A| Ctrl_EM
ASER_by_IT start push-button [
ASER by IT ASER by [T stop push.@ Start initial_frequency -
start push-buttof ASER by IT Stop é Timers)
ASER by] ~a Timer_1Hz %> Monitor /\@ean_vame

stop push-button

| Stop /—'—{_ACOIour
ASER_by | mean_vglue
ack push-buttor ' Bargraphs

sensor_failure

Acknowledge [| A| Sensors
i ASER_by_IT
Display Timer 10z | Start
Flash “ ¥ Sample
Switch_Off Acquire
Stop
ASER_by_IT |
ack push-button Start + .
—4-| Acknowledgs data_in
*data_out gvv\\l,lhcchﬁ Ocr)1ﬁ T Mmalfunction
- ta_out
k "Thalfunction [Stop di —

(E Input/Output_Drlver)

Figure 32 - EMS HOOD DIAGRAM (H3.4)

Copyright[d 1995-96 by HOOD Users Group page 49

(page -50
HOOD USER MANUAL 1.0 by HUM Working Group

1.5.2.4.d Justification of Design Decisions (H3.5)

Object BARGRAPHS implements the display functional constraints. It is able to display addi-
tional values.

Object ALARM implements the interface with the alarm system. Any change in the alarm system
will only affect the alarm object.

Object SENSORS handles the acquisition function, it is designed so as to be able to handle ad-
ditional sensors.

Object CTRL_EMS handles initialisation and stop of timers interrupts, as well as push button It.

1.5.2.4.e Grouping Operations & Objects (H3.3)

OBJECTS OPERATIONS COMMENTS
EMS
Start On IT from Start push-button
Stop On IT from Stop push-button
Acknowledge On IT from Ack push-button | implemented by ALARM
Bargraphs
Display value (oil, water, fuel) : IN
Set_colour colour (red, green) : IN
Flash
Switch_off
Sensors
Sample value (oil, water, fuel) : OUT | every 1/10 second Tim
Acquire value (oil, water, fuel) : OUT
Stop
sensor_failure : exception
Alarm
Switch_on
Stop
Acknowledge On IT from Ack push-button | implements EMS Reset|
Ctrl_EMS
Monitor every second by Timer signal
Is_value_out_of_range internal operation|

value : IN

limited_oil_value : CONST,
limited_water_value : CONST,
limited_fuel_value : CONST

This section is given for illustration only. Its added value is a matter of discussion and taste and
depends highly of the toolset being used, experience, and project reviewing standards.

Copyright[d 1995-96 by HOOD Users Group page 50

%@@ HOOD USER MANUAL 1.0

page -51
HUM-1.0

1.5.2.5 Structuring the design

Analysis of reusable objects,
Analysis of reused object,
Analysis of distribution aspects,

=> Building system configuration
SYSTEM_CONFIGURATION
ROOT OBJECTS
EMS, Timers_Driver, I0_Driver
CLASSES
Sensors, Bargraphs
END

— . ses

. Is allocated to Class space

. Is instance of

TimersJDriver

System To Design

EMS_System Distribution spa

Bargraphs

Figure 33 - EMS objects and Design Views

Copyright[d 1995-96 by HOOD Users Group

page 51

page -52
HOOD USER MANUAL 1.0 by HUM Working Group

153 ODS EXAMPLES OF EMS SYSTEM

1531 ENVIRONMENT OBJECTinput_Output_Driver

OBJECT Input_Output_Driveis ENVIRONEMENT PASSIVE
DESCRIPTION
The Input_Output_Driver object provides means to exchange information with hardware devices. It allows to put or to set
information of these devices.
IMPLEMENTATION_CONSTRAINTS NONE
PROVIDED_INTERFACE
CONSTANTS
MAX_ BARGRAPHS NUMBER:constant:= 3;
Number of hardware bargraphs managed by the Input_Output_Driver object.
MAX_SENSORS_NUMBER constant:= 3;
Number of hardware sensors managed by the Input_Output_Driver object.
MAX_ALARMS_NUMBER : constant:= 1;
Number of hardware alarms managed by the Input_Output_Driver object.
TYPES
T_DEVICE is(ALARM, BARGRAPH, SENSOR);
The T_DEVICE type defines the set of devices which are taken into account by the Input_Output_Driver.
T_DEVICE_STATUSIs (ON, OFF);
Defines the status of a a device. ON : the hardware device is running, OFF : the hardware device is stopped.
T_BARGRAPH_COLOURSs (RED, GREEN);
This type defines the two different colours of a bargraph.
T_BARGRAPH_FLASH_STATUSs (ON, OFF);
This type defines the two different displaying status of a hardware bargraph.
T_DESCRIPTOR (DEVICE : T_DEVICH}p
record
STATUS : T_DEVICE_STATUS := OFF;
caseDEVICE s
when BARGRAPH =>
NUMBER : INTEGERrange 1 .. MAX_BARGRAPHS_NUMBER :=1;
VALUE : INTEGERrangeO .. 100 :=0;
COLOUR : T_BARGRAPH_COLOUR := GREEN;
FLASH : T_BARGRAPH_FLASH_STATUS := OFF;
when SENSOR=>
NUMBER : INTEGERrange 1 .. MAX_SENSORS_NUMBER :=1;
VALUE : INTEGERrangeO .. 100 :=0;
when ALARM =>
NUMBER : INTEGERrange 1 .. MAX_ALARMS_NUMBER := 1;
end case;
end record;
The T_DESCRIPTOR type defines the set of information which may be sent to output devices or received from input de-
vices.
OPERATIONS
Put(DEVICE :in T_DEVICE; -- Output Device
ELEMENT :in T_DESCRIPTOR -- Descriptor to apply to a device);
The Put operation allows to write information included in the provided descriptor to the hardware device corresponding to
the specified one.
Get(DEVICE :in T_DEVICE; -- Input Device
ELEMENT :out T_DESCRIPTOR -- Descriptor including information from device);
The Get operation allows to copy the current information, provided by the hardware device corresponding to the provided
one, into the provided descriptor.
EXCEPTIONS
MALFUNCTION RAISED_BY Put, Get;
This exception is returned when the hardware device specified in the Put or Get operations is unavailable.
END_OBJECT Input_Output_Driver

Copyright[d 1995-96 by HOOD Users Group page 52

page -53
HOOD USER MANUAL 1.0 HUM-1.0

20D

1.5.3.2 PARENT OBJECT EMS

OBJECT EMSIS ACTIVE
DESCRIPTION
The EMS monitors and displays the oil pressure, water temperature and fuel level on the appropriate bargraphs, and starts
an alarm in case of a value is out of a predefined range. First, the EMS shall be started.
IMPLEMENTATION_CONSTRAINTS
Start, Stop and Acknowledge operations are mutually exclusive (each of those operations shall wait the end of an other one
before to be started).
PROVIDED_INTERFACE
OPERATIONS
Start;
The Start operation starts the EMS. The EMS environment will be initialised.
Stop;
The Stop operation stops the EMS.
Acknowledge
This operation stops the Alarm for the faults which have switched on it.
EXCEPTIONS
NONE
OBJECT_CONTROL_STRUCTURE
DESCRIPTION
The EMS accepts start, stop and acknowledge operations at any time. Start is not significant after a start. Stop or acknowl-
edge are not significant after a stop.

CONSTRAINED_OPERATIONS
Start CONSTRAINED_BY ASER_by IT Start_push-button;
Stop CONSTRAINED_BY ASER_by_IT Stop_push-button;
Acknowledge CONSTRAINED_BY ASER_by_IT Ack_push-button;
REQUIRED_INTERFACE

INTERNALS
OBJECTS
Ctrl_EMS;
Sensors;
Bargraphs;
Alarm;
OPERATIONS
StarttMPLEMENTED_BY Ctrl_EMS.Start;
StopIMPLEMENTED_BY Ctrl_EMS.Stop;
AcknowledgelMPLEMENTED_BY Alarm.Acknowledge;
EXCEPTIONS
NONE
OBJECT_CONTROL_STRUCTURE
IMPLEMENTED_BY Ctrl_EMS, Alarm;
END_OBJECT EMS

Copyright[d 1995-96 by HOOD Users Group page 53

(page -54
HOOD USER MANUAL 1.0 by HUM Working Group
1.5.3.3 TERMINAL CHILD OBJECT CTRL_EMS
OBJECT Ctrl_EMSIS ACTIVE
DESCRIPTION
This object is the controller of the EMS. It starts and stops all the constituents objects of the EMS and controls the monitor-
ing

-IMPLEMENTATION_CONSTRAINTS
The Ctrl_EMS must perform the monitor operation in less than 1 second.
PROVIDED_INTERFACE

TYPES NONE
CONSTANTS NONE
OPERATION_SETS NONE
OPERATIONS

Start;

The Start operation creates the monitoring timer, initialises the alarm, the sensors and the bargraphs which are used during
the monitoring.
Stop;
The Stop operation stops the monitoring timer and switches off the alarm and the bargraphs and stops the sensors.
Monitor ;
The Monitor operation acquires the values of each sensor. Those values are displayed on the appropriate bargraph. In case
of a value is out of range, this operation switches the alarm on and gives the red colour to the bargraph. If there is a sensor
failure, the alarm is switched on and the bargraph flashes in red colour. In other cases, the values are displayed in green
colour.

EXCEPTIONS
NONE

OBJECT_CONTROL_STRUCTURE

DESCRIPTION
The Ctrl_EMS accepts start, stop and monitor operations at any time. A start is not significant after a start. A stop or a mon-

itor are not significant after a stop.

Start
Acknowledge
Start l
EMS nominal Sensor failure
Badvalue_»| EMS alarmed
A valid value (9fudes iy alarm
1 4
Start | Ems sto pped Stop Start
—~ Stop

Start CONSTRAINED_BY ASER_by_IT Start push-button;
Stop CONSTRAINED_BY ASER_by_IT Stop push-button;
Monitor CONSTRAINED_BY ASER_by IT Timer_1Hz;
REQUIRED_INTERFACE
OBJECT Sensors;
TYPES
T_SENSOR,;
OPERATIONS
Start;
Acquire;
Stop;
EXCEPTIONS
SENSOR_FAILURE;
OBJECT Alarm;
TYPES
T_ALARM;
OPERATIONS

Copyright[d 1995-96 by HOOD Users Group page 54

page -55
HOOD USER MANUAL 1.0 HUM-1.0

Start;
Switch_On;
Switch_Off;
Stop;
OBJECT Bargraphs;
TYPES
T_COLOUR;
T_BARGRAPH;
T_FLASHING;
T_PERCENTAGE;
OPERATIONS
Init;
Display;
Set_Colour;
Flash;
Switch_Off;
OBJECT Timers_Driver;
TYPES
T_TIMER,;
OPERATIONS
Create;
Start;
Delete;

DATAFLOWS
mean_valug= Sensors;
mean_value> Bargraphs;
colour=> Bargraphs;
initial_frequency=> Timers_Driver;

EXCEPTION_FLOWS
sensor_failurec= Sensors;

Copyright[d 1995-96 by HOOD Users Group page 55

(page -56
HOOD USER MANUAL 1.0 by HUM Working Group

INTERNALS

OBJECTS
NONE
TYPES
TBD
CONSTANTS
IT_1HZ ADDRESS : constant := Monitor ADDRESS;
MONITORING_FREQUENCY : constant :=1;
TBD
OPERATIONS
Is_Value_out_of_Range;
TBD
EXCEPTIONS
TBD
DATA
MONITORING_TIMER : Timers_Driver.T_TIMER,;
TBD

OBJECT_CONTROL_STRUCTURE
PSEUDO_CODE

TBD
CODE

TBD

OPERATION_CONTROL_STRUCTURES

OPERATION Start
DESCRIPTION
This operation initialises the system (the alarm, the bargraphs, the sensors) and then creates and starts a timesfor it trigge
the monitoring every 1 second.
USED_OPERATIONS
Timers_Driver.Create; Timers_Driver.Start;Sensors.Start;Alarm.Start;Bargraphs.Init;
PROPAGATED_EXCEPTIONSNONE
HANDLED_EXCEPTIONS NONE
PSEUDO_CODE
TBD
CODE
TBD
END_OPERATION Start
OPERATION Stop
DESCRIPTION
This operation stops all the system (the alarm, the bargraphs, the sensors) and resets the monitoring timer.
USED_OPERATIONS
Timers_Driver.Delete;
Alarm.Stop;
Bargraphs.Switch_Off;
Sensors.Stop;
PROPAGATED_EXCEPTIONSNONE
HANDLED_EXCEPTIONS NONE
PSEUDO_CODE
TBD
CODE
TBD
END_OPERATION Stop

Copyright[d 1995-96 by HOOD Users Group page 56

20D

HOOD USER MANUAL 1.0

page -57
HUM-1.0

OPERATION Is_Value_out_of Range
DESCRIPTION
TBD
USED_OPERATIONS
TBD
PROPAGATED_EXCEPTIONS
TBD
HANDLED_EXCEPTIONS
TBD
PSEUDO_CODE
TBD
CODE

END_OPERATION Is_Value_out_of Range

OPERATION Monitor
DESCRIPTION

This operation is in charge of the EMS monitoring. It acquires the mean values of each sensor, controls them against limit

values with respect to each category of sensors, converts those mean values into displaying values according to min. and
max. information and displays them on the corresponding bargraph. It sets the alarm if the mean value is out of range or if

there is a sensor failure. It also set the green colour of a bargraph when the value is correct, the red colour when the value
is out of range and the red flashing colour when the corresponding sensor is failed.

The Monitor operation switched the alarm on for each out of range value and each failed sensor and switched the alarm off

for each correct value and running sensor.

USED_OPERATIONS
Alarm.Switch_On;
Alarm.Switch_Off;
Bargraphs.Display;
Bargraphs.Flash;
Bargraphs.Set_Colour;
Sensors.Acquire;
Is_Value_out_of _Range;

PROPAGATED_EXCEPTIONS
NONE

HANDLED_EXCEPTIONS
Sensors.SENSOR_FAILURE;

PSEUDO_CODE
TBD

CODE
TBD

END_OPERATION Monitor

END_OBJECT Ctrl_EMS

Copyright[d 1995-96 by HOOD Users Group

page 57

(page -58
HOOD USER MANUAL 1.0 by HUM Working Group

154 EXAMPLE OF ADA CODE IMPLEMENTATION

In the following we give the Ada code generated from the ODS of object EMS and Ctrl_Ems.
APPENDIX A2 -of this document gives the same code where ODS text parts have been gener-
ated within the code as Ada comments.

with Ctrl_EMS Alarm;
packageEMSis
-- DESCRIPTION
procedure StartrenamesCtrl_EMSStart
procedure StoprenamesCtrl_EMSStop
procedure AcknowledgerenamesAlarm.Acknowledge
end EMS;

Figure 34 - Ada Specification associated to EMS ODS

packageCtrl_EMSis
task OBCS_Ctrl_EMSs
entry Start
entry Stop
entry Monitor;
end OBCS_Ctrl_EMS
procedure StartrenamesOBCS_Ctrl_ EMSStart
procedure StoprenamesOBCS_Ctrl_EMSStop
procedure Monitor renamesOBCS_Ctrl_EMSMonitor;
end Ctrl_EMS

Figure 35 - Ada Specification associated to Ctrl EMS ODS

with Sensors
with Alarm;
with Bargraphs
with Timers_Driver
package bodyCtrl_EMSis
IT_1HZ_ADDRESS: constant :=Monitor ADDRESS;
procedureIs_Value_out_of Range
procedure OPCS_Staris separate;
procedure OPCS_Stofis separate;
procedure OPCS_Monitolis separate;
task body OBCS_Ctrl_EMSs
begin
loop
select
acceptStart
OPCS_Start
or acceptStop -- empties Stop queue
OPCS_Stop
or acceptMonitor; -- empties Monitor queue
OPCS_Monitor
end select;

Figure 36 - Ada Body associated to Ctrl EMS ODS

Copyright[d 1995-96 by HOOD Users Group page 58

HOOD USER MANUAL 1.0

page -59
HUM-1.0

procedure OPCS_ Staris
begin
Timers_DriverCreate (MONITORING_TIMER
MONITORING_FREQUENCY
IT_1HZ_ADDRESS);
Alarm.Start
Bargraphdnit;
SensorsStart
Timers_DriverStart(MONITORING_TIMER);
end OPCS_Start

procedure OPCS_Stojis
begin
Timers_DriverDelete(MONITORING_TIMER);
SensorsStop
Alarm.Stop
BargraphsSwitch_Off
end OPCS_Stop
procedure Is_Value_out_of Rangs
begin
null;
--TBD
endls_Value_out_of Range

procedure OPCS_Monitoiis
begin
null;
--TBD
end OPCS_Monitor
end Ctrl_EMS, -- end body of package Ctrl_EMS

Figure 37 - Ada Specification associated to EMS ODS (Continued)

Copyright[d 1995-96 by HOOD Users Group

page 59

(page -60
HOOD USER MANUAL 1.0 by HUM Working Group

Copyright[d 1995-96 by HOOD Users Group page 60

page -61
HOOD USER MANUAL 1.0 HUM-1.0

2 ADVANCED CONCEPTS

2.1 ARCHITECTURAL GUIDELINES

In this section we shall give some guidelines for identifying HOOD objects. There are however
no strong principles, if any, for finding objects straight away for a HOOD design.

The Basic design Step describes how the software requirements are reformulated and how one
can go towards an Informal Solution Strategy in informal natural language (e.g. English). From
this text, nouns may be identified as candidate objects, and verbs may be identified as corre-
sponding candidate operations. This process is repeated for each object that is decomposed.

The intent of an object is to represent a problem domain entity, either a real world object or a
data structure, and the object should act as a black box by hiding the data, and allowing access
only through operations - thus allowing easy testing, debugging and maintenance.

The principles of abstraction and information hiding provide the main guidelines for assessing
an object; thus a "good object” represents an encapsulation of a problem domain entity and hides
internally information that is likely to change if the implementation changes. One can define a
scale of abstraction ranging from the real world object to purely logistic objects as follows:

» Entity abstraction
represents a useful problem domain entity. Such an entity would be as concrete as a hard-
ware device or more abstract such as a compiler intermediate file.

e Action abstraction
a child object that represents the state of a parent object can be seen as an abstraction of the
actions of the parent object. This may have a State Transition Diagram, and may be Active
or Passive according to the type of the parent object.

» Logistic abstraction
an object that represents a data store that is used within the design, without an external in-
terface is a logistic abstraction.
Examples are stack, list and tables.

At the top level of the design, in decomposing the root object, candidate objects are generally
real world, problem domain objects (e.g. hardware devices, input devices that drive system ac-
tivity, output devices that respond to system activity), or are data (files as collections of input or
output data), either transient data such as messages or commands, or data stores, such as stacks,
lists or tables,etc

At lower levels of design decomposition, further general types of object may appear such as
states, data pools, data records,..... .

In the early time of HOOD, there has been numerous attempts to wfes a good object
and we shall not try to do it again. Rather we shall recommend to define HOOD objects along
two main principles:

* identification of root objects from conceptual abstractionsand HOOD parent-child re-
finement to reduce complexity

» identification of abstract data type implementations.

Copyright[d 1995 by HOOD User’s Group page 61

page -62
HOOD USER MANUAL 1.0 by HUM Working Group

Enforcing theséwo guidelines in object identification is a good stattpur experience, to come

to “good solutions®:

» the identification of objects based on conceptual modelling and abstraction allows to catch
thegood structurei.e. one that is possibly invariant from one application to another in a giv-
en domain. (thus reusable for a similar project)

* theidentification ofbstract data type implementatigimnsalso a way to achieve good logical
grouping of data and related operation (with strong logical cohesion thus enforcing software
engineering principles) and going as well towards full object oriented structure: that is sys-

tems structured with only ADTs

Furthermore, we stress here again that HOOD emphasizes structuring through modules whose
interfaces can be mastered, subcontracted, rather than on inheritance structures which expresses
implementation factorising. At the worst (i.e. when two ADTSs objects inherits from a third one,

and are allocated to differenvbrk packagemodules”), it means thaitlocation work should

be reconsidered, not the design!

Hence the importance of a phased approach in the development process, (see section 2.1.2 below)
wherelogical, conceptual design solutions are produced first, and physical, implementation
solutions, including work-package allocation are defined second.

211 STRUCTURING BASED ON ADTS

The definition of abstract data types is based on the principle of extending and building complex
types from primitives ones, directly supported by the target language. This technique allows a
designer to structure and enforce “type properties” on complex data handled in a solution.

In HOOD an implementation of an abstract data type is defined through an object that encapsu-
late the definition of the type and associated operations. Such objects are just normal HOOD ob-
jects encapsulating all what is related to an abstract data or process type implementation, and in

order to distinguish them from non abstract data type suppor?\maeshall in the following refer
to such objects as HADHOOD AbstractDataType) objects.

2111 Object Abstraction

There are two ways for capturing abstractions: Abstract Object (ADO) and Abstract Data Types
(ADT). ADO allows to define one (and only one) object at a time. This object has an internal
state which is represented by internal data. This data is not directly accessible by the user of the
object (it is hidden as stated in the previous section), but it can be manipulated in a correct way
thanks to the provided operations.

Note that HOOD graphical view only shows the provided operations (see figure 38), the rest of
the provided interface (types, constants and exceptions) are only appearing in the textual ODS
(see figure 39).

Lmay not the best ones, but good ones.
2. (whether these ADTS belong to an inheritance hierarchy is rather a detailed design implementation aspect)
3'sorry not everything in a system can be modelled as an abstract data or process type implementation.

Copyrightd 1995 by HOOD User’s Group page 62

page -63
HOOD USER MANUAL 1.0 HUM-1.0

/ A Stack \

—=» Push(ltem : in Integer);
“=*|Pop (Item : out Integer);

. /

Figure 38 - HOOD Diagram of a Bounded Stack

In order to illustrate the importance of the provided interface, which may give a lot of indirect
information, let us try to understand what implicit assumptions may be contained in the provid-
ed interface of an example (see figure 39).

First, the presence of a provided constant indicates a static memory allocation scheme. The ex-
istence of the exceptiod_OverFlow tends to corroborate this hypothesis.

OBJECT STACKis ACTIVE
DESCRIPTION
A protected integer stack as an abstract Data Object
IMPLEMENTATION_CONSTRAINTS
--| constraints |--
PROVIDED_INTERFACE
CONSTANTS
MAX_STACK_SIZE : constant := 100 ;
OPERATIONS
Push(ltem in Integer) ;
Pop (Item out Integer) ;
EXCEPTIONS
X_OverFlow raised_byPush;
X_UnderFlowraised_by Pop;
OBJECT_CONTROL_STRUCTURE
DESCRIPTION
pop and push are simple constrained operations
CONSTRAINED_OPERATIONS
PushCONSTRAINED by HSER;
PopCONSTRAINED by HSER;
INTERNALS
TYPES
Stack_Rangés Integer range 1 .. MAX_STACK_SIZE;
Stack s array (Stack_Range) of Iltems;
DATA
Top lInteger:=0;
The_Stack : Stack;

Figure 39 - Textual view of a Bounded Stack defined as an ADO
The two provided exceptions seem to be very similar in the sense that they are raised when the
use of the stack leads to violate its boundaries. But they differ fundamentally. An abstract stack
is infinite and theX_OverFlow exception is raised when the concrete stack is not big enough
to simulate the abstract one, what is an implementation limitXThinderFlow exception is
raised when the user triesgop an empty stack, which is clearly an error in the implemented
algorithm. This exception can be useful during the debugging phase but has no more interest in
the final system where this error is not likely to appear.

Copyright[d 1995 by HOOD User’s Group page 63

page -64
HOOD USER MANUAL 1.0 by HUM Working Group

Anyway, it could be still better not to use exceptions, except for predefined exceptions.

In the above example, a control parameter could be uspdgaandpush operations as a return
parameter. This is a typical example of avoiding using exceptions.

An alternative to the bounded stack with no exception is given in figure 40.

OBJECT UNBOUNDED_STACKIs ACTIVE
DESCRIPTION
The stack is now unbounded, that is to say the constant MAX_STACK_SIZE disappears, as well
as the X_OverFlow exception |--
PROVIDED_INTERFACE
CONSTANTS
none
OPERATIONS
Push(ltem in Integer) ;
Pop (Item out Integer) ;
is_Empty return Boolean;
is_on_the_Topeturn Integer ;
EXCEPTIONS
none
OBJECT_CONTROL_STRUCTURE
DESCRIPTION
Pop is constrained and protected by a guard condition so that it blocks a client when this one tries
to pop an empty stack

Figure 40 - An alternative to the previous stack
The next point concerns the provided operations: as it is defined, the interface is very small and
in particular there is no “access function”, i.e. there is no way to ask information about the state
of the object (“is the stack empty?”, “is the stack full?”, “what is the value on the top of the
stack?”,...). Such kind of operations is important for the reusability of the object but is less useful

in a concurrent contekt

The last point to mention is the fact that operations are constrained. It can be in contradiction
with the exception declaratioppp andpush may be guarded by blocking conditions so that

the X_OverFlow and X_UnderFlow situations of the stack will never happen.

In any case, we have shown that the only formal information contained in the provided interface
Is subject to multiple interpretations, the informal fields must be used to clarify the designer in-
tentions.

2.1.1.2 Abstract Data Type Abstraction

Defining an Abstract Data Type (ADT) is very similar to Object Abstraction as presented above
but, instead of designing a single object, a general model of similar objects is defined. In fact, at
least in its passive form, an ADO can be seen as an instance of an anonymous ADT. Instead of
only providing operations for manipulating internal hidden data, a private type is also provided
with the same set of operations. Each provided operation has an additional parameter describing
which object is manipulated. Internally, data is not directly declared, but the private type is pre-
cisely defined. This type will be used by clients to declare data of this type in their own context
(see figure 41). Implementation issues discussing the localization of data instances is further dis-
cussed in section 2.1.1.3 below.

4 imagine you want to pop the stack, you verify before proceeding that it is not empty but nobody can insure that another task

has not emptied the stack in between the call &fmpty and the call opop.

Copyrightd 1995 by HOOD User’s Group page 64

page -65
HOOD USER MANUAL 1.0 HUM-1.0

.The real “objects” derived from this definition are data values of the defined ADT. They are not
graphically represented on the HOOD diagrams. But they will appear as part (internal data) of
the terminal HOOD objects using this type.

As a matter of fact, objects encapsulating ADT are useful for defining the low-level objects of
the problem, those which are likely to be found at several places in the decomposition tree, and
those sufficiently general to be stored in reuse-libraries.

OBJECT STACKSis PASSIVE
DESCRIPTION
A simple integer stack as an abstract data type |--
IMPLEMENTATION_CONSTRAINTS
--| constraints |--
PROVIDED_INTERFACE
TYPES
T_Stack idimited private ;
CONSTANTS
MAX_STACK_SIZE : constant := 100 ;
OPERATIONS
Push(Stackin out T_Stack; Item in Integer) ;
Pop (Stack in out T_Stack; Item out Integer) ;
EXCEPTIONS
X_OverFlow ;
X_UnderFlow ;
INTERNALS
TYPES
Stack_Range ikiteger range 1 .. MAX_STACK_SIZE;
Stack_Bodyis array (Stack_Range) of Items;
T_Stackis record
Top :Integer :=0;
Body : Stack_Body;
end record,;

Figure 41 - A bounded stack defined as an ADT

2.1.1.3 ADT implementations as HADT objects

Two kind of implementations may be developed and are illustrated below:

* Implementation encapsulating data instances (Values of the Type)s where the provid-
ed interface of the module groups all operations manipulating the type, including a create
operation. Figure 42 -and Figure 43 - illustrate such a module for STACK. The provided
type T_STACK is not a type able to store full values of that type, but simply an identifier of
such value (in our case a stack object). Hence clients of such a module can require this type,
and may only instantiate identifier values on the type. Full type instances are then produced
by executing a STACK.create operation.

* Implementation encapsulating types or8ych an implementation is directly supported by
a number of target languages (especially Ada) and does not provide a create operation. The
associated module rather provides a type defining a data structure able to store values of the
type. Hence clients of such a module can require the type, and instantiate full data instances.
Figure 44 - and Figure 45 - illustrate such a HADT implementation.

The impacts of these implementation choices must be clearly expressed:

* encapsulating data instancaows a strong grouping, easing test and integration with non
object oriented programming targets and with distributed development teams.

* non encapsulating data instandeads to a grouping of common code to manipulate values

Copyright[d 1995 by HOOD User’s Group page 65

page -66
HOOD USER MANUAL 1.0 by HUM Working Group

of same typeit is an implementation of the object oriented class condéys implemen-
tation is the preferred one especially when the target language is an object oriented one
like C++.

Since data instances (values of the type) are separated from the execution operatiois code,
implementation must also be used each time the target is to be distributed across several
memory partitions, or is planned to evolve towards a distributed one

When the type can furthermore be parameterized by other more primitive types, one can define
a HOOD class object (or GENERIC), whose instantiation will provide the final type.

2.1.1.3.a HADT Object encapsulating DATA INSTANCES

" ADT_STACK ™\

[

CREATE
DELETE
PUSH
POP
STATUS

Figure 42 - Graphical representation of object ADT_STACK

The description skeleton of a HOOD object implementing the abstract data type stack could be
the following:

OBJECT ADT_STACKIS PASSIVE
DESCRIPTION
Implementation of an abstract Data Type STACK and provides all operations to manipulate values of that type
creation included.
IMPLEMENTATION CONSTRAINTS
Dynamic heap memory is limited to 1 MB
PROVIDED_INTERFACE
TYPES
T_Statuds (BUSY, IDLE, UNDEFINED);-- definition of a type
T_STACK; -- the type structure is hidden to clients
OPERATIONS
CREATE (STACK:out T_STACK; Size in integer); --constructor
PUSH (STACK:out T_STACK; Elementin T_Element);
POP(STACK:in T_STACK; Elementout T_Element);
STATUS (STACK:in T_STACK; Statusout T_Status);
DELETE (STACK:in T_STACK;); --destructor
EXCEPTIONS
X_OUT_OF_MEMORY:- raised_bycreate when memory limits
REQUIRED_INTERFACE
OBJECT ADT_ELEMENT
TYPES
T_Element; -- ADT_STACK requires type T_Element, provided by the HADT object ADT_ELEMENT.
INTERNALS -- hidden part of the object (not described here)
END_OBJECT ADT_STACK

Figure 43 - Structure and ODS of HOOD object ADT_STACK encapsulating Data Instances
The declaration of a STACK object in the DATA field of a client ODS would then be the follow-
ing:
INTERNALS
DATA
STACK1: ADT_STACK.T_STACK; -- creates a STACK Identifier
--initialisation is done by calling ADT_STACK.CREATE(STACK1);
--all values of STACK1, will be located within the ADT_STACK memory_space.

Copyrightd 1995 by HOOD User’s Group page 66

page -67
HOOD USER MANUAL 1.0 HUM-1.0

Note: the implementation of HADT STACK groups both execution code and STACK values.

2.1.1.3.b HADT Object encapsulating no DATA INSTANCES

/ ADT_STACK \
[

PUSH
POP
STATUS

N

Figure 44 - Graphical representation of object ADT_STACK
The description skeleton of a HOOD object implementing the abstract data type stack could be
the following:

OBJECT ADT_STACKIS PASSIVE
DESCRIPTION
Implementation of an abstract Data Type STACK and provides all operations to manipulate values of that type
creation included.
IMPLEMENTATION CONSTRAINTS
Dynamic heap memory is limited to 1 MB
PROVIDED_INTERFACE
TYPES
T_Statuds (BUSY, IDLE, UNDEFINED);-- definition of a type
T_STACK; -- the type structure is hidden
is array (<>) of T_ELEMENT,; -- or visible to clients
OPERATIONS
PUSH (STACK:out T_STACK; Elementin T_Element);
POP(STACK:in T_STACK; Elementout T_Element);
STATUS (STACK:in T_STACK;, Statusout T_Status);
EXCEPTIONS
none;
REQUIRED_INTERFACE
OBJECT ADT_ELEMENT
TYPES
T_Element; -- requires type T_Element, provided by the HADT object ADT_ELEMENT.

INTERNALS -- hidden part of the object (not described here)
END_OBJECT ADT_STACK

Figure 45 - Structure and ODS of object ADT_STACK

The declaration of a STACK object in the DATA field of a client ODS would then be the fol-
lowing:
INTERNALS
DATA
STACK1: ADT_STACK.T_STACK(200);
-- creates a STACK of 200 elements
-- STACK value will stored in the associated data structure within client's memory space

Note: an implementation of the above ADT_STACK object groups common execution code all
type instances: it is an implementation of the object oriented class concept, grouping code and
class instances only, whereas object/data instances are declared in client module memory-space.

Copyright[d 1995 by HOOD User’s Group page 67

page -68
HOOD USER MANUAL 1.0 by HUM Working Group

2114 Defining Logical Interfaces with ADT support

The use and definition of HADT object allows to define an object as the interface between two
others which exchange complex data.

/ SYSTEM_1 < Image / SYSTEM 2 \
I >

| Get (Image) |

N J N\

Figure 46 - Objects exchanging a complex data “Image”

The addition of this object can be made without any change in the object provided iRtefrface

the two others, and thus a technique of refinement of an initial HOOD modelFigure 47 -

below shows that the object ‘ADT_Image’ is the interface object associated to the exchanges of
image data between SYSTEM_1 and SYSTEM_2 objects

The object ‘ADT_Image’ can be defined as an implementation of an abstract data type “image”

and as environment object for the current hierarchy dealing with SYSTEM_1 and SYSTEM_2
objects.

SYSTEM_1 Image SYSTEM 2
~— =
Get (Image)

N

Image_Infos

ADT_Image

create

Update_image_infos
Read_image_infos

Figure 47 - interface_object “ADT image” associated to data Image.

Showever changes have to be made in the Required Interfaces

Copyrightd 1995 by HOOD User’s Group page 68

page -69
HOOD USER MANUAL 1.0 HUM-1.0

2.1.15 ADT Refinement Techniques

Associating additional HADT objects to formalize the exchange of data between two ob-
jects of initial model is thus a technique of refinementeaving the initial model invariant
from the point of view of its provided interfaces. Thus :

» logical initial architectural models can be expressed, and refined according to specific
project and target constraints,

« formal definition of interfaces can be achieved at a high level of abstraction.

Furthermore, the intensive use of this refinement technique allows to serialize the problems at-
tached to an implementation. Separate descriptions can be attached to different level of abstrac-
tions, and the definition of libraries of reusable objects (defining a high level abstract interface
and different implementations for different targets) is supported.

2.1.16 Deriving HADT objects from DataFlows

Figure 48 - Figure 49 -and illustrate how a complex daes§agemay be defined as a data
instance of an abstract data type. The associated type MESSAGE is either:

e provided by the BUFFER object or

» provided by one of its brother object. However such a solution would introduced additional
visibility relationships, achieving a less structured and maintainable code.

» provided by another HOOD environment object.
» provided by a HADT object defined as an object of the current hierarchy

» provided by a HADT object defined as an environment HADT, fully reusable from other hi-
erarchies and/or designs.

/ Pl N\ ASER By Unix_Shell
Start
Stop

/ Message

BUFFER

LSER By P1 Start
Stop

Get

-

Figure 48 - Objects of initial HOOD model exchanging a complex data “Message”

It is clear following software engineering principles that we shall favour the last HADT object
solution that defines a reusable module of high logical cohesion dealing only with message han-
dling operations/code (see Figure 50 -).

Copyright[d 1995 by HOOD User’s Group page 69

page -70
HOOD USER MANUAL 1.0 by HUM Working Group

/ PARENT \

ASER By Unix_Shell

% Start %
Stop

Message

LSER By P1
BUFFER
% Startl
Stop
Put
Get
Message L Infos N Message
Infos
>/|' ADT_Message \N+—
L
Create
Build
Extract
Opl

_ D Y,

Figure 49 - HADT object ADT_MESSAGE providing a MESSAGE class

/ ADT_Message \

PARENT
P11 N ASER By Unix_Shell ~ / Cl N\
_:;, Start %Start
£—p| Stop Stop
Message

\

Message

Lser By P1

BUFFER

Start
Message ¢ Stop T Infos
L Put
Infos
Get Messagei
< _/

_ v Y,
C ADT_Message)

Figure 50 - ADT object ADT_MESSAGE providing a MESSAGE class

Copyrightd 1995 by HOOD User’s Group page 70

page -71
HOOD USER MANUAL 1.0 HUM-1.0

2.1.2 THE HOOD DESIGN PROCESS AS SEVEN DESIGN RULES

The HOOD decomposition approach may eventually be summarized into seven design rules,
where the system to design is first represented as an object related to its environment, and then
broken down into objects according to three refinement lawesepresented in Figure 51 -
below :

O
< ADT Data
OO ADT _Infos \
s @6\ ADT Message
Y 1, PARENT ~N—
4700 ASER By
§
(E | ORACLE)
Infos
Infos = ‘ T
MODULAR e —
REFINEMENT _ \ L L -/

P1 {(E ADT_Message)

Figure 51 - HOOD Method of decomposition and refinefhent

* modular decomposition linghis refinement line tries to find a modular structure in terms
of object/component exchanging data. For each level of parent/child decomposition, one ap-
plies standard decomposition criteria based on allocation of functions to objects and that de-
fine loosely coupled objects, with minimised provided interfaces.

« abstract data type refinement linthis refinement line tries to specify groupings of data ma-
nipulation operations, into associated HADT supporting objects. Each dataflow identified in
previous line can be implemented as an instance of an abstract data type (or a basic type of
the target language). The operations on the data are identified as the client objects are further
refined, thus this refinement is performed in parallel with the modular refinement. When an
HADT object provided interface is fully defined, it can, in turn, be designed following a
modular decomposition refinement and ADT refinement.

« logical to physical refinement linghis refinement line is not really a refinement, but rather
a “restructuring” of the logical objects into “groupings of objects” that fit and map into target
constraints. It corresponds to the distribution phase identified described in section 1.3.5
above. For example, a grouping of the logical objects is needed when the target system is

6this figure shows the process for the decomposition of one root object, but for large projects, this process may be performed i
parallel on several root objects.

Copyright[d 1995 by HOOD User’s Group page 71

page -72
HOOD USER MANUAL 1.0 by HUM Working Group

distributed over two processors (or heavyweight processes/tasks[3]). In order to avoid net-
work communication bottlenecks, objects will be allocated to one or the other processor ac-
cording to the functions they support, and at the same time trying to avoid heavy remote
induced dataflow. This grouping can be formally stated through the definition of a physical
model in terms of HOOD virtual nodes, matching the target processors, and then allocating
objects from the logical model to these VNS. Hence the designer gains advantages of auto-
mated code generation, that have as principle not to modify the logical code of allocated ob-
jects.

According to the principles summarised above, on can idesdifgn rules to find the objects
which are as follows :

a Start defining the system-to-desigras annterface(set of provided and required services)
to its environment (possibly modelled as a partition of environment objects).

b Define the key objectsabstracting invariants of the system. Such definition may be done ac-
cording to :

¢ functions allocated to the child objects of the system-to-design

d identification of associated dataflows between these objects (note that dataflows are related
to allocated functions)

e Define the implementation of the communication and dataflowsetween these objects
and environment objects.

f For each data previously identified, define associated abstract datgpe as HADT ob-
jects (unless the data can be directly defined as an instance of a type of the target language).
It may happen, that operations that manipulate the data of the type are still vague (create, de-
lete, update), but this is not a problem at this stage. When the refinement of objects identified
in steps 2) and 3) is performed, new operations on the data will be found, and the provided

interface of the HADT object will then be updated in pareillel.

g Resume the refinement of objects identified in 2) and 3llowing the same principles un-
til they can be directly coded, and always trying to identify as much HADT objects as possi-
ble.

h Refine each HADT object(unless it is already terminal), by applying step 2) and 3) and
again identify new objects exchanging data, and possibly new HADT ones.

I Document target language ODS fieldsor resume HADT refinement using the specifics of
the target language

Since HADT objects can be directly implemented or refined into OOP target languages (see sec-
tion 2.12 below for details), the HOOD development approach allows thus to combine both a de-
sign representation target towards flat type structure and object oriented class structure. Whereas
several methods for identification of classes are based on analysis techniques that were mainly
derived from the Entity-Relationship model extended with inheritance, the HOOD design ap-
proach leads naturally to the identification of classes from the definition of logical interfaces and
applicative abstract data types. The resulting structure reflects the top down design trade off par-
tition of the software, rather than a bottom up approach derived from implementation data struc-
tures.

Taking into account both the natural client-server relationship between objects and classes, or-
thogonal to the composition relationships, this approach proves to be a powerful structuring tool.

7. Note that the refinement takes place on several hierarchies at the same time! This is one of the most noticeable
new feature of HOOD3.1 over the earlier definition HOOD3.0.

Copyrightd 1995 by HOOD User’s Group page 72

page -73
HOOD USER MANUAL 1.0 HUM-1.0

It appears today for us, as the only viable integration support for both modular and full object
oriented approaches Furthermore, by integrating both abstract data typing and process concepts
HOOD3.1 is the software engineering tool of choice, supporting the transition from classical de-
velopment practice into full object oriented one.

2.1.3 OTHER GUIDELINES FOR IDENTIFYING OBJECTS

Abstraction techniques are the basics for defining objects; however as designer's experience
goes larger, other design patterns can be used for the early definition of a system architecture:
the top-level architecture is defined as a partition of HOOD objects which may abstract:

» alayered architecture model, possibly hierarchically structured or
» technological development criteria.

Furthermore, the refinement of the top-levels components are constrained by mapping into com-
munication and implementation models.

2.13.1 Structuring based on layered models

Every software can be seen as an implementation of a layered model in which the application
part are on the upper levels, whereas general purpose services and execution infrastructure serv-
ices (OS services, communication services) are located at the lower level of the model.

APPLICATION LAYER

THERMAL AOCS PAYLOAD

GENERAL SERVICES LAYER

TIME ™ TC

E—
TARGET SYSTEM

1 1 1 SERVICES LAYER
L1 I

Figure 52 - Typical Layered Model of a on board Application

2.1.3.2 Structuring based on Technological Components

HOOD modular decomposition principles may simultaneously be used to find a modular struc-
ture in terms of components exchanging data. These components should be first identified ac-
cording to the technology with which they are developed. For each level of parent/child
decomposition, one applies decomposition criteria based either on allocation of functions to
HOOD top-level objects or on component developed using a specific technology. Thus loosely
coupled modules, with minimised provided interfaces may be defined and interfaces between
the different development technologies will be highlighted.

Copyright[d 1995 by HOOD User’s Group page 73

page -74
HOOD USER MANUAL 1.0 by HUM Working Group

The patrtitioning of a software can thus be made according to development and technological cri-
teria. As a result a general architecture model of information systems can be defined at the top-
level comprising:

* adedicated application part

* an MMI (Man Machine Interface) part
» a DataBase or Storage interface part
» possibly a rule system interface part

Figure 53 -gives an example of a technology component decomposition defined for a large in-
formation system.

INFORMATION _SYSTEM

(" APPLICATION
=L e A

BER by IT UNIX shell MMI

Start
{Operator_Op4

—

Start

DBMS Items {Put_Ops} X_init_data
ol {Get_Ops} - X_LIBRARIES
{Mngt_Ops} ;{ _

. y
A

4 3\ J—
|_ESG Knowledge_dat! !
I_DBMS

Start
{Put_Ops} -+
{Get_Ops} Start Sgbd_itgms
{Mngt_Ops {Put_Ops}
{Get_Ops}
{Mngt_Ops}}
L Applis_data

Knowledge_ltgms

Sql_data

OtherSystem >|Knowledge_daH DBMS_Itemsl(DBMS) Applis_data

Figure 53 - Typical System Information Model partitioned through Technological Components

Four objects are associated to four development lines and partition the system into technology
component objects that exchange data. The latter are again described through HADT objects rep-
resented as uncle objects and where:

» the access interface to a datum (with all services provided to its clients) is formalised by the

Copyrightd 1995 by HOOD User’s Group page 74

page -75
HOOD USER MANUAL 1.0 HUM-1.0

set of operations that manipulated the associated type(creation, update of a sub field, read,
delete, checks, etc....) in a HADT object,

» further refinement of those HADT may produce objects/classes, HADTs of less complexity
up to terminal specification directly rewritable in a target (possibly OO) language, is based
on the graphical extension and refinement rules(see below).

2.1.3.3 Structuring and Refinement

Once a top-level decomposition has been chosen, it is also necessary, for the architecture to be
detailed efficiently, to have a technique for refining the associated interfaces. By refining the in-
terfaces according to standard communication and implementation models, the designer can
achieve:

» the definition of reusable components with well established interfaces,
» the definition of generic architecture,

» the definition of application domain specific frameworks, possibly evolving towards stand-
ard ones.

The interfaces between the different subsystems or software layers associated to the develop-
ment activity lines can moreover be formalised as HADT objects that factor the exchanged data
and provide for a common representation whatever the activity and technology context.

The above concepts have been synthesized after feedback and trials on numerous projects, built
into principles and refinement techniques for integrating multiple technology developments.
These principles must be applied all together within a development and list as:

* Modular and ADT Refinement Principles
* Technology Component Architecture Principles
» General Refinement Approach for Complex Systems

2.1.34 Modular and ADT Refinement Principles

Break down rules associated to the HOOD include relationship have as principle to hold the
properties of the parent object with the ones of the child obfagtste 54 -illustrate this mod-
ular refinement technique of a given parent object into child objects that exchange data.

2.1.3.4.a ADTs ldentification and Interface Refinement

Once components and their data exchanges have been defined at one level, their interfaces can
be formally expressed through ADTs ($égure 55 J:

» operations of OBJECTS have parameters that implement dataflows

« dataflows may be seen as “ADT or instances”. Hence associated HADT define the data-
flows.

Copyright[d 1995 by HOOD User’s Group page 75

page -76
HOOD USER MANUAL 1.0 by HUM Working Group

A\

ADT Infos A\
AD I Dala \
Producer_Cconsumers

Figure 54 - Modular and ADT Refinement

TData

{TData_ops}

Figure 55 - Principle of specifying Interfaces through ADTs

Each dataflow identified in the decomposition may thus itself be implemented:
» either as an instance of a primitive type directly supported in the target language, or

* as an instance of an ADT (or a basic type of the target language). The operations on the data
are identified as the client objects are further refined, in parallel with the modular refinement.
When an ADT provided interface is fully defined, it can, in turn, be refined following a mod-
ular decomposition and/or be directly coded in a target language class. Figure 54 - below
summarizes these principles.

Copyrightd 1995 by HOOD User’s Group page 76

page -77
HOOD USER MANUAL 1.0 HUM-1.0

An ADT implementation is defined as an encapsulation in a HOOD object of operation working

on data of that tyfe For best identification of the type on which the operation works, the receiv-
er of the operation is indicated by the reserver parameeallowing to distinguish the main

type from other parameters.

The difference between an ADT implementation and a target language class are the following:

* an ADT implementation is not necessarily terminal and may be easily broken down into
child object, possibly defining as many sub ADTs

* aclass may inherit from another, or may be inherited, what is not the case of ADT imple-
mentations.

* atarget language class is defined as a HOOD type. However a class may be refined by de-
fining/adding attributes, or by extending existing properties through inheritance. A class al-
lows thus, complex data structures to be defined step-wise, leaving possibly provided
interface frozen.

Class —

Refinement through
TYPES and ADTS

AD 1 _INTOS
ADT Data)

Producer_Consumers

Aser By Unij Shell

Aser By Unix_Shell

Start
Stop

Lser By P1

Refineme:

Figure 56 - Combining Modular with ADT Refinement

8\e mean the ADT

Copyright[d 1995 by HOOD User’s Group page 77

page -78
HOOD USER MANUAL 1.0 by HUM Working Group

2.1.3.4.b Target Language Class Refinement through Attribution and Inheritance

In the detailed design or coding of HOOD object implementing an HADT three cases may show

up:

» either the HADT is a complex type, which operations are groupings of operations on «sub>»
types, and which can thus be broken down in as many HADT objects.

» either a subset of these operations lead directly to a target language class identification
» either all provided operations of the HADT lead to a target language class definition

When a target language class is so identified, it is only defined as a HOOD type and through its
provided operations, and when the detail design is performed the designer may:

» use attribution for defining properties and data structures common for all instances of the
class

» use inheritance in order to factor attribute and operations declaration while sharing the asso-
ciated code with the inherited class.

2.1.3.4.c Implementation Refinement

This kind of refinement is as the modular refinement; we stress it here only to recall that the de-
signer may elaborate a logical solution that relies on software layers that isolate the system-to-
design from the specificities of the target infrastructure and OS. This kind of refinement is illus-
trated inFigure 57 5 is one way to take into account the non-functional constraints such as:

* reuse of software architecture or components elaborated project by project in a given appli-
cation domain.

» development with unclear requirement, or where full target requirement are not yet fixed at
the time of the design.

Copyrightd 1995 by HOOD User’s Group page 78

page -79
HOOD USER MANUAL 1.0 HUM-1.0

Implementation
efine

Refinement through

UNIX_BIOS\
TYPES and A OIRACLS N
ADT Infos N
ADT_Data N\
/ Producer_Consumers
Aser By UBx_Shell 7 P11 ™\ Aser By Unix_Shell m
ST
Stop \Message Stop
\ “Message
Lser By P1 %%)1? (E ORACL}
Get
Modula (& J j/
Refinem
%
J

Figure 57 - Refinement Techniques of a HOOD model

Copyright[d 1995 by HOOD User’s Group page 79

page -80
HOOD USER MANUAL 1.0 by HUM Working Group

2.2 THE HOOD DESIGN DOCUMENTATION

In the following we give a description tfe design documentaticuitable for describing and
checking HOOD designs. Be aware ttias is a design documentation descriptioat to be con-
fused with gproject documentatiowhich may need additional documentation items depending
on the used documentation standard.

221 OBJECTIVES

The HOOD design documentation shall favour communication and explication of a solution

within a development team. Thus it shall describe the software at different levels of details and
abstraction. Also it shall allow QA teams to check that both HOOD approach and description
standards have been enforced during a development.

2.2.2 DOCUMENTATION CONCEPTS

HOOD models are represented through a data model where the ODS is the main structuring con-
cept.

The ODS (Object Description Skeleton)s a standard grouping of the object’s characteristics
organised in structured fields. Informal textual descriptions are defdest(iption, Interfaces,

Types, Data, Exceptions and Control Structuresva as associated semi formal descriptions
(Operations, Types, Exceptions, Data, Code of OBCS and OPCS).

Note that the ODS is a logical concept; a physical representation of an ODS is a piece of text
grouping the contents of the fields of an ODS into a human readable form. This latter may take
different layouts according to the documentation features of the HOOD toolsets and the purpose
of the documentation.The associated notations and formalisms can in fact be used for:

» informal verification (through author-reader cycles) of textual descriptions
» design verification (designs checks, pseudo-code)

* code generation for prototyping

» code generation for final products.

The SIF (Standard nterchangé-ormat) is defined for design exchanges with other HOOD tool-
sets or development tools. It defines formally the layout in ASCII format of files containing ODS
representation in ASCIlI TEXTs. Hence a SIF representation of an ODS is a valid one, but may
not be a very readable document.

2.2.3 DOCUMENTATION MANAGEMENT

The HOOD documentation shall be structured as sets of ODSs, where all or part of the ODS
fields are present, depending on the type of document that is produced. For example a design doc-
umentation for an architectural document shall group together a set of ODSs, with text sections
associated to the basic design step activities included in the DESCRIPTION field of the ODS of
the OBJECTS under review. We recommend to structure parent ODS with their DESCRIPTION
field structured into H1,H2,and H3 text sections. H3 is a text comprising the textual description

of child objects and operations, that can also be taken again as the H1 texts of the ODS associated
to the child objects.

Copyrightd 1995 by HOOD User’s Group page 80

page -81
HOOD USER MANUAL 1.0 HUM-1.0

A HOOD documentation defines accordingly as:
e asetof ODS, each being unique in the documentation
e astructure that follows:
- the spaces defined by the object, class and VN hierarchies

- the parent-child hierarchical relationship

ODS Parent
DESCRIPTION
Section H1
Section H2
Section H3

description Object

CHILD1

description Object
N CHILD2

ODS CHILD3
DESCRIPTION

ODSCHILD2
DESCRIPTION

CHILD1
-SCRIPTION
_Section H1

Section H1

Section H

Figure 58 - Relationships between parent and child ODS description sections

22.4 DOCUMENTATION ELABORATION

Three states may be distinguished in the ODS life-cycle (see figure below):
« ODS CHILD: only ODS fields associated to the interface or user manual are documented.

« ODS PARENT: all fields of the ODS are completed. Internal parts only have description of
the “implemented_by” relationship between provided resources of the parent and the asso-
ciated ones of child objects.

« ODS TERMINAL : all fields of the ODS are completed and refined in details, especially the
fields of the internals that hold the pseudo code and code parts.

DETAILED

Parent Design step 5 STATE REEEMENTS
ODS CHILD
Voo Detied
design step Ve”f'gaZO”G
ode
STATE
PARENT

(specifications
externals .
defined) Code Generation

STEP VERIFICATION$ & STEP VALIDATION
Figure 59 - States in the ODS production life cycle

Copyright[d 1995 by HOOD User’s Group page 81

page -82
HOOD USER MANUAL 1.0 by HUM Working Group

2.3 EVALUATING A HOOD DESIGN

When the design activities have produced HOOD designs, (taking shape with associated docu-
mentation), verification activities shall take placeettsure that “the design has been pro-

duced right” (and hence is possibly the right design). Those verification activities have been to
our experience, the most troublesome issues so far in the HOOD projects. This is because the
HOOD design representation may cover several models, several objects, several system config-
uration, and are possibly constrained to be materialised in enormous linear paper documentation
mixing several textual and graphical formalisms.

In the following, we suggest a representation of the HOOD development process as a set of states,
where the transition from one state to another is triggered after a verification step.

23.1 DEFINITIONS

2.3.1.1 Goal of HOOD design verification

Verification activities take place after design activities and have both technical and organisation-
al goals:

» technical goals

- A HOOD design is a representation of a SYSTEM_TO_DESIGN which starts with a de-
scription of a PARENT “root” object with respect to its Environment and is refined into
successive descriptions of child objects. In order to ensure consistency of these successive
representations up to the detailed design architecture definitions, HOOD defines rules and
additional verification procedures may be ensured within each object's scope for each par-
ent-child decomposition step, and from step to step up to terminal objects are reached.

- Consistency of a HOOD model has to be checked throughout the HOOD process. HOOD
recommends reviews at the end of a basic design step, as well as at the end of a level (i.e;
when all branches of a tree have been decomposed).

- Moreover, when a HOOD model is produced, feasibility of the target implementation may
to be checked, traceability to requirements should be ensured and the overall quality of the
model should be estimated.

* organisational goals

- The work progress must be evaluated in order to help management of a project. The end
of design activities (through documentation delivery and/or reviews) at the end of notice-
able basic design steps provide candidate milestones for work progress evaluation

- We shall not take into account here other QA activities here. This is because QA activities’
goal is to verify that technical activities have been correctly executed. Depending on
projects (where QA procedures are defined and adapted in a QA plan), QA defines proce-
dure that constraint technical verification activities to produce traces of their activity (doc-
umentation, verification reports, tests results, etc).And QA procedures check activity by
examining these traces.

Copyrightd 1995 by HOOD User’s Group page 82

page -83
HOOD USER MANUAL 1.0 HUM-1.0

2.3.1.2 Means for HOOD design verification

Products associated to the design process and activities are of two kinds:

« formal documentation (graphical notations, and/or textual ones that compilable or executa-
ble: Ada, Petri nets, Finite State Automata, Esterel etc.)

« informal documentation (texts in natural language)

Evaluation techniques of these products are of two kinds: static verification and dynamic verifi-
cations, but are mainly informal techniques, and consists in the following activities:

* inspections (sampling of product or documentation pieces and evaluation with respect to
qualitative criteria)

« walk-throughs (assessment of technical contents with error underpinning),

- reader-writer cycles(formal checking of documentation against qualitative and technical
criteria with configuration management of errors, remarks, and modifications)

» reviews (checking of product submitted to review with respect to qualitative and technical
criteria).

« Automatic or semi-automatic checking can added to these manual means:
» use of design checkers and cross-reference tables that are part of most HOOD toolsets,

« compilation (syntactic checking) and/or execution of fields expressed with a formal nota-
tion.

Design validation and verification procedures in HOOD will be based on the separation, in

time, of the descriptionsof first an external description of an object and then the description of
its implementation. Step verification and validation, ensuring consistency of one object decom-
position, at the end of a basic design step, is distinguished from level validation ensuring con-
sistency of a complete level decomposition(i.e. several objects together).

2.3.2 DOCUMENTATION FOR VERIFICATION AND REVIEWS

Documents for reviews may be bublgl extracting information and texts from ODSsof con-

cern associated to the model under evaluation at a given date or for a visible point in the project.
Some HOOD toolsets allow to build document templates and associated outputs may be pro-
duced in PostScript and/or MIF, RTF formats and so, fed in text-processing systems for produc-
tion of quality documentation according to project documentation standards.(ESA or DOD2167)
Documents for specific development activities (Quality control, Unit test Definition, Pseudo
code reviews, code reviews,...) may be directly build with a HOOD toolset provided it allows to
select relevant ODS and relevant fields for inclusion in a given document.

23.2.1 Preliminary Design and Detailed Design Documents

Preliminary design document will only include ODSs in state “PARENT” and “CHILD”.
Detailed design documentation will at least comprise the set of ODS that went from state
“CHILD” to state “TERMINAL”. In order to simplify documentation management detailed de-

9.

Copyright[d 1995 by HOOD User’s Group page 83

page -84
HOOD USER MANUAL 1.0 by HUM Working Group

sign documents may also be defined as preliminary design documents where all ODS of state
CHILD” have been replaced by ODS in state “TERMINAL”.

2.3.2.2 Documentation for Verifications

Every document taken as input of a development activity should be in a significant state, i.e. con-
tain only the required information for the activity to be conducted. Also the document should be
consistent, that is information pieces contained shall be in consistent state one with each other.

* Documents for checking ODS consistencyf the object was decomposed, the check will
look for consistency between parent descriptions and child implementations. Information
items needed are:

- For a non refined object:
its ODS in state “CHILD”
- For a refined object:
its ODS in state “CHILD".

its ODS in state “PARENT” if it was decomposed into child objects, otherwise its ODS in
state “TERMINAL”

- The contents of an ODS in state “CHILD” is given in appendix A4.1
- The contents of an ODS in state “PARENT” is given in appendix A4.2
- The contents of an ODS in state “TERMINAL” is given in appendix A4.3

» Documents for Design Step Checkinglhe goal here is to check consistency between the
child and parent descriptions of the decomposed object and between the parent descriptions
and child implementations. Thus the information items needed are:

- the two ODSs associated to the PARENT, i.e. the ODS in state “CHILD” and the same
ODS in state “PARENT"”

- the ODSs in state “CHILD” of the child objects.

- If the verification addresses a set of N basic design steps, then a set of N such documents
would be reviewed.

* Documents for REVIEWS The goal here is for reviewers to gain an understanding of the
architecture, so that they are confident in the progress of the technical WwaskthE doc-
umentation should target the understanding of the system and provide support for the
checking of the object interfaces(the level of confidence achieved after the review is such
that these are FROZEN and put under change control). Such a documentation may contain:

- the description of the system_configuration of concern
- for each system_configuration hierarchy:
- the description of the design tree
- for each object of the hierarchy
Problem definition (section H1.1)

graphical description of its environment (extracted from section H1.2.2 if the current ob-
ject is a root, otherwise from H3.4 of the parent of the current object)

decomposition into child objects and the textual description of how it works, if the current
object is non terminal (extracted from sections H2, H3.1, H3.2, H3.4 et H3.5)

its PROVIDED INTERFACE (extracted from ODS)

Copyrightd 1995 by HOOD User’s Group page 84

page -85
HOOD USER MANUAL 1.0 HUM-1.0

its input and outputs (DATAFLOWS et EXCEPTION_FLOWS extracted from ODS)
description of its dynamical behaviour (extracted from ODS OBCS fields).
- verification reports upon the design steps.

2.3.2.3 Summary on Documentation and Reviews

Basic Design Step Activities Activity Outputs
A

—

DEFINITION of Problem
Design Requirement
Analysis

H1 tex

ELABORATION o H2 text

a SOLUTION

textual Solution
Strateg
STRATEGY
ORMALISATION o Textual Description
STRATEGY of OBJECTS

OPERATION H3 te
READINGS, [HOOL DIAGRAM
Revigws™by = = = =>
readers
FORMALISATION o «ODS PARENT
SOLUTION == | .0DSs Enfants ODSs

Figure 60 - Design Step activities and associated documentation section

Figure 60 - above summarizes the activities of a basic design step and illustrates the associated
documentation sections to be produced and checked. We thing that the important things to recall
and to enforce (by quality assurance) are:

* good performance of the H1 activitieswhich allows then to a designer to batleigrate
the requirementsand to outline associated solutions (or parts of) strategies in its mind.

Note that the elaboration of H2 and H3 sections are not sequential activities, even if associ-
ated documentation sections are always presented as sequential ones. The description of a
solution strategy can be produced in parallel and/or after an elaboration of a graphical out-
line, and vice-versa. The refinement of textual descriptions of operations and/or objects in
section H3 allows to gain a better understanding of the solution, and hence and refinement
of the earlier solution strategy produced as H2.

« the central importance of an author-reader cycle at the end of H3 activitie#t that
time, a textual and graphical description of the solution is available in a form that is
understandable by all project members.

» Experience on earlier HOOD projects has shown that author-reader cycles on more formal-
ized notations was almost useless, andghatt author-reader cycles are mandatory, with

Copyright[d 1995 by HOOD User’s Group page 85

page -86
HOOD USER MANUAL 1.0 by HUM Working Group

a low volume of information to be check8dThe end of H3 is the ideal timé! for a effi-
cient reading of the solution(later it will often be too late to impose changes in the solution)

* Moreover, the next phase of formalisation of the remaining fields of ODS is a work that will

require much more efforts, and which can only be checked by motivated]ﬁewlpim are
specialized ones in the notations used (Ada, C, STDs, or C++)

» the importance of the understandibility of the texts produced in sections H2 and HEx-
perience has shown a bad tendency for HOOD designers to produce cryptic H2 and/or H3
descriptions. (often because they do no really see why they have to produce these text sec-
tions, because they always think the important thing is the code.). We take her the opportu-
nity to recall that:

- "good design is something that reads clear’i?’

- most of these texts may be extracteid setup a design documeat a formal project
REVIEW , where people from different application areas may participate. In that case,
thesadescriptions in section Hi are primary elements for quality and complexity mas-
tering assessmenbf the system under design.

2.3.3 DESIGN STEP VALIDATION

Verification is primarily fulfilled by informal quality assurance techniques such as inspections,
walk-throughs and reviews over HOOD documentation produced during a basic design step.
Since HOOD allows a designer to produce informal textual descriptions in natural language to-
gether with semi formal graphical descriptions, these can be