
page -90

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 90

page -89

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 89

• Include relationship rules define the way a given parent object is implemented by a
set of child objects or classes according to their types and components (Operations,
Types, Constants, Exceptions, OBCS and Dataflow).

• breakdown rules describe the implemented by relationship properties according to
the type of the associated operations (constrained, unconstrained, provided, re-
quired, internal operations, operation implemented by an OP_Control,
operation_set) and the status of the associated object (Terminal, Non-terminal).

• Operation rules give the basic definitions and properties of the HOOD operations.

• Visibility and naming rules give, in addition to the above definitions (section 14.1),
naming and consistency checking rules :

- roots shall have different names in a system configuration,
- object names shall not be overloaded within design tree,
- an operation may be overloaded within an object.

• Consistency Rules check consistency of child descriptions with respect to their par-
ent descriptions :

- parent REQUIRED_INTERFACE with respect to union of child
REQUIRED_INTERFACES,

- parent PROVIDED_INTERFACE with respect to union of child
PROVIDED_INTERFACES.

• Internal consistency checks ensure consistency of the HOOD entities within the
ODS, and between ODS and diagrammatic description.

• These checks may be performed recurrently on one or more objects in the Design
Process Tree.

page -88

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 88

- The REQUIRED_INTERFACE of a child object has visibility on the names of
all brothers, uncles, classes and root objects.

- The REQUIRED_INTERFACE of a child object can indirectly access all acces-
sible entities declared in all brothers, uncles, classes and root objects.

• the scoping within a system configuration is summarized within figure below.

Figure 49 - Scoping within a system configuration

Homographs may appear in REQUIRED_INTERFACE. In that case, ambiguity must
be solved by qualifying the entity reference56.

15.2 HOOD RULES

Formal rules can be defined for checking consistency and completeness of HOOD de-
sign descriptions. In the following, an overview of several categories of rules are given;
a detailed description of these rules is given insection 16 of present document.

• General definitions rules give the basic definitions and properties of HOOD object
types (Active, Passive, Environment , Class, Op_Control, Generic, VN) in the
HDT.

• Use relationship rules define the way an object, class, generic or Vn can use each
other within the respective scopes of the declaration of entities involved.

56.e.g. for overloaded operation, ambiguity is solved by replacing the operation name by its complete signature.

PROVIDED IF

REQUIRED IF

Class_Name

All classes

PROVIDED IF

All
environment

PROVIDED IF

REQUIRED IF

All uncles

means
accessibility

PROVIDED IF

REQUIRED IF

All brothers

page -87

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 87

- the PROVIDED_INTERFACE itself,
- its OBCS (if any), or its VNCS (for VNs only),
- its INTERNALS declarations (for terminal objects),
- its IMPLEMENTED_BY part (for non terminal objects),
- its OPCS parts(OPCS_HEADER,OPCS, OPCS_BODY).

- an entity declared in the INTERNALS of a terminal object is visible from :
- the INTERNALS declarations themselves,
- the OBCS parts(OSTM, CLIENT_OBCS, SERVER_OBCS if any),
- the OPCS parts(OPCS_HEADER,OPCS, OPCS_BODY)

- an OPCS name is visible from :
- the other OPCSs,
- the OBCS parts.

- an entity listed in the REQUIRED_INTERFACE is indirectly accessible from the
whole object55.

• the scoping within an object, class, generic or VN is summarized in figure below.

Figure 48 - Scoping inside an object

• Accessibility of an entitywithin a system configuration is defined as :

- An entity (except object and generic) is accessible only if it is declared in the
PROVIDED INTERFACE. Other entities are hidden.

- The REQUIRED_INTERFACE of a root object has visibility on the names of all
generics and other root objects.

- The REQUIRED_INTERFACE of a root object can indirectly access all acces-
sible entities declared in all generics and other root objects.

55.Reference to the entity shall only be done by selection (i.e. prefixing its name with the name of the object, using the
dotted notation).

PROVIDED IF

REQUIRED IF

OPCS

PROVIDED IF

REQUIRED IF

PROVIDED IF

REQUIRED IF

Child
object

Terminal Non terminal

Declarations

Implemented_byOBCS
part

page -86

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 86

15 DESIGN CHECKING,
SCOPING, VISIBILITY

AND HOOD RULES

A HOOD model is a representation of a System to Design in terms of objects, classes,
generics and relationships within a system configuration. In order to ensure consistency
of these representations, HOOD defines visibility and scoping rules.

15.1 VISIBILITY AND SCOPING

In the following,

• entity stands for OBJECTS, CLASSES, GENERICS, VNs, OPERATIONS,
TYPES, CONSTANTS, DATA, EXCEPTIONS, except stated otherwise;

• visibility of an entity is the property of that entity to bedirectly accessible by an-
other one;

• scope of the declaration of an entity is defined as parts of the system configuration
or ODS parts where the entity is accessible (directly or indirectly54).

In order to promote object orientation: encapsulation, information hiding, testability
and reuse support principles, HOOD defines objects through well defined interfaces,
the PROVIDED and REQUIRED ones, allowing context-independent definitions of
objects.

As primary rules to enforce these principles, visibility of entities declared within an ob-
ject is restricted to that object, and the scope of any declaration outside the object is
defined with respect to the current system_configuration :

• An entity can only be visible if it was declared.

• The scope of an entitywithin an Object, Class, Generic or VN is defined as
follows :

- an entity declared in the PROVIDED_INTERFACE is visible from :
54.Indirect access means that the entity has to be referenced by selection i.e. by prefixing it with the name of the entity
where it is declared (object or class).

page -85

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 85

turn parameters using services provided by a Client_Obcs instance. Such code is
illustrated inAppendix J.10.1.1 for ADA and inAppendix J.10.3.1 for C++

- The OPCS_SER code part allows to describe for each protocol constrained op-
eration, the processing of an effective call to the required operation upon a local
copy object_SERVER and the definition and sending back of return parameters
using services provided by a Server_Obcs instance.Such code is illustrated inAp-
pendix J.10.1.2for ADA and inAppendix J.10.3.2 for C++

- The OPCS_HEADER code part allows to implement for each concurrency con-
strained operation, the activation of a synchronization service (either call to a
semaphore for MUTEX constraint, or call to HOARE monitor for ROER and
RWER constraints), provided by a module of the HRTS library.
Additionally, the object internal state is managed through a call to the FIRE serv-
ice provided an FSM instance of class TFsm from the HRTS. If the state is OK,
the execution resumes in the OPCS_body, if the state is not OK, the execution
resumes into an exception of name X_BAD_REQUEST that gives control back
to the client.
The OPCS_FOOTER code part allows to implement for each concurrency con-
strained operation, the release of synchronization service possibly previously set
in the OPCS_HEADER.
OPCS_HEADER and FOOTER code is illustrated inAppendix J.10.1.3 for
ADA and insection J.10.3.3 for C++.

• Description of OPCS_BODY

Description of OPeration Control Structures (OPCS) are produced in a twofold way :

• first as a short description in natural language sentences, aiming at describing how
the operation works.

• second as a more formal description :

- a pseudo code part allowing to use any PDL mixing keywords and parts of natu-
ral language sentences. As the design is refined, these natural language parts are
gradually replaced by functions and expressions. This description may later be
included as comments in the code part.

- a code part refining the pseudocode description and implementing the operation
in target language.

Some operation may have no OPeration Control Structures (OPCS) , especially class
operations which are inherited or abstract :

• the OPCS of the inherited operations is the same as the one that is described in the
ODS of the inherited class.

• the OPCS of an abstract operation shall be defined in the ODS of the subclass where
the operation is redefined.

page -84

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 84

- ROER -- to specify that an operation shall be executed by multiple “reader
threads” according to a “multiple readers-one writer” schema

- RWER -- to specify that an operation shall be executed by a single writer
thread at a time, according to a “multiple readers-one writer” schema.

Note that the ROER and RWER constraints operation may be mapped intoAda protect-
ed record entries by using the pragma PROTECTED (seesection F.8).

14.17.2 Description of OBCS Internal Parts

The INTERNALS part of the ODS allows the user to specify and edit, for each con-
strained operation, the target code associated to OBCS and OPCS units according to
the type of operation constraints:

• OBCS_CODE :

- The OSTM code field is the target language implementation of the OSTD, using
a standard HRTS.FSM objects. Such code is illustrated inAppendix I.2.1 for
ADA and inAppendix I.2.2 for C++. Such code may be automatically generated
by a toolset from the OSTD description.

- The Client_Obcs part allows to setup an interprocess communication facility
for the object, (it possibly does marshalling of the parameter data structures into
a stream of bytes) send it through a (possibly remote) FIFO queue to the
Server_Obcs, waits on return message and process return parameters (possibly
unmarshalling the return data). Such code is illustrated inAppendix J.3.2.2 for
ADA and insection J.3.3.5 for C++.

- The Server_Obcs part allows to describe for each protocol constrained opera-
tion, the polling and analysis of an interprocess communication message re-
ceived through a FIFO queue, and its dispatching to Server_ER code.Such code
is illustrated inAppendix J.3.2.3 for ADA and inAppendix J.3.3.5 for C++.

Client_OBCS part may be empty code especially when target system is full Ada.
Server_OBCS part on the other hand is the intermediate part between the original serv-
er code and a remote client (seesection 17.2 for a detailed explanation on target code
structure for client-server architecture). As such Server_Obcs part play the role of the
Object Request Broker in the CORBA architecture[OMG-CORBA]. Moreover, when
the target is supporting a CORBA implementation, the Server_Obcs53 may directly ac-
ces the CORBA services for handling remote message exchanges.

• OPCS related CODE:

- The OPCS_ER code part allows to describe for each protocol constrained op-
eration, the definition of an interprocess communication message, its sending to
a server process through a FIFO queue (remote or not) and the processing of re-

53.Such an implementation is under test in C++, and an illustration will be included in the final release of current docu-
ment.

page -83

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 83

Exceptions propagated by child operations implementing parent operation, propagate
also from parent to its clients. In the ODS, the exceptions which propagate from a server
to a client must be stated in the provided interface of the server and in the required in-
terface of the client.

14.17 DESCRIPTION OF OBCS

OBCS implementation description is splitted into several fields: OSTD-OSTM,
Client_Obcs and Server_Obcs which are global to the object, and other code fields
which are associated to each OPCS of constrained operations. This splitting has as goals
to allow separated description and verification of pure state constraints from inter-proc-
ess communication descriptions. The OBCS are moreover separated into visible and in-
ternal parts.

14.17.1 Description of OBCS Visible Part

The OBCS visible part is described through three fields:

• first as a short description in natural language sentences, aims at describing how the
operation control flows interact and define the object or class behaviours :

• A description of the OSTD may then be established as a state transition diagram
where transitions are only triggered by operation according to the semantic of the
object or class.

• A description of the protocol constraints may then be given for the following proto-
col constraint alternatives :

- ASER -- Software and message interrupt
- LSER -- Acknowledge protocol
- HSER -- RPC protocol
- RASER -- Software interrupt with later asynchronous reporting
- RLSER -- Acknowledge protocol with later asynchronous reporting
- ASER_By_It <interrupt vector >-- to specify a hardware interrupt
- <informal_text_label> giving provision for user defined protocols.

Each protocol constrained alternative may be combined withTO = duration
-- to specify a timeout constraint upon the operation

• Each above alternatives may moreover be combined with the following concurrency
constraint, followed by <informal_text>:

- MTEX -- to specify that a whole operation shall be executed in mutual exclu-
sion

page -82

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 82

• primitive types of the target language
or

• user defined types as provided or internal types of the current object
or

• provided types of another HOOD object. This can be an object implementing an
Abstract Data Type(ADT), or a HOOD class (seesection 9). In that latter case the
name of the class is implicitly provided as a HOOD type.

DATA instances of primitive, or user defined types may only be declared in the INTER-
NALS of terminal objects. DATA instances associated to implementations of ADTs
may:

• be declared as data items in the INTERNALS of terminal objects.

• be dynamically created via execution of a specific constructor operation provided
by that object or class. This dynamical creation takes place in the OPCS fields.

14.15 DESCRIPTION OF
OPERATION_SET

The members of an operation_set are declared in the provided interface of the parent
object with the keywordMEMBER_OF followed by the name of the operation_set (see
section 14.8 for an example). An operation can not be member of several
operation_sets.

In the case the operation_set is implemented by a child operation_set, the associated
IMPLEMENTED_BY link shall be defined in the INTERNALS of the parent object.

14.16 DESCRIPTION OF EXCEPTIONS

A HOOD exception is associated to an operation. A HOOD exception propagates along
the use relationship from the operation where it is raised up to the operation of the client
object which executes the associated recovering code. Exception handling is similar to
Ada where an exception may be handled locally or propagated further.

Exceptions which are provided by a non terminal object shall beimplemented by child
objects. The internal exception field of the parent ODS is then filled with the keyword
IMPLEMENTED_BY and the name of the child exception.

page -81

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 81

• either as the identifier of the HOOD module associated to the class, or

• specifically for Ada targets, as “Instance” (in which case the naming convention sug-
gested in[ROSEN95] may be enforced.

 A class is moreover specified through:

• an inheritance field, that defines all superclass from which the current class inherits,
and shares properties (operations and public attributes). Inheritance is described us-
ing the target language syntax. A Class may have public inheritance (in which case
the inheritance field is in the provided interface, or private inheritance (in which case
the inheritance field is in the internals of the ODS).

• attributes field, that define data structures aggregated to the class. Attributes are de-
scribed using the target language syntax. A class may have public attributes (in
which case the attribute field is in the provided interface) and private attributes (in
which case the attribute field is in the internals of the ODS). Public attributes are use-
ful when describing static data models; however HOOD recommends to restrict the
use of public attributes since associated instance data would be accessible with al-
most no control by clients.

section 14.7 gives an illustration of ODS and class description with C++ as target lan-
guage, whereassection 14.8 gives an illustration of class description for an Ada target.

14.14.3 Description of Constants

A provided constant is declared in the provided interface and only its name is accessible
by clients. Its structure is hidden to clients and is described in the INTERNALS where
two cases may occur :

• the constant structure is fully described when the object is terminal,

• the constant structure is IMPLEMENTED_BY a provided constant of a child object
when the object is not terminal.

For internal constants (which can only appear in terminal objects), the constant is de-
clared and fully defined in the INTERNALS.

14.14.4 Description of Data

HOOD objects exchange data via parameters of operations. Data can only be declared
in terminal objects, and are defined in the INTERNALS of the object as data items in
target language syntax.

Data are either instances of :

page -80

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 80

14.14 DESCRIPTION OF TYPES,
CLASSES, CONSTANTS AND DATA

HOOD types are used to define formally parameters and data exchanged between ob-
jects through their operations. In HOOD, types define only syntactic entities i.e. type
checking is limited to name consistency checks.

A type, constant or data is specified by aname (its declaration) and astructure (its
definition).Types, constants and data structures are defined using the target language
syntax.

14.14.1 Specification of Types

For provided types, two cases may occur :

• the type is declared in the provided interface and only its name is accessible by cli-
ents. Its structure is hidden to clients52 and will be described in the INTERNALS
where two cases may occur :

- for a terminal object, the type structure is fully described.
- for a non terminal object, the type structure is IMPLEMENTED_BY a provided

type of a child object.
• the type is declared in the provided interface with name and structure, which are

thus fully accessible to clients. Two cases may occur :

- for a terminal object, the type structure is fully described in the provided inter-
face and there is no any additional description field in the INTERNALS.

- for a non terminal object, the type structure is IMPLEMENTED_BY a provided
type of a child object.

For internal types (which can only appear in terminal objects), the type is declared and
fully defined in the INTERNALS.

14.14.2 Specification of Classes

A Class is a HOOD provided type that defines the parameterme of the class operations.
Since a HOOD CLASS may provide other types, the type associated to the class is
called themain type. In order to improve readability, it is recommended to name the
main type:

52.This type structure hiding is similar to the Ada Private and Limited Private type concepts. It enforces abstract
data type and object structured orientation.

page -79

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 79

14.13 NON TERMINAL VN ODS

VIRTUAL_NODE Virtual_Node_Nameis
DESCRIPTION

--| Informal text describing WHAT the VN is doing in a few lines.|--
 IMPLEMENTATION_CONSTRAINTS

--| Informal text. Describes any implementation constraints. |--
[PRAGMA ALLOCATED_TO Physical_Node]

PROVIDED _INTERFACE
OPERATIONS

Message_In [list of (Parameter : Mode Type [:= Default_Value])]
added with a textual description of how the operation is triggered (by active polling or by interrupts)
List of (VN_Other_Provided_Operation_Name [list of (Parameter : Mode Type [:= Default_Value])]
[RETURN Type] added with a textual description of WHAT operation does)

VN_CONTROL_STRUCTURE
DESCRIPTION
--| Informal text describing the client-server and communication protocols. |--
CONSTRAINED_OPERATIONS

Message_IN [CONSTRAINED_BY ASER [Label_text]]

REQUIRED _INTERFACE
VN_Name --| For all required virtual nodes in order to reflect graphical description.|--

DATAFLOWS
--| Standard fields |--

EXCEPTION_FLOWS
--| Standard fields |--

INTERNALS
--| Formal description of interface implementation.|--

VNs
List of (Child_VN_Nameadded with textual description)

OPERATIONS
List of (Provided_Operation_Name IMPLEMENTED_BY Child_VN_Name.Operation_Name)

END Virtual_Node_Name

page -78

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 78

14.12 TERMINAL VN ODS

The ODS of a terminal Virtual Node is the following:

VIRTUAL_NODE Virtual_Node_Nameis
DESCRIPTION

--| Informal text describing WHAT the VN is doing in a few lines.|--
 IMPLEMENTATION_CONSTRAINTS

--| Informal text. Describes any implementation constraints. |--
[PRAGMA ALLOCATED_TO Physical_Node]

PROVIDED _INTERFACE
OPERATIONS

Message_In [list of (Parameter : Mode Type [:= Default_Value])]
added with a textual description of how the operation is triggered (by active polling or by interrupts)
List of (VN_Other_Provided_Operation_Name [list of (Parameter : Mode Type [:= Default_Value])]
[RETURN Type] added with a textual description of WHAT operation does)

VN_CONTROL_STRUCTURE
DESCRIPTION
--| Informal text describing the client-server and communication protocols. |--
CONSTRAINED_OPERATIONS

Message_IN [CONSTRAINED_BY ASER [Label_text]]

REQUIRED _INTERFACE
VN_Name --| For all required virtual nodes in order to reflect graphical description.|--
DATAFLOWS

--| Standard field |--
EXCEPTION_FLOWS

--| Standard field |--
INTERNALS --| Formal description of object allocation.|--
OBJECTS

List of (Allocated_Object_Name added with textual description)
OBJECT_CONTROL_STRUCTURE

DESCRIPTION
--| Informal text describing the client-server and communication protocols. |--
CONSTRAINED_OPERATIONS

Message_IN [CONSTRAINED_BY ASER [Label_text]]
CODE

ClientVNCS
 {Client code common to all remote operation}

ServerVNCS
 {Server code common to all remote operation}

OPERATIONS
List of (Provided_Operation_Name

IMPLEMENTED_BY VNCS.Operation_Name51 |
END Virtual_Node_Name

51.In case of overloaded operation the full signature is given.

page -77

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 77

14.11 GENERIC INSTANCE ODS

An instance of a generic is declared as follows :

OBJECT|CLASS Generic_Instance_Nameis INSTANCE_OF Generic_Name
 [INSTANCE_RANGE lower_bound.upper_bound]

PARAMETERS
TYPES

List of ({ Formal49_Type_Name=> Object_Name.Actual_Type_Name }
 added with textual description)

CONSTANTS

List of ({Formal_Constant_Name=> Object_Name.Actual_Constant_Name=> Value50 }
 added with textual description)

OPERATIONS
List of ({Formal_Operation_Name=> Object_Name.Actual_Operation_Name }

added with textual description)
 DESCRIPTION

--| Standard fields |--
IMPLEMENTATION_CONSTRAINTS

--| Standard fields |--
PROVIDED _INTERFACE

--| Standard fields |--
REQUIRED _INTERFACE

--| for all required objects needed to provide the actual parameters |--
OBJECT Object_Name

TYPES
List of (Actual_Type_Name)

CONSTANTS
List of (Actual_Constant_Name)

OPERATIONS
List of (Actual_Operation_Name)

DATAFLOWS
--| Standard fields |--

EXCEPTION_FLOWS
--| Standard fields |--

--| No internals since same as in class ODS |--

END Generic_Instance_Name

49.This is the name as it is declared in the parameter fields of the generic ODS.
50.The value shall be consistent with the constant type.

page -76

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 76

OPERATION GetCurrentSize (Me:in TStack) return HRTS_PE.T_Integer is
DESCRIPTION
Function to get the number of current items in the Stack
USED_OPERATIONS --NONE;
PROPAGATED_EXCEPTIONS --NONE;
HANDLED_EXCEPTIONS --NONE;
PSEUDO_CODE

 {return CurrentSize attribute}
CODE

return CurrentSize;
END_OPERATION GetCurrentSize;

14.10 GENERIC DESCENDANT ODS

The ODS of an object or class whose parent or root is a generic48, and which require
formal parameters is the following:

OBJECT|CLASS Nameis PASSIVE | ACTIVE
--| Standard fields |--

REQUIRED_INTERFACE
FORMAL_PARAMETERS

TYPES
List of (Formal_Type_Name)

CONSTANTS
List of (Formal_Constant_Name)

OPERATIONS
List of (Formal_Operation_Name)

--| Other required objects can only be root objects of the
current system configuration |--

--| Standard ODS for the remaining fields |--
END Name

If the descendant does not requires any formal parameter, its ODS is reduced to a stand-
ard one.

48.Such an object could be named a descendant of the root, and is not to be confused with a descendant defined as an
instance of a generic.

page -75

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 75

 GetStatus return TPE::OK_KO;
EXCEPTIONS
X_FULL RAISED_BY PUSH when no more space.
X_EMPTY RAISED_BY POP when no more items

OBJECT_CONTROL_STRUCTURE
DESCRIPTION
The semantic of STACK is warranted by our implementation only if operations are called according to the possible
sequences as expressed in the OSTD. NOte that the non determinism existing in state N_E_N_F is resolved in the
OPCS body code of POP and PUSH.
OSTD

Object State Transition Diagram as given inFigure 5 -
CONSTRAINED_OPERATIONS

reset, Push; Pop;
REQUIRED_INTERFACE

OBJECT HRTS_PE
TYPES TPE::OK_KO; TPE::integer;

DATAFLOWS NONE; {since we are a terminal object}--

EXCEPTION_FLOWS NONE; {since we are a terminal object}--

INTERNALS --| no object field since a class is always terminal |--
TYPES
TStack

 INHERITANCE
NONE;--no private inheritance

ATTRIBUTES
Status --| TPE::OK_KO Status |--
StackBuffer --|TItem StackBuffer[STACK_SIZE]; |--
FSM --|Stack_OSTM FSM;|--

CONSTANTS
MaxSize--|enum STACK_SIZE = K_MAX_SIZE}; // trick to define the array size of StackBuffer|--

OBJECT_CONTROL_STRUCTURE
CODE

OSTM -- |as generated from the OSTD
code as illustrated inAppendix I.2.2 - OSTM code illustration in C++-

 OPERATION_ CONTROL _STRUCTURES -
OPERATION Tstack (Me:in out TStack) is

DESCRIPTION
constructor to initialize the STACKSize and status attributes;
USED_OPERATIONS --NONE;
PROPAGATED_EXCEPTIONS --NONE;
HANDLED_EXCEPTIONS --NONE;
PSEUDO_CODE

 {Initialize CurrentSize to 0}
CODE

{ CurrentSize = 0;
Status = TPE::OK;
}

Opcs_HEADER
 FSM.Fire (Stack_OSTM::START);

Opcs_FOOTER
 NONE; --{since we have non concurency constraints}--

END_OPERATION TStack;

page -74

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 74

14.9 GENERIC ODS

A Generic module is declared as follows :

OBJECT | CLASS Generic_nameis PASSIVE | ACTIVE
FORMAL_PARAMETERS

TYPES

List of ({Formal47_Type_ or_ Class_Declaration }
 added with textual description)

CONSTANTS
List of ({Formal_Constant_Declaration }
 added with textual description)

OPERATIONS
List of ({Formal_Operation_Declaration }

added with textual description)
--| Standard ODS fields where required objects may be siblings or roots of the current system configuration |--

END Generic_name

Below is an illustration of a generic C++ Stack ODS, first defined in the ODS insection 14.7

CLASS G_TStackis PASSIVE
FORMAL_PARAMETERS

TYPES
TItem

CONSTANTS
K_STACK_SIZE;

OPERATIONS
operator=(TItem);

DESCRIPTION
Generic Abstract Data Type as illustrated inFigure 3 - Graphical Representation of a HOOD Object
IMPLEMENTATION_CONSTRAINTS
Use of C++ language
PROVIDED_INTERFACE \

TYPES
TStack --|the main type of the class has the same name|--

 INHERITANCE NONE;
 ATTRIBUTES - -one for illustrations

CurrentSize;
--| TPE::integer CurrentSize |--

rTItem --|pointer onItem |--
--| typedefTItem* rTItem |--

rTStack --|reference on Stacks useful when in C++|--
--| typedefTStack& pTStack |--

CONSTANTS NONE;
OPERATION_SETS NONE;
 OPERATIONS

TStack (me: in out TStack;); -- constructor
 ~TStack(me: in TStack;); -- destructor

Push(me: in out TStack; item: in r TItem);
Pop (me: in out TStack; item: out rTItem);
Reset();

 GetMaxSizereturn TPE::integer;
 GetCurrentSizereturn TPE::OK_KO;
47.The formal parameter declarations are target language dependent. By default the Ada syntax for generic parameters
is used [see also BNF description in appendix D and E].

page -73

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 73

IPCProcess (Me);
Opcs_SER

Item: HRTS_PE.T_Integer;
StringItem: String(1.. HRTS_PE.T_Integer’width);
begin

TParams.Read(Params,StringItem);
item:=HRTS_PE.T_Integer’value(StringItem);
TStack_Server.Push (TheStack, Item);

END_OPERATION Push;

OPERATION Pop (Me:in out Instance) is
--{Similar description as for Push}--

END_OPERATION Pop;

OPERATION GetMaxSize (Me:in Instance) return HRTS_PE.T_Integer is
--{Similar description as for GetCurrentSize}--

END_OPERATION GetMaxSize;

OPERATION GetStatus (Me:in Instance) return HRTS_PE.T_OK_KO is
--{Similar description as for GetCurrentSize}--

END_OPERATION GetStatus;

OPERATION Stop (Me:in out Instance) is
--{Similar description as for Start}--

END_OPERATION Stop;

END TStack;

page -72

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 72

OPERATION GetCurrentSize (Me:in Instance) return HRTS_PE.T_Integer is
DESCRIPTION
Function to get the number of current items in the Stack
USED_OPERATIONS --NONE;
PROPAGATED_EXCEPTIONS --NONE;
HANDLED_EXCEPTIONS --NONE;
PSEUDO_CODE

 {return CurrentSize attribute}
CODE

 return Me.CurrentSize;
Opcs_HEADER

 TFsm.Fire (Me.FSM, Stack_OSTM.GetCurrentSize);
Opcs_FOOTER

 NONE; --{since we have non concurrency constraints}--
Opcs_ER

Size: HRTS_PE.T_Integer;
begin

 TMsg.Initialize (Me => Me.Message, Sender => Stack_PE.STACK,
 Sendee => Stack_PE.STACK_RB, Operation=> Stack_PE.GETCURRENTSIZE,
 Cnstrt => HRTS_PE.NO_CONSTRAINT, ParamSize=> 1);

IPCProcess (Me);
Params:=TMsg.GetParams(Me.Message);
TParams.Read(Params,StringParam);
Size:=HRTS_PE.T_Integer’value (StringParam);
return Size;

Opcs_SER
 CurrentSize: HRTS_PE.T_Integer;

begin
 CurrentSize:= TStack_Server.GetCurrentSize (TheStack);
TParams.Write(Params,HRTS_PE.T_Integer’image(CurrentSize);

END_OPERATION GetCurrentSize;

OPERATION Push(Me:in out Instance) is
DESCRIPTION
Put the Item at top of the STACK
USED_OPERATIONS --NONE;
PROPAGATED_EXCEPTIONS --NONE;
HANDLED_EXCEPTIONS --NONE;
PSEUDO_CODE

 {Put Item on top of STACK
Increment CurrentSize
If CurrentSize =StackSize then SET_SATE to FULL end if;}

CODE
Me.StackBuffer (Me.CurrentSize):= MyItem;
Me.CurrentSize:= Me.CurrentSize + 1;
if (Me.CurrentSize = StackSize)then

TFsm.Set (Me.FSM, Stack_OSTM.FULL);
end if;

Opcs_HEADER
 TFsm.Fire (Me.FSM, Stack_OSTM.PUSH);

Opcs_FOOTER
 NONE; --{since we have non concurrency constraints}--

Opcs_ER
TMsg.Initialize (Me => Me.Message, Sender=> Stack_PE.STACK,
 Sendee => Stack_PE.STACK_RB, Operation=> Stack_PE.PUSH,
 Cnstrt => HRTS_PE.HSER, ParamSize=> 1);
Params:=TMsg.GetParams(Me.Message);
Tparams.write(Params,HRTS_PE.T_Integer’image(MyItem);

page -71

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 71

when HRTS_PE.E_BadExecutionRequest=> EXCEPTIONS.LOG(
‘TStack_RB.Dispatcher_HSER’& HRTS_PE.T_X_VALUE’image (HRTS_PE.X_BADREQUEST));
TMsg.SetX (Message, HRTS_PE.X_BadExecutionRequest);

when HRTS_PE.E_UNKNOWN_OPERATION=> EXCEPTIONS.LOG(
‘TStack_RB.Dispatcher_HSER’& HRTS_PE.T_X_VALUE’image (X_UNKNOWN_OPERATION));
TMsg.SetX (Message, HRTS_PE.X_UNKNOWN_OPERATION);

when others => EXCEPTIONS.LOG(
 ‘TStack_RB.Dispatcher_HSER’»&HRTS_PE.T_X_VALUE’image(HRTS_PE.X_UNKNOWN_ERROR));
 TMsg.SetX (Message, HRTS_PE.X_UNKNOWN_ERROR);
end;
end RB_Dispatcher_HSER;

procedure RB_Dispatcher_LSER (aMessage in out TMsg.TMsg)is
begin
case TMsg.GetOperation (aMessage)is

--{similar code as for RB_Dispatcher_HSER
end RB_Dispatcher_LSER;
task body Server_OBCSis
begin -- at package elaboration
loop

accept ExecuteRequest (Message:in out TMsg.TMsg)do--TServerObcs.Remove (OBCS, Message);
if TMsg.getSender(Message) /=Stack_PE.STACKthen

raise HRTS_PE.E_UNKNOWN_SENDEE;
end if;
Params:=TMsg.GetParams(Message);
Constraint:=TMsg.GetCnstrt(Message);
Operation:=TMsg.getOperation(Message);
case Constraintis
whenHRTS_PE.HSER=> RB_Dispatcher_HSER(Message); IPCFormat(Message);
whenHRTS_PE.LSER=> IPCFormat(Message);RB_Dispatcher_LSER(Message);
whenHRTS_PE.RASER=>null; --TBS;
whenHRTS_PE.RLSER=>null; --TBS;
when others => EXCEPTIONS.LOG(
‘TStack_RB.Dispatcher_ASER’& HRTS_PE.T_X_VALUE’image (X_UNKNOWN_CONSTRAINT));
TMsg.SetX (Message, HRTS_PE.X_UNKNOWN_CONSTRAINT);
end case;
end ExecuteRequest;

end loop;
end Server_OBCS;

 OPERATION_ CONTROL _STRUCTURES -
OPERATION Start (Me:in out Instance) is

DESCRIPTION
The first operation to call by a client to initialize the STACKSize;
USED_OPERATIONS --NONE;
PROPAGATED_EXCEPTIONS --NONE;
HANDLED_EXCEPTIONS --NONE;
PSEUDO_CODE

 {Initialize CurrentSize to 0}
CODE

 Me.CurrentSize:= 0;
Opcs_HEADER

 TFsm.Fire (Me.FSM, Stack_OSTM.START);
Opcs_FOOTER

 NONE; --{since we have non concurency constraints}--
Opcs_ER

TMsg.Initialize (Me => Me.Message, Sender => Stack_PE.STACK,
 Sendee => Stack_PE.STACK_RB, Operation=> Stack_PE.START,
 Cnstrt => HRTS_PE.NO_CONSTRAINT, ParamSize=> 0);
IPCProcess (Me);

Opcs_SER
 TStack_Server.Start(TheStack);

END_OPERATION Start;

page -70

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 70

INTERNALS --| no object field since a class is always terminal |--
TYPES
Instance

 INHERITANCE --no private inheritance

ATTRIBUTES
CurrentSize: HRTS_PE.T_Integer:= 0;
StackBuffer: T_StackBuffer;
FSM: Stack_OSTM.TFsm.Instance:= Stack_OSTM.Stack_FSM;

CONSTANTS
 StackSize:constantHRTS_PE.T_Integer:= 20;

OPERATIONS
NONE;

DATA
Current_Instances :HRTS_PE.T_Integer:=0;

OBJECT_CONTROL_STRUCTURE
CODE

OSTM -- |as generated from the OSTD
same code as illustrated inAppendix I.2.1 - OSTM Code Illustration in Ada-

Client_OBCS --{code directly include in the body of package TSTack, on client side}--
Params: TParams.PtrInstance;
StringParam: String(1.. HRTS_PE.T_Integer’width);

procedure IPCProcess (Me:in Instance)is
 Status: HRTS_PE.T_X_VALUE;

begin
TClientObcs.Insrem (Me.OBCS, Me.Message); -- insert message then remove returned message:
Status:= TMsg.GetX (Me.Message);
case Statusis
when HRTS_PE.X_KO=> raise HRTS_PE.E_KO;
when HRTS_PE.X_UNKNOWN_SENDER=> raise HRTS_PE.E_UNKNOWN_SENDER;
when HRTS_PE.X_UNKNOWN_SENDEE=> raise HRTS_PE.E_UNKNOWN_SENDEE;
when HRTS_PE.X_UNKNOWN_OPERATION=> raise HRTS_PE.E_UNKNOWN_OPERATION;
when HRTS_PE.X_BADREQUEST=> raise HRTS_PE.E_BADREQUEST;
when HRTS_PE.X_FSMERROR=> raise HRTS_PE.E_FSMERROR;
when HRTS_PE.X_OBCS_NOMOREQUEUES=> raise HRTS_PE.E_OBCS_NOMOREQUEUES;
when HRTS_PE.X_UNKNOWN_ERROR=> raise HRTS_PE.E_UNKNOWN_ERROR;
end case;

end IPCProcess;

Server_OBCS -- {code to be directly included in package TStack_RB}--
task Server_OBCSis

entry ExecuteRequest(message:in out TMsg.Msg);
endServer_OBCS;

procedure IPCMsgFormat(aMessage: in out TMsg.TMsg)is --common code to all operations
PreviousSender: Stack_PE.T_HOODObject:= TMsg.GetSender (Message);

begin
TMsg.SetSender (aMessage, TMsg.GetSendee (Message));
TMsg.SetSendee (aMessage, PreviousSender);
PtrStream:= TMsg.GetParams (Message);
TMsg.FlushParams (Message); -- enforce writing of parameters in the stream

end IPCMsgFormat;
procedure RB_Dispatcher_HSER (aMessage in out TMsg.TMsg)is
begin
case TMsg.GetOperation (aMessage)is

when Stack_PE.START=> Start;
when Stack_PE.STOP => Stop;
when Stack_PE.PUSH => Push;
when Stack_PE.POP => Pop;
when Stack_PE.GETMAXSIZE=> GetMaxSize;
when Stack_PE.GETCURRENTSIZE=> GetCurrentSize;
when Stack_PE.GETSTATUS=> GetStatus;
when others =>raise HRTS_PE.E_UNKNOWN_OPERATION;

end case;
exception

page -69

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 69

14.8 CLASS ODS ADA ILLUSTRATION

CLASS TStackis ACTIVE
DESCRIPTION
Stack Abstract Data Type as illustrated inFigure 3 - Graphical Representation of a HOOD Object
IMPLEMENTATION_CONSTRAINTS
Use of Ada classes with run time supporting tasking for protocol constrained operations
PROVIDED_INTERFACE \

TYPES
Instance --|the name of the class is Instance as we are used to the naming conventions suggested in[ROSEN95]|--

 INHERITANCE --public inheritance
TStorage.Instance;

 ATTRIBUTES --no public attributes
NONE;

CONSTANTS NONE;
OPERATION_SETS -- for illustration purposes

Start (Me:in out Instance) isMEMBER_OF TStack_Ops;
Stop (Me:in out Instance) isMEMBER_OF TStack_Ops;
Push (Me:in out Instance;MyItem:in HRTS_PE.T_Integer) isMEMBER_OF TStack_Ops;
Pop(Me:in out Instance;AnItem:out HRTS_PE.T_Integer) isMEMBER_OF TStack_Ops;
GetCurrentSize (Me:in out Instance) isMEMBER_OF TStack_Ops;

 OPERATIONS
Start (Me:in out Instance);
Stop (Me:in out Instance);
Push (Me:in out Instance; MyItem:in HRTS_PE.T_Integer);
Pop (Me:in out Instance; AnItem:out HRTS_PE.T_Integer);
GetMaxSize (Me:in Instance)return HRTS_PE.T_Integer;
GetCurrentSize (Me:in Instance)return HRTS_PE.T_Integer;
GetStatus (Me:in Instance)return HRTS_PE.OK_KO;

EXCEPTIONS
X_FULL RAISED_BY PUSH when no more space.
X_EMPTY RAISED_BY POP when no more items

OBJECT_CONTROL_STRUCTURE
DESCRIPTION
The semantic of STACK is warranted by our implementation only if operations are called according to the possible
sequences as expressed in the OSTD. NOte that the non determinism existing in state N_E_N_F is resolved in the
OPCS body code of POP and PUSH.
OSTD

Object State Transition Diagram as given inFigure 5 -
CONSTRAINED_OPERATIONS

Start,
Stop,
PUSHCONSTRAINED_BY HSER;
PUSHCONSTRAINED_BY LSER;

REQUIRED_INTERFACE
OBJECT HRTS_PE

TYPES List of (Type_Name)
CONSTANTS List of (Constant_Name)
OPERATIONS List of (Operation_Name [list of (Parameter :Mode Type)])

DATAFLOWS NONE; {since we are a terminal object}--

EXCEPTION_FLOWS NONE; {since we are a terminal object}--

page -68

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 68

OPERATION Push(Me:in out Instance; item:in TString) is
DESCRIPTION
Put the Item at top of the STACK
USED_OPERATIONS --NONE;
PROPAGATED_EXCEPTIONS --NONE;
HANDLED_EXCEPTIONS --NONE;
PSEUDO_CODE

 {Put Item on top of STACK
Increment CurrentSize
If CurrentSize =StackSize then SET_SATE to FULL end if;}

CODE
{if (CurrentSize < TStack::K_STACK_SIZE) {

StackBuffer[CurrentSize] = item;
 CurrentSize = CurrentSize + 1;
 Status = TPE::OK;

} else {
 cerr << “STACK SIZE=” << K_STACK_SIZE << endl << “CurrentSize=” << CurrentSize << endl;
Status = TPE::KO;
 EXCEPTIONS_RAISE(PROJECT_PE::X_FULL, “TStack_SERVER::Push”, “X_FULL”);

}
}

Opcs_HEADER
 FSM.Fire (Stack_OSTM::PUSH);

Opcs_FOOTER
 NONE; --{since we have non concurency constraints}--

END_OPERATION Push;

OPERATION Pop (Me:in out TStack; item:out TString) is
--{Similar description as for Push}--

END_OPERATION Pop;

OPERATION GetMaxSize (Me:in TStack)) return HRTS_PE.T_Integer is
--{Similar description as for GetCurrentSize}--

END_OPERATION GetMaxSize;

OPERATION GetStatus (Me:in TStack)) return HRTS_PE.T_OK_KO is
--{Similar description as for GetCurrentSize}--

END_OPERATION GetStatus;

OPERATION ~TStack (Me:in out TStack)) is
--{Similar description as for Start}--

END_OPERATION Stop;

END TStack;

page -67

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 67

INTERNALS --| no object field since a class is always terminal |--

TYPES
TStack

 INHERITANCE
NONE;--no private inheritance

ATTRIBUTES
Status --| TPE::OK_KO Status |--
StackBuffer --|TString StackBuffer[K_STACK_SIZE]; |--
FSM --|Stack_OSTM FSM;|--

CONSTANTS
MaxSize--|enum {K_STACK_SIZE = 512}; // trick to define the array size of StackBuffer|--

OBJECT_CONTROL_STRUCTURE
CODE

OSTM -- |as generated from the OSTD
code as illustrated inAppendix I.2.2 - OSTM code illustration in C++-

 OPERATION_ CONTROL _STRUCTURES -

OPERATION Tstack (Me:in out TStack) is
DESCRIPTION
constructor to initialize the STACKSize and status attributes;
USED_OPERATIONS --NONE;
PROPAGATED_EXCEPTIONS --NONE;
HANDLED_EXCEPTIONS --NONE;
PSEUDO_CODE

 {Initialize CurrentSize to 0}
CODE

{ CurrentSize = 0;
Status = TPE::OK;
}

Opcs_HEADER
 FSM.Fire (Stack_OSTM::START);

Opcs_FOOTER
 NONE; --{since we have non concurency constraints}--

END_OPERATION TStack;

OPERATION GetCurrentSize (Me:in TStack) return HRTS_PE.T_Integer is
DESCRIPTION
Function to get the number of current items in the Stack
USED_OPERATIONS --NONE;
PROPAGATED_EXCEPTIONS --NONE;
HANDLED_EXCEPTIONS --NONE;
PSEUDO_CODE

 {return CurrentSize attribute}
CODE

return CurrentSize;
END_OPERATION GetCurrentSize;

page -66

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 66

14.7 CLASS ODS-C++ ILLUSTRATION

CLASS TStackis PASSIVE
DESCRIPTION
Stack Abstract Data Type as illustrated inFigure 3 - Graphical Representation of a HOOD Object
IMPLEMENTATION_CONSTRAINTS
Use of C++ language
PROVIDED_INTERFACE \

TYPES
TStack --|the main type of the class has the same name|--

 INHERITANCE NONE;
 ATTRIBUTES - -one for illustrations

CurrentSize;
--| TPE::integer CurrentSize |--

pTStack --|pointer on Stacks |--
--| typedef TStack* pTStack |--

rTStack --|reference on Stacks useful when in C++|--
--| typedef TStack& pTStack |--

CONSTANTS NONE;
OPERATION_SETS NONE;
 OPERATIONS

TStack (me: in out TStack;); -- constructor
 ~TStack(me: in TStack;); -- destructor

Push(me: in out TStack; item: in r Tstring);
Pop (me: in out TStack; item: out rTString);
Reset();

 GetMaxSizereturn TPE::integer;
 GetCurrentSizereturn TPE::OK_KO;
 GetStatus return TPE::OK_KO;

EXCEPTIONS
X_FULL RAISED_BY PUSH when no more space.
X_EMPTY RAISED_BY POP when no more items

OBJECT_CONTROL_STRUCTURE
DESCRIPTION
The semantic of STACK is warranted by our implementation only if operations are called according to the possible
sequences as expressed in the OSTD. NOte that the non determinism existing in state N_E_N_F is resolved in the
OPCS body code of POP and PUSH.
OSTD

Object State Transition Diagram as given inFigure 5 -
CONSTRAINED_OPERATIONS

reset, Push; Pop;
REQUIRED_INTERFACE

OBJECT HRTS_PE
TYPES TPE::OK_KO; TPE::OK_KO;

DATAFLOWS NONE; {since we are a terminal object}--

EXCEPTION_FLOWS NONE; {since we are a terminal object}--

page -65

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 65

14.3 NON TERMINAL ODS

OBJECT Object_NameIS ACTIVE|PASSIVE
 --| Standard fields |--
INTERNALS -- describe the implemented_by links of PROVIDED INTERFACE Items

OBJECTS
List of (Child_Object_Name)

TYPES
List of (Provided_Type_NameIMPLEMENTED_BY Child_Object_Name.Type_Name)

CONSTANTS
List of (Provided_Constant_NameIMPLEMENTED_BY Child_Object_Name.Constant_Name)

OPERATION_SETS
List of (Provided_Operation_Set_NameIMPLEMENTED_BY Child_Object_Name.Operation_Set)

OPERATIONS

List of (Provided_Operation_NameIMPLEMENTED_BY Child_Object_Name.Operation_Name46 |
IMPLEMENTED_BY OP_Control_Name)

EXCEPTIONS
List of (Provided_Exception_Name IMPLEMENTED_BY Child_Object_Name.Exception_name)

OBJECT_CONTROL_STRUCTURE IMPLEMENTED_BY List of (Child_Object_Name)
END Object_Name

14.4 ENVIRONMENT ODS

OBJECT | CLASS Nameis ENVIRONMENT PASSIVE| ACTIVE
--| Standard fields |-- --{but NO INTERNALs PART}--

END name

14.5 ROOT ODS

A standard ODS is associated to a root, but required objects can only be roots within
the current system configuration.

14.6 OP_CONTROL ODS

OP_CONTROL OP_Control_Nameis
--| Standard fields |--

INTERNALS --{reduced to one OPCS}--
OPERATION_ CONTROL_STRUCTURES

--|operation description for the unique provided operation
END OP_Control_Name.
46.In case of overloaded operation the full signature is given.

page -64

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 64

REQUIRED_INTERFACE
OBJECT HRTS_PE

TYPES T_Integer, T_OK_KO;

DATAFLOWS NONE; {since we are a terminal object}--

EXCEPTION_FLOWS NONE; {since we are a terminal object}--

INTERNALS --| no object field since a class is always terminal |--
TYPES
T_StackBuffer; --|type T_StackBufferis array (HRTS_PE.T_Integer range <>) ofHRTS_PE.T_Integer;|--
T_Stack; --|typeT_Stack (Size: HRTS_PE.T_Integer)is record

Status: HRTS_PE.T_OK_KO:= HRTS_PE.OK
CurrentSize: HRTS_PE.T_Integer:= 0;
StackBuffer: T_StackBuffer (0.. Size);

end record; |--
CONSTANTS NONE
OPERATIONS NONE;
DATA NONE;
OBJECT_CONTROL_STRUCTURE NONE;

 OPERATION_ CONTROL _STRUCTURES -
OPERATION GetCurrentSize (Me:in T_Stack) return HRTS_PE.T_Integer is

DESCRIPTION
Function to get the number of current items in the Stack
USED_OPERATIONS --NONE;
PROPAGATED_EXCEPTIONS --NONE;
HANDLED_EXCEPTIONS --NONE;
PSEUDO_CODE

 { return CurrentSize attribute}
CODE

 return Me.CurrentSize;
END_OPERATION GetCurrentSize;

OPERATION Push(Me:in out T_Stack) is
DESCRIPTION
Put the Item at top of the STACK
USED_OPERATIONS --NONE;
PROPAGATED_EXCEPTIONS --NONE;
HANDLED_EXCEPTIONS --NONE;
PSEUDO_CODE

 {Put Item on top of STACK
Increment CurrentSize
If CurrentSize =StackSize then SET_SATE to FULL end if;}

CODE
Me.StackBuffer (Me.CurrentSize):= MyItem;
Me.CurrentSize:= Me.CurrentSize + 1;

END_OPERATION Push;

OPERATION Pop (Me:in out T_Stack) is
--{Similar description as for Push}--

END_OPERATION Pop;
OPERATION GetMaxSize (Me:in T_Stack) return HRTS_PE.T_Integer is

--{Similar description as for GetCurrentSize}--
END_OPERATION GetMaxSize;
OPERATION GetStatus (Me:in T_Stack) return HRTS_PE.T_OK_KO is

--{Similar description as for GetCurrentSize}--
END_OPERATION GetStatus;

END TStack;

page -63

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 63

Object, operation, types and constants names shall be defined unambiguously, possibly
using the dotted notation e.g. <object>.<operation>. In order to improve readability of
ODSs :

• Informal text may be added where indicated, allowing to comment in natural lan-
guage onto more formalized descriptions,

• Most of the fields in the ODS are optional, i.e.if empty, they are documented by the
keywordNONE, or fully removed.

In the following, we shall give an illustration of the STACK (described inFigure 3 -
Graphical Representation of a HOOD Object) and give different possible ODS config-
urations and layouts. We try to enforce the following naming conventions:

• a type identifier is always prefixed by “T_”

• a class identifier is always named “Instance” in Ada according to the naming and
overloading schema suggested in[ROSEN95]. A class identifier is otherwise always
the same as the class name and prefixed by “T”

• an exception identifier is always prefixed by “X_”

• a pointer identifier is always prefixed by “p”

• a reference identifier is always prefixed by “r”

14.2 TERMINAL ODS ILLUSTRATION

OBJECT TStackis PASSIVE
DESCRIPTION
Stack Abstract Data Type Manager as illustrated inFigure 3 - Graphical Representation of a HOOD Object
Not any constraints applied to provided operations
IMPLEMENTATION_CONSTRAINTS
Use of Ada supposing unlimited memory
PROVIDED_INTERFACE \

TYPES
T_Stack --|the name of the class is Instance as we are used to the naming conventions suggested in[ROSEN95]|--

--| T_Stack (Size: HRTS_PE.T_Integer) is private|--
CONSTANTS NONE;

OPERATION_SETS NONE;
 OPERATIONS

Push (Me:in out T_Stack; MyItem: in HRTS_PE.T_Integer);
Pop (Me:in out T_Stack; AnItem:out HRTS_PE.T_Integer);
GetMaxSize (Me:in T_Stack) return HRTS_PE.T_Integer;
GetCurrentSize (Me:in T_Stack) return HRTS_PE.T_Integer;
GetStatus (Me:in T_Stack) return HRTS_PE.T_OK_KO;

EXCEPTIONS
X_FULL RAISED_BY PUSH when no more space.
X_EMPTY RAISED_BY POP when no more items

OBJECT_CONTROL_STRUCTURE
NONE; --{not any state or other constraints, for tutorial!}--

page -62

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 62

14 TEXTUAL FORMALISM

The use of a formal notation in the HOOD design process for capturing object proper-
ties aims at :

• allowing smooth successive transformations from a conceptual model of a solution
down to the source code of the target implementation language,

• formalizing the design to avoid any imprecisions or ambiguities of the designer’s
natural language and to allow automated processing by tools for verification,

• providing a Standard Interchange Format (SIF) for exchanging design data be-
tween toolsets and platforms, as defined inAppendix G - Standard Interchange For-
mat-.

The process of formalisation is a step-wise one, and should not hinder the creative
process of the designer by enforcing too early implementation decisions. At the same
time, it should allow to capture both structural and dynamic properties of the system.

The language used to describe a HOOD design is defined below. It enforces the follow-
ing principles :

• formal definition of object interfaces and control structures so that verifications and
checks can be supported by tools,

• expression of operations and their control description in pseudo code and in target
language,

• use of informal text whenever the level of detail is not sufficient to justify the use
of a formal notation.

14.1 DESCRIPTION

The description of objects and classes in HOOD is produced using anObject Descrip-
tion Skeleton (ODS) whose fields are updated as the design of the unit is more and
more refined. The general structure of the ODS was already introduced insection 3.3
above. Each field of an ODS is described by theHOOD Design Language (HOOD
DL) according to a set of keywords and a grammar formally defined in BNF notation
in Appendix G - Standard Interchange Format-.

page -61

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 61

13 CONCEPTS SUMMARY

Figure 47 - below summarizes the HOOD entities and relationships using an OMT like
graphical representation[OMT91]

Figure 47 - Summary of HOOD Entities

 One can see that the term object with the meaning of “software module”refers either to:

• a basic software module

• a VN

• a class (either basic or instantiated class)

• a generic (either generic class or generic object)

• an instanced object (from a generic object)

OBJECT
(module)

Vn Class Generic

Generic Generic

Basic Class

 generically

Class Object

 instanciated Object

comes_from

com
es_from

Legend :
entity
inheritance link
constraint link
simple link

instanciated Class

page -60

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 60

Configuration of the VNCS shall be done by defining such a configuration table in the
textual formalism as more detailed insection 14 below.

page -59

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 59

12.3.2 Partitioning Rules

Allocation of objects from a HDT among several VNs shall follow a number of rules
that enforce the following principles:

• invariance of functional semantics

• efficiency consideration that limit communication bottlenecks

• Pure objects (objects having no internal data) may be replicated in several VNs

• Some restrictions may apply on operation parameters: especially on acces types and
references. This is due to non direct acces of local (respectively remote) memory
space by a remote (respectively local) processor.

• additional communication handlers for inter-VN communication support should be
automatically generated from object allocation data

12.3.3 Configuration Rules

Configuration is the grouping of VNs into PNs according to:

• the number of processors and their capabilities

• the functional semantics

• each PN should at least include one active VN

It is possible to model the physical network by choosing a simple one-to-one mapping
between terminal VNs and physical nodes.Figure 46 - gives an example of a configu-
ration table of VNs for a physical architecture of three PNs where VN4 is a common
service and is duplicated45 on PN1,PN2and PN33 for efficiency reasons.

This allocation could now be redefined by defining two new PNs: P1_VN and P2_VN
and allocating all objects of VNi nodes onto associated P1 or P2 VNs.

45.In such a case, care must be taken on data share between clients of VN4.

Physical
Nodes /
Virtual
Nodes

PN1 PN2 PN31I PN32 PN33

VN4 X X X

VN1 X

VN2 X

VN3 X

Figure 46 - Configuration of VNs to Physical Nodes

page -58

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 58

.

Figure 43 - PN tree modelling a Target Distributed System with three PN

Figure 44 - Logical view associated to a system configuration

Figure 45 - Allocation view

Distributed_System

PN 3

PN31 PN32 PN33

PN 2PN 1

Initial VN MODEL

Refinement of PN3

System Configuration

root O3 root O2 root O1

O31 O32 O33

O3 O2 O1

O31 O32 O33

VN1

VN2

VN3

Env1 Env2

System Configuration

page -57

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 57

12.3 DEFINING VN HIERARCHIES

In order to manage complexity, a distributed application is structured into a VN hierar-
chy by allocating HOOD objects and classes from the different HDTs defining the sys-
tem configuration onto terminal VNs.Thus merely terminal VNs will be the focus of
object allocation and code implementation, but parent VNs, defined as the composition
of child VNs, may be used as an additional abstraction tool for representing large dis-
tributed systems.

12.3.1 Partitioning Process

Several terminal VNs may be allocated and configured onto one physical node, whereas
a terminal VN may be “duplicated” (but not allocated) onto several processors. The al-
location process is thus the following:

• A physical network may be first44 modelled as a PN tree as inFigure 43 -.Such a
network may be later refined by replacing PN3 by three more processors PN31,
PN32 and PN33.

• Second, objects and classes of a system configuration, as the one illustrated inFig-
ure 44 -, are allocated on a VN hierarchy. Such a hierarchy should ultimately be
mapped on the PN one; if have more VN than PN, we may allocate several VNs on
the same PN, if we less VNs than PNs, we may:

- duplicate some VNs or
- break down some terminal objects in the HDT again, and possibly coming to

more VNs
• Third, optimization according to services (types, classes, operations, exceptions)

and communication protocols shared by different VNs may lead to allocation/dupli-
cation and/or definition of additional VNs.

When a VN is to be distributed over several PN, the allocation of HOOD objects may
have to be redefined (possibly after further breakdown of some objects in the HDT) into
as much child VNs as necessary to allocate at least one VN to a PN.

Figure 44 - shows an example of a system configuration in a logical view, whereasFig-
ure 45 - illustrates a possible allocation schema.

44.The basic hypothesis would be to have a one-to-one mapping between a VN and a physical node.

page -56

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 56

objects or one for a full VN, and similarly in the Server VN. Such structures can be
traded off according to resulting efficiency.

Figure 42 - Communication Optimization Principles between VNs

Opcs_ER

ClientObcs

Opcs_ER

Opcs_ER

Client memory
PartitionOpcs_ER

LocalServer memory
Partition

Client_Obcs

Opcs_ER

Opcs_ER

Opcs_SER

Opcs_SER

Opcs_SER

FIFOQUEUES

ServerVNCS

Client memory
Partition

INTER-VN

Opcs_ER

LocalServer memory
Partition

ClientVNCS

Opcs_ER

Opcs_ER

Opcs_SER

Opcs_SER

Opcs_SER

Opcs_ER

ClientObcs

Opcs_ER

Opcs_ER

Opcs_ER

Client_Obcs

Opcs_ER

Opcs_ER

Server_Obcs

LocalServer memory
Partition

Opcs_SER

Opcs_SER

Opcs_SER

ServerObcs

LocalServer memory
Partition

Opcs_SER

Opcs_SER

Opcs_SER

ServerObcs

LocalServer memory
Partition

Opcs_SER

Opcs_SER

Opcs_SER

Server_Obcs

QUEUE

FIFOQUEUES
IPC MSG

IPC MSG

CLIENT_VN SERVER_VN

IPC MSG

page -55

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 55

Figure 41 -illustrates the resulting target code structure for a VN, where:

• ClientVNCS and ServerVNCS units are automatically configured according to a
VN_AllocationTable, directly computed from the VN ODS.

• one ClientVNCS and one ServerVNCS target units shall implement the VNCS soft-
ware generated for each VN. These software shall be instances of class TVNCS as
defined in the HRTS library.

• SurrogateServers code for remotely called objects is generated according to
OPCS_ER definition (see section17.2.4"Active Class Implementation Support " for
a detailed definition of OPCS_ER contents)

• SurrogateClient code is generated according to OPCS_SER definition (see section
17.2"Multi-Target Constrained Operation Support " for a detailed definition of
OPCS_SER contents)

Figure 41 - Illustration of a terminal Virtual Node target code structure

12.2.2.3 Target Code Optimization Principles

When active objects are allocated, a number of Client_OBCS processes execute in par-
allel by default with the ClientVNCS processes. This solution works against contention
of execution request when a server thread is looping within an OPCS operation, but may
be relatively resource consuming in case there is no thread implementation available.
Depending of the capability of parallel process management by the target, associated
OBCS and VNCS processes may be grouped into one queuing system for several active

V VN_Name

Start

Stop

ASER by host OS

ASER by host OS

VNCS

[remote]defaultFIFOQUEUE or

SurrogateServers

parameters

Start_Server
Stop_Server

Return_Messages Remote_call_Messages

E

Remote_VN1

Remote_VN2

V

V

User_Defined_Communication_Software

Message_In
ASER by Communication protocol Message_In

Inter_VN dataflows

InterVN-Messages

Allocated Objects

SurrogateClients

parameters

InterVN-Messages

page -54

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 54

One solution achieved to meet those requirements is illustrated inFigure 40 - Code
Generation Principles for a terminal Virtual Node and is based on standardized soft-
ware specified in the HOOD RUN TIME SUPPORT library. Code generation for mul-
tiple targets is supported by the concept of a Virtual Node Control Structure (VNCS).
This VNCS implementation isolates the core HOOD application code from target spe-
cific details and user-provided inter-process communication protocol. A given IPC pro-
tocols such as Message-Passing, Remote Procedure Call (RPC), transaction oriented
Protocol (such as CCR42), or real-time oriented protocol (such as RTC43) may be spec-
ified via the HOODpragma IPC (seeAppendix F - HOOD Pragmas-).

Figure 40 - Code Generation Principles for a terminal Virtual Node

42.CCR = Commitment Concurrency and Recovery
43.RTC= real Time Channel Protocol

SERVER VN

Remote

CLIENT VN

ClientVNCS

OPCS_ER code

Allocated Objects

ServerVNCS

OPCS_SER code

User_Defined CommucationSystem

InterProcessMessages

Parameters

Parameters

Server_Objects
SurrogateClients

SurrogateServers

of remotely called objects

of remotely called objects

page -53

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 53

• Afterwards, the surrogate server, using IPC services sends the IPCMSG to the sur-
rogate client.

• the surrogate client, after the unmarshalling transform, sends the request to the orig-
inal server

• the server reply, if any, is returned (after marshalling transform) to the surrogate
server, and finally to the original client.

Figure 39 - Communication Model for VNs

12.2.2.2 Multi-Target Code Structure

The implementation of VNs target code shall:

• both enforce the above communication model and a CLIENT-SERVER architecture
where clients are not known at server side, whereas still allowing full automated
code generation of VNs from object allocation data.

• reuse as much as possible the target operation model as illustrated inFigure 11 - Tar-
get Operation model, thus allowing optimized implementation of inter-thread com-
munication

OP_ER
procedures

ClientVN ServerVN

Local
allocated
OBJECTs

Remotely

called OBJECTs

Parameters

IPCMSG

IPC

SEND
RECEIVE

IPCMSG

E Netwrk_SW

Surrogate Server

IPC

SEND
RECEIVE

OP_ER
procedures

SurrogateClient

ASER_by_IT
Ntwrk_MSG

Parameters

ASER_by_IT
Ntwrk_MSG

IPCMSG

IPCMSG

page -52

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 52

Figure 38 - Parent Virtual Node breakdown

12.2.2 VN Implementation Principles

The driving implementation principle is to allow efficient and automated support of the
post-partitioning approach for distribution[ATKINSON]. That is client code of an ob-
ject or class should not be affected when the latter is allocated on a VN and configured
on a local or remote PN. This principle is best supported by the concept of surrogate
objects having conforming interface, but different bodies than an original object.

12.2.2.1 Surrogate Objects

A surrogate object of a HOOD object allocated to a VN has the same provided interface
and behaviour. The Internals part of a surrogate object replace the original code by
body stubs. Such stubs include queues associated to provided operations and an inter-
face to inter-processor communication package (IPC). Since a VN may both a client
and server, it is useful to distinguish surrogate clients and surrogate servers:

• original clients send their requests to the (surrogate) server, which stores them in a
IPCMSG in queue as a bit array (marshalling transform). The IPCMSG includes
server name, operation name, parameters, request occurrence.

PARENT_VN

Start
Stop
Message_In

V

V

Message_In
ASER by Communication protocol

ASER

Start
Stop
Message_In

V

ASER

Start
Stop
Message_In

V

ASER

Start
Stop

Message_In
ASER by FIFO

VN_4V

VN_3

VN_1

VN_2

Data1

Data2

Data4

Data3

Data5

page -51

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 51

12.2.1 VN Definition

A Virtual Node (VN) is acollection of HOOD objects allocated from the logical de-
sign space into the “distribution space”. A VN may be summarized as an instance of an
abstract activity type implementing a client-server communication between local and
remotely allocated objects.Figure 38 - illustrates such a terminal VN graphical descrip-
tion showing remote VN servers as uncle VNs.Virtual Node have the following
properties :

• a terminal VN is defined as the encapsulation of HOOD objects, classes and generic
instancesallocated to that VN.

• a VN may have one or several predefined (possibly overloaded) provided operation
“Message_In” allowing to specify the communication protocol with client VNs by
means of ASER label.

• a terminal VN includes a predefined VNCS object and the allocated objects. The
graphical representation of such a terminal VN is optionnal41 since all graphical rep-
resentation of terminal VN would be similar and only a textual description giving
the allocated objects is relevant. Seesection 14.12 below for a detailed description
of a VN ODS.

• a VN can only use other VNs.

• a VN may only be decomposed into other VNs thus defining a VN hierarchy.
This feature allows both abstraction and refinement of very large software programs
into masterable and well defined VNs entities.Figure 38 - gives an illustration of a
parent VN breakdown. Note that Dataflow can be shown and that communication
protocols are specified through the Message_In operation constraint.

Figure 37 - Representation of a Virtual Node

41.The graphical representation of the breakdown of a terminal VN may be used for indicating special handling of VNCS
operations, in particular, an allocated object may have to start or stop the VNCS activity at initialisation.Figure 41 - il-
lustrates such a Terminal VN content.

V VN_Name

Start_Server

Stop_Server

ASER by host OS

ASER by allocated object Remote_VNV

Message_In

ASER by Communication protocol

page -50

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 50

Figure 36 - Distributed System as a network of memory and processor nodes

With these considerations, distributing software is a process that should at least have
two phases:

• partitioning , where software is broken into several software partitions, each being
potentially allocated to a processor node. Partitioning is a design/programming
process.

• configuring, where every partition of a distributed software is allocated to a proc-
essor of the distributed target hardware, for being processed (at least for a time slice
of its life time) by that processor. Configuring may be either a design/programming
process, a load-time process or a run-time process.

12.2 HOOD CONCEPTS

HOOD introduces three concepts to deal with distributed systems;

• TheVirtual Node is a grouping of HOOD objects, which is allocatable to a proc-
essor and which is graphically represented as an object with a “V” in its upper left
corner, as shown inFigure 37 - Representation of a Virtual Node.

• Partitioning is the process of splitting a HOOD Design tree among a set of Virtual
Nodes. This partitioning does not necessarily match the HOOD logical breakdown,
since two child objects of the same parent may be allocated to a same Virtual Node.

• The Physical Node(PN) is the HOOD design model of a runnable program, by the
bind of one or several Virtual nodes. Such a binding includes:

- at least one Virtual Node
- representatives of objects located in remote physical nodes. Such representatives

are namedsurrogate objects
- a run-time environment (RTE) such as e.g. a micro kernel

local memory

Processor_Node

local memory

Processor_Node

local memory

Processor_Node

local memory

Processor_Node

Memory_Node

page -49

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 49

12 VIRTUAL NODES

An important consideration is the tuning of software execution associated to a HOOD
design, according to each project specific non functional constraints such as: available
targets, distributed physical configurations, efficiency, reliability.... HOOD provides de-
signers with the concept of Virtual Node (VN) as a mean of restructuring HOOD ob-
jects from a given HDT into software blocks able to execute in a given physical memory
partition (local or remote).

12.1 DISTRIBUTED SYSTEMS

Distributed systems is a term used to define a wide range of computer systems from the
weakly-coupled ones (such as WAN36s) to strongly coupled ones (such as multi-proc-
essors) including medium-coupled systems (such as LAN37s). Basically a distributed
hardware may be modelled as a network of:

• processor nodes, having capabilities to process a program, able to address local
memory and common memory space

• and memory nodes, having no capabilities to process programs this is the model of
shared memory.

Software may be distributed on such hardware at three moments:

• at compile/link time38, where every piece of software is definitively allocated to a
dedicated processor.

• at load time39, where a program is allocated to a processor for its full life time, de-
pending on the workload of each processor of the network

• at run time40, where a program is allocated to a processor for a slice of its life time,
depending of the workload of each processor in the network.

36.WAN = wide area network systems
37.LANs = local area network systems
38.static binding
39.load sharing
40.Dynamic load sharing

page -48

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 48

11.2.2 Real Time Architecture and HOOD Design

As resources such as memory or processors are shared among software tasks of an
RTSS, the real time architecture should be established, as much as possible in the early
time of a HOOD design.

Such a real time architecture design includes:

• identification of required tasks

• definition of task interactions

• time budget allocation, for task execution and task interaction.

During the early basic design steps, the RT architecture is “nested” in the HOOD ob-
jects of the upper-level design trees, and task activation and interactions are modelled
through constrained operations possibly with time budgets. Afterwards, this RT archi-
tecture is partitioned according to the HOOD object breakdown process, and time con-
straints may be refined into child operation time constraints.

Scheduling analysis may be performed as soon as a scheduling algorithm has been se-
lected (such as Rate monotonic or Earliest Deadlines). Such an analysis states whether
(or not) hard real time services can meet their deadlines. Such an approach is more de-
tailed inAppendix J.9 - OBJECT HRT_SCHEDs- It allows to design and verify hard
real time systems as suggested in the[HRTOSK] study.

page -47

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 47

• an active object may nest several execution threads

• a single execution thread may involve several other objects

• several tasks could share one object.

In order to provide a consistent mapping between object architecture and task architec-
ture, HOOD recommends to associate to each task of a real time architecture, a trigger-
ing constrained operation provided by the object that includes the task

This operation implements the software reaction to a periodic or asynchronous event
that activate the task. Such an operation (as operation Start in Figure 34 -) is named
activation operation and could support several other constraints. Special constraints
may be used to specify periodic activation, or deadline.

Figure 34 - Mapping Task and Objects

When a terminal object includes several tasks, it shall provides several associated ac-
tivation operations.

11.2.1 Resources and Passive Objects

Since Resources are abstractions dedicated to be shared among tasks, they are conven-
iently modelled as passive objects providing Concurency constrained operations.

Figure 35 - Mapping Resources and Objects

Start
Synchronize

ASER_BY_IT (0.01)

HSER Start
Synchronize

OBJECTA

Update
ReadOnly

RWER
ROER

Resource_OBJECTA

page -46

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 46

• pieces of memory (stacks, heaps)

• synchronisation and communication objects (semaphores, monitors, mailboxes,
queues, events)

• communication media (bus, network links)

• processsors

Tasks must share resources and have to compete to acquire them, while cooperating in
the following two ways with other tasks:

• exchange data

• synchronize their execution flow

The means require to handle competition and cooperation are supported by the RTE
which provides the following services to tasks:

• time management services

• memory management services

• data exchange management services

• synchronisation management services

• error management services

• processor allocation / deallocation management services

• I/O management services

Real Time Architecture design is a special activity in the development of RTSS, whose
goal is to provide a description of all tasks and resources including:

• description of functions and activities allocated to the tasks defining a RTSS

• temporal characteristics of a task

• synchronisation protocols between tasks

• data communication between tasks

• global scheduling of tasks matching the real time requirements of the system.

11.2 REAL TIME SYSTEMS VS HOOD
OBJECT MODEL

There is no mandatory one to one mapping between a task architecture and a HOOD
object architecture since:

page -45

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 45

11 REAL TIME SYSTEMS

11.1 DEFINITIONS

Real Time Software Systems (RTSS) are generally considered as systems providing
both general services and real time services :

• the correctness of general services provided by a RTSS is evaluated through the re-
sults of the logical computations which depend on input data values and system in-
ternal state.

• the correctness of real time services depends both on the results of the logical com-
putations, and on the time at which these results are produced.

Classically RTSS are modelled as a collections of processes cooperating in order to pro-
vide services and competing to acquire computing resources. Cooperation and compe-
tition management are supported by the Run Time Executive (RTE) that implements the
services at the intents of processes.

Processes ortasks are runnables / schedulables sequences of statements nested in a sin-
gle execution thread and including requests to RTE services. Tasks are indivisible piec-
es of code (that cannot be distributed among several processors at the same time). Tasks
are usually classified into:

• periodic tasks (with mandatory deadlines (hard tasks) or not (soft tasks)

• a-periodic tasks (with mandatory deadline or not)

Moreover it is possible to associate to a task an average and a worst case execution time.

Figure 33 - Representation of RTE services

Resources are shared entities for which tasks compete in order to execute their program.
Such resources may include:

Process1 Process_n

RUN TIME EXECUTIVE

Process_i

page -44

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 44

The representation of several identical generic instances is a double shaped object or
class with an indexed generic name “typed” with the name of the generic object. The
names of the instances are generated as the generic name concatenated with the succes-
sive integer values of the index range.

In Figure 32 - Representation of Instances, Object Inst[2.. 10] : class_name is then
equivalent to 9 objects e.g Inst2, Inst3..., Inst10.
Environment object Obj_Y and object Object_B provide the actual operations for
Inst[2.10] :generic_name whereas Obj_X provides the actual operations for Inst1.

page -43

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 43

10.2 GENERIC INSTANCE DEFINITION

A generic instance will be created as an object or a class inside the current HDT (as
child of an object or as child of a class) or as a root object. Each instance is identified
by the instance name followed by the generic name (SeeFigure 32 - Representation of
Instances).

A generic instance may be defined by giving values to its formal parameters . These pa-
rameters are calledactual parameters; they may be supplied by environment objects,
classes or siblings. Adequate matching checks shall be performed between the formal
definition of generic parameters and actual ones; syntax and semantics rely fully on the
target language ones.

In the client-server view of the graphical description, if an instance has an operation as
actual parameter, then a use arrow shall identify the server (brother, uncle or environ-
ment object or class) which provides that operation.

Figure 32 - Representation of Instances

A generic instance of an object inherits the full environment of the generic object which
is not shown in the graphical representation.

The representation of a unique instance of a generic is an object or class whose name is
“typed” with the name of the generic object.

A Object_Name

Object_A

Inst[2..10] :generic_name

 Obj_X

Object_B
 Obj_YE

A

INST1 : Generic_Name

op1
op2
op3

page -42

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 42

.

Figure 30 - Representation of a Client_server view of a Generic

In Figure 30 - Representation of a Client_server view of a Generic, the generic
Generic_Name is composed of children A,B and C. The use arrow toward the formal
parameters box shows that A and B require at least one operation from the formal pa-
rameters.

Figure 31 - Representation of a generic diagram in the structure view

 Obj_3

A Generic_Name

Object_A

E

A

data_1
data_2

Object_C

Class_B

Formal_parametersF

 Obj_3

A Generic_Name

Object_A

E

Formal_parametersF

Object_C

Class_B

TProject

page -41

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 41

10 GENERICS

A generic object is a representation of a pattern of object or class which can bereused
andparameterized by types, classes, constants and operations. These parameters de-
fine theformal parameters of the generic object.

Generics are defined as root objects only35, and may use siblings or environments.

An instance of a generic may be created within a parent by defining explicitly the dif-
ferent parameters (types, classes, constants, operations) thus creating an object or class
within the design. These parameters must be provided by objects or classes that are di-
rectly visible from the instantiation location.

10.1 GENERIC DEFINITION

A generic unit may be designed specifically for the system under design when several
similar objects or classes are needed. The generic unit may have as parameters types,
classes, constants, operations and may be “Active” or “Passive”.

The declaration of theformal parameters of a generic shall be done in associated fields
of the ODS in the target language syntax. A generic may :

• only be decomposed into objects or classes,exclusive of any other generic.

• include instances of other objects or Generics.

In the graphical views, a generic unit shall have a formal parameters box represented as
an uncle named “Formal_parameters” and identified by a “F” in the left side.

• In the client server view a use relationship toward that object shall only be represent-
ed when one of its child requires execution of a formal operation provided by the
object “Formal_parameters”.

• In the structure view, a type-use, an inheritance or an aggregate relationship toward
the “Formal_parameters” shall only be represented if a child of the generic requires
a type, inherits or aggregates one of the formal parameters.

35.The reason of this limitation is both one of limiting complexity of designs 9how shall we understand and check
generic definition at multiple level in a hierarchy?), and the need of extended tool support for propagating formal
parameters definition outside an object hierarchy

page -40

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 40

9.2 CLASS INSTANCE DEFINITION

A class instance is a HOOD DATA and has no graphical representation. In the textual
formalism class instances are expressed in the target dependent DATA field of the IN-
TERNALS in the ODS of a client of the class. See textual formalism for a detailed de-
scription of data instance syntax.

page -39

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 39

Figure 29 - Structure view of object LIBRARY

BASICLIBRARY

List
Sllist
Dllist
.....

Lists

List
Sllist
Dllist
.....

Strings

.....

Strings

String
DynString
CString...
..

TYPE_Use

Lists

CString DynString

Virtual_IO_StreamE

dyn

CString

String

DynString

BASICLIBRARY

List
Sllist
Dllist
.....

Virtual_IO_StreamE

CLASS are provided
TYPES and
implemented_by
to be visible to
external world

Classes provide a
main type (the class)
and possibly related
basic types.
Attributes instance
of primitive types
are not represented

String

pString

RString
Attribute of type
DynString

page -38

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 38

Figure 23 - andFigure 27 - represent a library of basic C++ classes modelled as HOOD
objects encapsulating classes and illustrating the representation of their relationships.

9.1.5 Graphical representation of Class libraries

In the following we give a summary of the graphical representations of a library of C++
classes for both client-server and structure views

Figure 28 - Client-Server view of parent object LIBRARY

BASICLIBRARY

{List}
{Sllist}
{Dllist}
.....

Lists

Strings

.....

{List}
{Sllist}
{Dllist}
.....

List_objects

.....

Strings

{String}
{DynString}
{CString}
.....

Lists

{CString}

{String}

{DynString}

Virtual_IO_StreamE

Virtual_IO_StreamE

BASICLIBRARY

{List}
{Sllist}
{Dllist}
.....

TString

TCString TDString

Class operation
are
grouped into
opsets

DATAFLOWS
are
instances of
server classes

ServerClass_Instances

page -37

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 37

Attributes are typed entities, and are either of primitive type or of complex types pro-
vided by other HOOD objects, or classes.Encapsulating attributes as instances of
other classes allows complex data structures to be refined step-wiseby attribution
relationships between the container class and additional “attributed” classes.

In the textual formalism, class attributes are expressed in the TYPE ATTRIBUTES field
of the ODS. See textual formalism for a detailed description of classes instances syntax
in section 14.

Figure 26 - Client-Server view of parent object HRTS.EXCEPTIONS

Figure 27 - structure view of object HRTS.EXCEPTIONS34

34.Note that in this view, objects provide types, and labels on arrows represent attributes or data instances

EXCEPTIONS

TLog

TExceptions

{TLog_ops}

{TExceptions_ops}

{ TExceptions_ops}
{ TLog_ops}

HRTS_PE
action_strings

fstreamE

Raise
Resetis_set
current Raise

Reset
is_setcurrent

D_EXCEPTIONS

exception

logs
fstream

EXCEPTIONS

TLog
TExceptions

HRTS_PE.BaseE

HRTS_PE

fstreamE

D_EXCEPTIONS

TExceptions

TLog

X_LOG

LOG_FILE

Tlog
TExceptions

XData

{ Attributes:
X_LOG}{ Attributes:

LOG_FILE}

page -36

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 36

9.1.3 Class Inheritance Definition

Class inheritance is represented graphically, in the structure view, with an “inherit ar-
row“going from subclass to superclass. In the textual formalism, class inheritance is
expressed in the TYPE INHERITANCE field of the CLASS ODS. See textual formal-
ism for a detailed description of classes instances syntax insection 14.

Figure 24 - Representation of inheritance relationships in the structure diagram

9.1.4 Attribution Definition

Since HOOD is dealing with design and implementation (rather than analysis), a class
should be primarily thought as the physical composition32 of its attributes, rather then
the implementation of the representation of “has_a” or “part_of” relationships of a data
model. HOOD enforces thus the meaning of “attribute” rather than the one of “aggre-
gate” asdata field of a composite data structure. Target implementations may thus vary
depending of the available constructs: in C++ a data member of a class shall be a ref-
erence and not an aggregate if accessed by pointers, whereas in Smalltalk, only refer-
ences exist...

Attribution relationships are represented with an “attribute arrow” going from contain-
er class to the attributed class. Class attributes are optionally represented, in the struc-
ture view, as:

• members of an “Attribute-set33” with reserved name “Attributes” (seeFigure 25 -)
which contains the list of the most significant attributes for understanding the struc-
ture.

• labels on the attribute arrow (seeFigure 25 -) for attributes specifically defined in-
stance of an attributed class.

Figure 25 - Attribution relationships representations in the structure diagram
32.A full discussion of semantically differences between composition and attribution can be found in[ODDEL94]
33.An Attribute-set should only be seen as a graphical representation facility, allowing designs with numerous classes
and attributes to be represented in an understandable way.

SUBCLASS SUPERCLASS

CLASS
Attributed_CLASSAttributeNameClassType

(Attributes:
 Attrib1
 Attrib2}

page -35

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 35

be applied to such attributes by declaring them as “private’ in the internals of the
ODS in the textual formalism (seesection 14).

• Classes may also encapsulate internal data (class variables) which are unique and
shared by all instances of the class. Such data appear in the internal data field of the
class ODS in the textual formalism.

• Classes may be ABSTRACT ones, which can only be inherited by other classes.A
HOOD class is abstract as soon as it provides an ABSTRACT OPERATION.

9.1.1 Class Graphical Representations

A HOOD class may be a root or a child of another object. In order to favour better struc-
ture of numerous classes, HOOD recommends to define related classes (either a full in-
heritance tree or merely logically related ones) as children of a parent “library-object”
(seeFigure 28 - andFigure 29 -). This provides the OO designer with the necessary en-
capsulating facility which is lacking in popular methods such as[OMT91]and others.

In order to avoid overloaded diagrams when representing class relationships, two
graphical views are defined:

• the client-server view shows the use/client-server relationships, data and exception
flows between child objects and classes of a parent object. (seeFigure 26 - Client-
Server view of parent object HRTS.EXCEPTIONS below)

• the structure view shows the type-use relationships between objects, attribution and
inheritance relationships between classes represented with their attributes.

Figure 23 - Representation of a class as a HOOD Server Object for Instance code and
Figure 27 - structure view of object HRTS.EXCEPTIONS give an illustration of the
graphical formalism for representing classes, use relationships, inheritance and attribu-
tion in the design of the HRTS library object for handling exceptions.

9.1.2 Type-use Relationships

An object or class is said to type-use another object or class if the former requires one
type or class for type, class, parameter or data definition. The type-use relationship
among objects and classes defines a require relationship that shall be documented in the
required interface of the textual formalism (see detailed syntax insection 14) and is rep-
resented graphically only in the structure view. Note that a use relationship in the client-
server view (require an operation) does not imply a type-use relationship in the structure
view (since operation parameters may be defined in another object or class).

page -34

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 34

9.1 HOOD CLASS DEFINITION

When a class instance uses an operation of the class, client code associated with that
instance “uses the class operation code” with a special parameter: thereceiver data in-
stance. A HOOD class is thus defined as:

• a special HOOD server object providing a type of same name to clients.

• a set of operations having each a parameter of reserved nameme of type the type of
the class that defines the receiver of the operation. Such operations may be con-
strained.

• a terminal object, encapsulating all provided operations that have the class as re-
ceiver.

The graphical representation is similar to a HOOD object but with squared instead of
rounded corners.

Figure 23 - Representation of a class as a HOOD Server Object for Instance code

• Operations of a class with receiver me implement the concept of “instance methods”
since the receiver“me” of the operation is always a class instance. “Class methods”
may also be defined by specifying the receiver as the reserved parameter namemy-
Class.Such operation applies not on an instance but on the class itself. Such oper-
ations are useful to access values of class variables.

• Classes encapsulateattributes which are instantiated as internal data (also named
instance variables) dedicated for each instance of a class. Since such variables are
encapsulated in their specific instance, and can only be accessed by specifying the
instance of the class where they belong, attributes may appear as public “data” and
declared in the provided interface of a HOOD class. Restricted access can however

CLIENTCODE

CLASS

CONSTRUCTOR

OPERATION2

DESTRUCTOR

OPERATION1

CLASS_INSTANCE

PARAMETERS

page -33

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 33

9 CLASSES

“Rather then describing individual objects, one concentrates on the patterns common
to a whole class of objects. All such object will be called instances of the class “
[MEYER88].

A HOOD class is an HOOD object implementing an abstract data type, and may thus
be considered both as a type and a module.A class however distinguishes from a type
in that, it can extend its properties and operations by inheritance, and may itself
be inherited from other classes.

Classes are thus object oriented programming ones, that issoftware modules, that define
shared code for all instances of the class. Such shared code can be extended through in-
heritance from other classes.

Classes can be instantiated intoinstances (i.e. data or OO objects) thus defining partic-
ular data and code sharing the common code of a class, including the one of inherited
classes (seeFigure 22 -). Class target code is still made more reusable and flexible
through polymorphism allowing parameters of the operations to denote objects of dif-
ferent types of an inheritance hierarchy and to select appropriate operation implemen-
tation.

Classes may be defined andrefined by attribution, describing how they are assembled
from other components and/or classes.Such components of a class are calledat-
tributes, that shall be instanciated as variables or data in each instance of the class.
Some attributes may be unique for all instances of a class and are implemented in target
code as class variables [WEGNER87].

Figure 22 - Representation of a class and instances implementation

CLASS TARGET CODE
COMMON TO ALL
INSTANCES OF THE
CLASS

CLASS VARIABLES
UNIQUE FOR THE CLASS

INSTANCE VARIABLES
FOR EACH INSTANCE

AND ALL INSTANCES

CLASS

 HOOD Class Representation Target Implementation

page -32

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 32

8 ENVIRONMENT OBJECT

Beside a given design tree, all design tree roots of the remaining logical space can be
considered as context or environment of the design tree. An Environment Object is thus
a view of aroot object which is not part of the current HDT but, which is used by the
system to design. Hence, environment objects give the flexibility to incorporate addi-
tional software into the HOOD design without impinging on the formal hierarchical de-
composition principles in HOOD.

Environment objects partition the external world of a design tree and allow to check its
interfaces with respect to its environment.

Within an HDT, an Environment Object is represented as an uncle object with the “E”
letter on the left side, in the diagram of the object (seeFigure 21 - Environment Object
Representation where Obj_3 is an environment object represented as an uncle object).
If the Environment Object has not yet been defined elsewhere, an associated root object
may be created.31

Figure 21 - Environment Object Representation

In the graphical representation, environment objects are only shown at the level where
they add significant information. Once represented, they are propagated on all lower
levels. This avoids adding too much complexity to the diagram, for those objects which
are not part of the software to be developed explicitly. Thus Object_B inFigure 21 -
Environment Object Representation may refer to environment Obj_3 even if its
parent_object does not refer to it.

31.The information to represent the associated interface may either be supplied from another existing HDT, or
entered by the designer from a document describing this interface (e.g. Interface Control Document).

Obj_3

A Object_Name

Object_B

Uncle_1

Object_A

Object_C

E

A

page -31

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 31

7 EXCEPTION FLOWS

An exception specifies the potentiality of abnormal return of control (to client) during
execution of an operation. When such a situation occurs, control flows back to the client
in order to notify it.The flow of exception is thus backwards the normal flow of control
and this is shown by a line crossing the use or implemented_by relationships. This line
is marked with the exception name(s).

The exception names are formal texts29 which ensure consistency in the diagram with
the exception propagation flows as specified in the provided interface of the server ob-
jects. In the Object Description Skeleton (ODS), a section named with the keyword
EXCEPTION_FLOWS will be filled with those <exception_names><direc-
tion30><childOperation>OR<serverObject>as expressed both in the diagram and in the
provided interface of the servers.

Figure 20 - Exception flow representation

As HOOD parent objects are “empty shells”, and since exceptions are linked to opera-
tions, a terminal HOOD object shall not contain any exception. Hence consistency rules
can be established between Parent provided exception, child provided ones, and re-
quired ones. Seesection 15.2for more details on these consistency rules.

29.This text may be tailored according to project standards.
30.Direction shall be indicated by arrow signs and is always relative to the direction given by the implemented_by
or use arrow towards a target which is respectively an operation or an object or uncle_object.

A Object_Name

Object_B

Uncle_1

Object_A

Object_C

X_e1

X_e2

A
X_e3

Op1 Op1

page -30

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 30

6 DATA FLOWS

In order to show the flow of a data, an arrow is used, with one or more data or class
instance names alongside. The dataflow name is aninformal text 27 which abstracts in
the diagram the information exchanged between objects.

Data may flow :

• in the direction of the use or implemented_by relationship,

• in the opposite direction,

• or in both direction.

This representation is used to show the dataflow between objects (omitting error codes,
etc...) in order to make the diagram more comprehensive. Dataflow represented along
the implemented_by relationships, allow to illustrate the breakdown of object dataflow
into operation dataflow. The latter should be consistent with the parameters modes of
the operation.

In the Object Description Skeleton (ODS) of parent objects, a field defined by the key-
word DATAFLOWS will be filled with <dataflow labels><direction28><childOpera-
tion>or<serverObject>as represented in the HOOD diagram.

Figure 19 - Dataflow Representations
27.This text may be tailored according to project standards (e.g. referencing type identifiers).
28.Direction shall be indicated by arrow signs and is always relative to the direction given by the implemented_by
or use arrow towards a target which is respectively an operation or an object or uncle_object.

Object_Name

Object_B

Uncle_1

Object_A

Object_C
data_2

data_3

data_1

data_4

response

command

A

Uncle_1

op1
op2
op3
op4

op1
op2

op3
op4

command

data_1

command

page -29

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 29

- Object_B uses a passive Uncle_1 which Parent_Object also uses it at the upper
level of decomposition.

- Parent_Object.{Child_C_ops} is an Operation_set implemented by
Object_C.{opes_1}.

- Parent_Object.{Op_set} is broken down in two operation_sets i.e. {C_ops},
{D_ops} and into a single operation i.e. Operation3.

- {C_ops} and {D_ops} are respectively implemented by Object_C.{opes_2},
Object_D.{opes}.

- Operation3 is implemented by Object_D.Operation2.
- The provided operation Operation4 is implemented by Object_D.Operation3.

5.2.6 Internal Operations

For terminal objects, an OPeration Control Structure (OPCS) contains a full description
including the pseudo-code and associated code. This OPCS may in turn require execu-
tion of internal operations and/or of operations provided by used objects.
The internal operations are not shown in the HOOD diagram but are declared in the OP-
ERATION field of the INTERNALS of the ODS of a terminal object and have also an
associated OPCS (seesection 14).

5.3 TYPES AND CLASS REFINEMENT

In order to enforce object orientation (encapsulation and information hiding principles),
types (whether true types or associated to a HOOD class - seesection 9) may be de-
clared in a non terminal object but their structure shall always beimplemented by ter-
minal child object or class. The internal type field of the parent ODS is thus filled with
the keyword IMPLEMENTED_BY and the name of the child type. Hence :

• the provided and required interfaces of an object have no implicit dependencies on
the parent,

• the principle of abstraction in successive refinements of design levels is enforced.
The detailed implementation of a type is deferred to the same design level as the de-
tailed implementation of the operations which apply to it.

Note that Parent objects may be considered as “empty code and data shells”, thus no
DATA can be contained directly in a parent, and a parent ODS has no DATA field.

page -28

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 28

5.2.5 Operation_sets

Operations provided by a parent object may be numerous; in order to allow flexible
grouping of operations, the concept of operation-set has been defined. An
operation_set corresponds to a set of operations which are implemented at the next or
further level of decomposition. An operation_set is intended as adescription facility
and is represented by curly brackets ({...}) in the diagram and by the keyword
OPERATION_SETS in the Object Description Skeleton.

The operation_set can be decomposed into other operation_sets26 and operations. A
parent level operation_set which is not decomposed shall beimplemented bya unique
operation_set of a child object. An operation_set will be completely described in the
ODS by attaching the keywordMEMBER_OF <set_name>, to each of its operation
or operation_set member. InFigure 18 -:

Figure 18 - Operation breakdown

- The parent provided operation Operation1 is implemented by several child op-
erations trough an OP_CONTROL object named Operation1.

- When a client requests the provided operation Operation2, it effectively requests
Object_B.Operation1.

26.which can only be defined at lower decomposition levels.

Parent_Object

Object_B

Operation1
Operation2
Operation3

Object_D

Operation3

Object_C

 {opes_1}

Uncle_1

Operation1

Operation1
{opes}

 {opes_2}

Operation2

Operation1

Operation2

{Child_C_ops}

Operation4

{Op_set :
 {C_ops}

 Operation3
 {D_ops}

 }

page -27

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 27

OP_CONTROL object which is represented as an object with no provided interface as
shown inFigure 18 - Operation breakdown.

An OP_CONTROL object is always a terminal object, has no provided interface, is nei-
ther active, passive, constrained or unconstrained.

5.2.3 Overloaded Operations

Operations may be overloaded, i.e. they may have the same name but different signa-
tures (parameters). In the graphical representation (seeFigure 17 - Overloaded Opera-
tion breakdown), overloaded operations shall appear as many times as needed to
represent one-to-one “implemented_by” links unambiguously.

Figure 17 - Overloaded Operation breakdown

5.2.4 Unconstrained/Constrained Operation Mapping

An OP_CONTROL may implement a parent constrained operation by a non con-
strained child operation and vice versa. In that case, the OP_CONTROL object shall
handle the control flow interactions25 in order not to modify the dynamic properties of
its parent object. Thus it is possible to build passive parent objects, which may be bro-
ken down into OP_CONTROL and active objects!

25.An OP_CONTROL execution flow implementing an unconstrained operation into a constrained one may re-
quire OS services (“non-blocking” ones), or solely require ASER operation executions.

Parent_Object

Object_A

Operation1
Operation2
Operation3

Object_B

 Operation2

Operation1

Operation1
Operation2
Operation2

page -26

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 26

Figure 16 - Example of a HOOD Design Tree

5.2 OPERATION BREAKDOWN

5.2.1 One to one Mapping

Each parent operation shall beimplemented by one child operation. The graphical rep-
resentation is a dashed arrow from parent operation to child operation. In the internals
of the ODS, the keywordIMPLEMENTED_BY and the identification of the imple-
menting child operation is associated with the parent operation.

5.2.2 One to many Mapping

For a parent operation to be implemented through several child operations, a dedicated
object of typeOP_CONTROL may support the one to many mapping. The graphical
representation is a dashed arrow going from the parent operation to the

Object 2

Object 1

Object 3 Object 4

Object n Object m

Design

level 1

Design

level 2

Design

level 3

terminal object

root object

page -25

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 25

Figure 15 - Object breakdown

TheHOOD Design Tree (HDT) is the tree of the system being designed. It consists of
the root object and its successive breakdowns into child objects until terminal objects
are reached.

Other root objects, seen asenvironment objects (see section 8), may be introduced to:

• allow consistent descriptions of the system to design with respect to its environment
or,

• provide foruse or reuse of preexisting or externally designed software.

Classes (seesection 9) may also be introduced to factorize the description of object be-
haviours.

Figure 16 - gives an example of a HDT in which the breakdown has been made on three
levels24.

24.Two to six levels of breakdown are reasonable figures for a design

Parent_Object

Object_B

Operation1
Operation2
Operation3Object_C

 opes_1

Uncle_1

Object_A

 opes_2

Operation1

Operation2

Operation1
Operation2

page -24

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 24

5 THE INCLUDE
RELATIONSHIP

In order to provide a top-down breakdown of a system, a parent object is broken down
into a set ofchild objects that collectively provide the same functionality as the parent.
Each of these child objects may in turn be further broken down. This breakdown proc-
ess is based on theinclude relationship between objects, where one object, the parent,
includes other child objects.

A passive object may include active child objects as long as the parent passive proper-
ties are not violated21 (seesection 16 for a detailed description of consistency rules).

The graphical representation (seeFigure 15 - Object breakdown) is as follows :

• the include relation is represented by drawing the children inside the parent.

• the mapping between operations at parent level and operations at child level is rep-
resented by a dashed arrow called animplemented_by link.

• An object that is used by a parent object must also be used by at least one of the
latter’s child objects. This object, called an uncle object, is represented by a box, an-
notated with an active /passive indicator, attached at the border of the parent object.
This box defines the connection port for child objects. Associated use arrows must
be drawn from a child object to the uncle object and may have attached dataflows
or exception flows already identified in parent diagram22.

5.1 HOOD DESIGN TREE

A HOOD design is based on the principle of abstracting a system into an object archi-
tecture and refining it through successive breakdowns23. A given system can thus be
described by a parent-child hierarchy with a root object representing primarily the sys-
tem to design, and a number of objects at different lower decomposition levels. An ob-
ject which is not decomposed into children is called a terminal object. Intermediate
objects are called non-terminal objects.

21.In that case the parent level decomposition previously validated would be inconsistent and would have to be rede-
signed, possibly leading to a full redesign of previous work!
22.Consistency between parent level flow and child level flow should be ensured at design checking.
23.As opposed to other design and refinement techniques, HOOD proposes a mechanism where the refinement of a given
object (by definition of child objects) leaves upper level descriptions invariant.

page -23

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 23

4 THE USE RELATIONSHIP

An object is said touse another object if the former requires execution of at least one
operation provided by the latter. The use relationship among objects definesclient-
server relationships allowing client objects to get services/operations executed by serv-
er objects according to a given communication protocols (and possibly expressed by ap-
plying an appropriate constraint on the server operation). The use relationship between
objects is represented graphically by a bold arrow from the client to the server.

A system of objects using one another defines a use interconnection graph. HOOD rec-
ommends to avoid cycles in this graph according to guidelines given in[PARNAS79].
Such systems are much more difficult to test since they don’t enforce an incremental
development approach.

As an example, consider objects A, B, C and D (seeFigure 14 - Use Relationship Rec-
ommendations below). If A uses B, B uses C, and C uses D, then HOOD recommends
D not to use A.

Figure 14 - Use Relationship Recommendations

In order to enforce software engineering principles and to improve software quality,
HOOD encourages principles of low coupling and high cohesion between objects :

• The use interconnection graph of a set of objects should not be cyclic.

• The use interconnection graph should be of as low complexity as possible, i.e. ob-
jects should use as few other objects as possible but they should be used as much as
possible.

• Passive objects should not use active objects (at least no concurency or protocol con-
strained operations), since their “system behaviour” could so be impacted. (they
could so inherit active properties from their active servers)

Object_B

Object_C

Object_D

Object_A

page -22

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 22

INTERNALS --| Formal Description of Interface Implementation |--
OBJECTS

NONE -- since we are a terminal object
TYPES

List of (Type_Name18 {Complete_Type_Definition}added with textual description)
CONSTANTS

List of (Constant_Name1 {Constant_Definition} added with textual description)
OPERATIONS

List of (Internal_Operation_Name [list of (Parameter : Mode Type)] [RETURN Type]
added with textual description)

DATA
List of ({Data_Name: Type_Declaration} added with textual description)

OBJECT_CONTROL_STRUCTURE
CODE

OSTM
 {Object state Machine initialisation code in target language extracted from OSTD}

Client_Obcs -- only if protocol constrained operation
 {Client code common to all protocol constrained operation-may be empty}

Server_Obcs -- only if protocol constrained operation
 {Server code common to all protocol constrained operation-may be empty}

 OPERATION_ CONTROL _STRUCTURES
 --| One operation description for each provided or internal operation |--

OPERATION Name [List of (Parameter_Name : Mode Type)] [RETURN Type]
DESCRIPTION

--| Textual description of HOW the operation works.|--
USED_OPERATIONS

List of ([Object_Name].Operation_Name)
PROPAGATED_EXCEPTIONS

List of (Propagated_Exception_Name)
HANDLED_EXCEPTIONS

List of (Handled_Exception_Name)

PSEUDO_CODE --| Pseudo code of the operation19.|--
 {Associated pseudocode}

CODE

 {OPCS_BODY code of the operation in target language} 20

--OBCS_CODE --| Additional code for constrained operation support |--
Opcs_HEADER ----| OPCS HEADER code |--

 {Associated code in target language}
Opcs_FOOTER ----| OPCS FOOTER code (may be empty)|--

 {Associated code in target language}
Opcs_ER ----| Client ER code (may be empty)|--

{ Associated code in target language}
Opcs_SER ----| Server SER code (may be empty) |--

 {Associated code in target language}
END_OPERATION Name

END_OBJECT Object_Name

18.Internal types and private part of provided types
19.Pseudo code field of the operation may contain any PDL.
20.This code field may contain internal declarations and the code sequence implementing the algorithms as well
as the exception handlers in target language. It shall be taken as input for a code generator.

page -21

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 21

OBJECT13 Object_NameIS ACTIVE|PASSIVE
DESCRIPTION
--| Informal text describing the functionalities (WHAT the object is doing) in a few lines. |--
IMPLEMENTATION_CONSTRAINTS
--| Describes informally any implementation and target constraints (memory, CPU, timing...) applicable to the object |--
PROVIDED_INTERFACE --| Formal description of the services provided to other objects. |--

TYPES
List of (Provided_Type_Name added with a textual description of WHAT the type is)

CONSTANTS
List of (Provided_Constant_Name added with a textual description of WHAT the constant is)

OPERATION_SETS
List of (Provided_Operation_Set_Name added with a textual description of the Set)

 OPERATIONS

List of (Provided_Operation_Name [list of (Parameter : Mode Type_Name [:= Default_Value])14]
[RETURN Type_Name] [MEMBER OF Operation_Set_Name]

added with description of WHAT the operation does)
EXCEPTIONS

List of (Provided_Exception_NameRAISED_BY15 list of (Operation_Name)
added with textual description of WHEN the exception is raised)

OBJECT_CONTROL_STRUCTURE
DESCRIPTION
--| Informal text describing the behaviour of the object in a few lines. |--
OSTD --| only if there are state constraints |--

--| Description of object behaviour model as a state transition diagram. |--
CONSTRAINED_OPERATIONS

List of (Operation_Name [CONSTRAINED_BY [Label_text]]

REQUIRED_INTERFACE --| Formal description of the services required from other objects or classes16.|--
OBJECT Required_Object_Name

TYPES List of (Type_Name)
CONSTANTS List of (Constant_Name)
OPERATION_SETS List of (Operation_Set_Name)

OPERATIONS List of (Operation_Name [list of (Parameter : Mode Type)]17)
EXCEPTIONS List of (Received_Exception_Name)

DATAFLOWS --| Description of the Dataflow represented in the diagram |--

List of (Data_Name Direction Used_Object_Name -- added with an informal textual description
List of (Data_Name Direction OPERATION Op_Name -- added with an informal textual description)

EXCEPTION_FLOWS --| Description of the exception flows represented in the diagram |--

List of (Exception_Name Direction Used_Object_Name) added with an informal textual description)
List of (Exception_Name Direction OPERATION Op_Name) added with an informal textual description)

--|-------------------------------------| END OF VISIBLE PART OF THE OBJECT |---------------------|--
13.The following conventions are used to describe the ODS:
- keywords are in upper case,
- code entities names are marked in italic case,
- comments to the ODS are marked with the notation : --| text |--
- the other fields are to be filled in by the designer,
- optional entries are enclosed in square brackets : [...],
- target language dependent fields of the ODS are enclosed in braces {},
- “List of (Items)“means “item1, item2,..., itemN”,
- “Standard ODS” means all fields of active object ODS,
- “Standard field” means the field of the ODS of active objects related to the current topic.
14.The syntax of parameter definitions is Ada whatever the target language.
15.This allows to associate an exception to one or several operations.
16.The fields of the Required Interface may be computed and documented automatically by toolsets, based on the analysis
of other ODS fields (annotations, declarations of types, constants, data, operation parameters and OPCSs)
17.The list of parameters is required to discriminate between operations of the same name (overloading).

page -20

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 20

3.3 OBJECT DESCRIPTION SKELETON

All properties of an object are described textually and whenever possible, formally, in
a structured text framework called theObject Description Skeleton (ODS). This doc-
ument is defined as a set of structured fields, separated by keywords, that may contain
specific notations, languages or target language descriptions. An ODS may therefore
be easily processed and exchanged for extracting relevant information for a given de-
velopment activities (design checking, code generation, tracability, performance eval-
uation or metrication.) ODS fields are updated as the design of the unit is more and
more refined.Figure 13 - ODS Structure outlines the main fields corresponding to the
HOOD concepts described above: Object, operation, types, constants, data, OSTD,
OSTM, OPCS and OBCS control structures.

Figure 13 - ODS Structure

In the following we outline most of the fields of an ODS, whereas a detailed description
of ODS variant and guidelines for filling the ODS fields are given insection 14.

Internals

Visible part

OBJECT Declaration
Description
Implementation_Constraints
PROVIDED INTERFACE
OBCS

 (OSTD and Constrained Operations)
REQUIRED INTERFACE
DataFlows
ExceptionsFlows

Internals

Non terminal units Terminal units

Internal Objects
Types, Const, Operations,

Op_sets, Exceptions
implementation in children

OBCS and OPCS
implementation in children

Types, Constants definition
Internal Operation declarations
Internal Data declarations
OBCS ClientCode
OBCS ServerCode
OSTM Code

OPCS Code
OPCS_Header, Footer, ER and

SER code
Test Scenarii code

page -19

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 19

3.2.5 ACTIVE and PASSIVE Objects

In order favour reuse and parallel development, HOOD partitions software as contrib-
uting or not to dynamic behaviour (which is most difficult to develop reliably), by de-
fining two kinds of objects :

• Passive Objects: such objects shall not have any contribution to the dynamic behav-
iour of a system. Passive objects can thus be seen as “thread empty passive code”
and may be developed with more common standards than other objects.
Passive objects may thus have only state constrained operations, and their OBCS
shall be reduced to an OSTD, and associated target code description parts (that is
OSTM, OPCS_HEADER and OPCS_FOOTER fields seesection 3.3 below).

• Active Objects: these are all objects which contribute to the overall dynamic behav-
iour of a system. An active object can thus be seen as encapsulating one or several
server execution threads, executing concurrently.As a result, an object that is not
passive is active.

Figure 12 - displays the graphical representations associated to active and passive ob-
jects. Active objects have an “A” in the upper-left corner and have at least one protocol
constrained operation.

Note that the property of “active” is really meaningfulat the level of terminal ob-
jects(seesection 5 below)when reusing components; a designer has thus a direct mean
to know whether its system behaviour may be affected when he decides to reuse a com-
ponent in its design.

Figure 12 - Graphical Representation of Passive and Active Objects

A Object_Name

Operation1

Operation2

Operation3

ASER_by_IT

LSER_TOER 2s

Object_Name

Operation1

Operation2

Operation3

Active Object Passive Object

Operation4

page -18

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 18

Figure 11 - Target Operation model

Note that Client_Obcs and Server_Obcs target units are common to all protocol con-
strained operation, whereas Opcs_ER, Opcs_SER, Opcs_HEADER, Opcs_BODY and
Opcs_FOOTER are associated to each constrained operation.

Code generation rules can now be derived by defining target source code fields (which
may be empty) associated to these logical parts according to the type of constraints at-
tached to an operation. A full specification such associated code is given insection 17
for each kind of constraint.The code associated to constrained operations may thus
be automatically generated and can be defined once for all, so that the designer or
programmer can concentrate on the OPCS body part.

HOOD Design implementation and code generation for multiple targets is discussed in
detailed insection 17.

NON CONSTRAINED

OPERATION

STATE and/or

OPERATION

[TIME] PROTOCOL

OPERATION

CONSTRAINED

Target procedure OPCS BODY
part

Target procedure

OPCS HEADER
part

OPCS BODY
part

OPCS FOOTER
part

 CONSTRAINED

OPCS ER
part

OPCS SER
part

Target procedure
for unconstrained or
state and/or

 operation

Client
OBCS

Server
OBCS

HOOD RUN TIME SUPPORT Library

TARGET HOST OS

VNCS VNCS

and

REMOTE VN
OPERATION

Client space Server space

concurency constrained

 CONCURENCY

OSTM Target OS
Services

page -17

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 17

Implementation on target languages and systems shall enforce these principles of sep-
arating pure sequential, thread-safe software from concurrent inter-process software as-
sociated to HOOD protocol constrained operations :

• the sequential code is defined in the OPCS associated to an operation,

• the concurrent code is defined as additional code and is as much as possible encap-
sulated in one target unit.

This execution model, illustrated inFigure 10 - HOOD Object execution model, has
several advantages for developing more reliable and reusable software. Especially it al-
lows:

• separate and parallel development of reactive and transformational parts, possibly
by specialized development teams,

• easy dynamical behaviour prototyping, before or independently of sequential code
availability,

• expression of dynamical behaviours using high level or formal notations in order to
perform verification and possibly formal checks on some behaviour parts,

• the definition of a client-server architecture implementation, independently of any
ultimate target

An associated supporting client-server architecture is best achieved by splitting the
OBCS supporting code into target units across client and server execution spaces with
respect to operation constraints. An associatedtarget constrained operation model il-
lustrated inFigure 11 - allows the specification of automated multi-target code genera-
tion whatever constraints and targets.

The logical code parts associated to the OBCS concepts have been defined as:

for state constrained operations:
OPCS_HEADER code associated to a protected12 and/or state constrained operation
OPCS_BODY sequential code of the operation body
OSTM Object state transition machine target code associated to the OSTD
OPCS_FOOTER code associated to a protected constrained operation

for protocol constrained operations:
OPCS_ER client code associated to a protocol and time constrained operation
CLIENT_OBCS code to queue execution request and waiting return parameters
OPCS_SER server code for executing the effective operation
SERVER_OBCS code to dequeue Op requests, process them and return back effective

operation parameters

12.protected means here ‘execution in mutual exclusion’ or in shared Read only

page -16

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 16

3.2.4 Control Structures and Target Models

3.2.4.1 Definitions

The description of the dynamical behaviour attached to the execution of operations
(with or without attached constraints) deals with the description ofthread interaction
and executionthat are ultimately implemented on target machine processors. The be-
haviour of such threads is captured through two orthogonal concepts :

• the OPeration Control Structure (OPCS, one by operation) which describes how
a sequential thread executes within an operation.TheOPCS defines the way the ex-
ecution flows sequentially within the operation.

• the OBject Control Structure (OBCS, one per object) which controls the activa-
tion condition and the triggering of execution request onto server threads as defined
by operation constraints. TheOBCS defines the way client or server threads may
execute provided operations according to their constraint specification.

Figure 10 - HOOD Object execution model

3.2.4.2 Implementation Principles

HOOD OPCS and OBCS Control Structures concepts allow to specify and implement
a client-server communication modelenforcing separation of sequential code from
concurrent one. This separation is intended to support feasibility analysis or prototyp-
ing of real time behaviours (by implementing all OBCSs) completely in parallel with
the development of the functional/sequential code (defined in OPCSs) of a system.

Operation_1

Operation_2

Operation_3

Operation_4

ASER_by_IT

HSER_TOER 2s

Execution Mode

Op_2
Execution Mode

Op_1 : OPCSOp_1

Op_2 : OPCS

Op_4 : OPCS

interprocessOBCS

Op_3 : OPCS

Other

Operations

communication
and synchronisation

RequiredInternal OPCS

page -15

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 15

3.2.3.4 Time constraints descriptions

The TimeOut constraint (TO) allows a client to request the operation to be executed
within a given period of time. The timeout is the maximum elapsed time (within the cli-
ent time reference) before the request is taken into account or executed by the server.
TO can be combined with above protocol10 constraints only. Client control flow is in-
terrupted and resumes (seeFigure 9 - Timed-out Execution Requests (HSER)) either
when :

• the time-out has occurred or

• the service has been acknowledged or completed.

By default the server flow continues always its execution (until the nominal end of the
operation or until an exception occurs), whatever the time-out has occurred11.

For timed-out execution requests, a timeout default value is attached to the operation,
but the client may override it at request time. The time is always measured in client’s
space, and no global time is supported.

Figure 9 - Timed-out Execution Requests (HSER)

10.Time out applied to a single execution flow is not sensible since in case of timeout, no other flow can perform an action.
11.this is because it would be extremely difficult to implement a safe “abort” operation for all possible cases; thus this is
left to the designer.

TOER

Client Server Client Server

Time out

Delay exceeded

TOER

Time out

Delay not exceeded

thread executing
thread not executing

page -14

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 14

• Reporting Loosely Synchronous Execution Request (RLSER) : the client con-
trol flow is interrupted until the server acknowledges the request. At a later time the
client shall await results from the server. (seeFigure 8 - RASER and RLSER Execu-
tion Requests).

• Reporting Asynchronous Execution Request (RASER) : the client control flow
is not interrupted, but the requested operation is triggered within the server. At a lat-
er time the client shall await results from the server9. (seeFigure 8 - RASER and
RLSER Execution Requests).

Figure 8 - RASER and RLSER Execution Requests

9.RLSER and RASER Operations could be implemented by normal ASER and LSER operations plus specific HSER
operations to get associated results. The combination achieved however by RASER and LSER constraints allows the
design of parallel programs to be achieved in a much more concise, readable and verifiable way.

Request

RLSER protocolRASER protocol

Client ServerClient Server

Acknowledge

Request

Report

Report

thread executing
thread not executing

page -13

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 13

3.2.3.3 Protocol constraints descriptions

Protocol constraints are described through predefined texts of trigger labels. It is as-
sumed thatthe underlying implementation communication model is asynchronous, that
is: when a client issues a request to a server, it may continue its execution even if the
server is not ready to serve its request. A protocol constraint is defined with a text start-
ing with a keyword that defines one of the following protocol:

• Highly Synchronous Execution Request (HSER) : the client control flow execu-
tion is interrupted by a target thread or operating system mechanism. Control is giv-
en back to the client when the requested operation has been performed (this
corresponds to a WAIT_REPLY communication protocol, seeFigure 7 - Uncon-
strained and Protocol constrained Execution Requests).

• Loosely Synchronous Execution Request (LSER) : the client control flow is in-
terrupted. Control is given back to the client when the server acknowledges the re-
quest (this corresponds to an ACKNOWLEDGE communication protocol, see
Figure 7 - Unconstrained and Protocol constrained Execution Requests).

Figure 7 - Unconstrained and Protocol constrained Execution Requests

Client Server

internal or
external

LSER protocol

internal or
external

ASER protocol

internal or
external

HSER protocol

Client Server

event

event

event

Unconstrained
operation

Request

Acknowledge

Request

Report

Request

thread executing
thread not executing

page -12

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 12

3.2.3.2 Concurency constraints descriptions

Concurency constraints are described through predefined texts of trigger labels:

• Mutual EXclusion Execution Request (MTEX) :
The operation7is executed in mutual exclusion within the server’s concurrent mem-
ory space. Such an execution request can be combined with above state constraints.
Figure 6 - illustrates the execution flows with MUTEX constraints.

• Read Only Execution request (ROER):
The operation may be executed together with different concurrent flows. Such con-
straint is used to declare this operation as a “reader” controlled by “reader-writer
monitor”[BURNS90] and allowing several execution threads to operate simultane-
ously and get consistent results8.

• Read Write Execution request (RWER):
This constraint defines the operation as a “writer”, controlled by “reader-writer
monitoring[BURNS90] allows operation execution in mutual exclusion of all other
concurrent reader threads.

Figure 6 - MTEX Execution Requests representation

7.in fact the OPCS body
8.Note that when the target language is Ada, such operations may be mapped into access operation onto protected records

thread executing
thread not executing

Server ObjectClient Object

Execution of OPCS
in mutual exclusion

waiting for exclusive access

page -11

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 11

In order to support refinement (i.e. addition of more states leaving existing one un-
changed) of such states, OSTD diagrams may be described as nested OSTD. Thus a
transition may:

• “exit” from the OSTD, or

• “call” another OSTD, or

• “return” to the calling OSTD, in a given “return state”

Figure 5 - Example of an Object State Transition Diagram illustrates such an OSTD,
for the STACK object represented inFigure 4 -. A full description of the OSTD textual
formalism is given insection 14, whileAppendix B - HOOD GRAPHICAL SYMBOLS-
 gives a full description of OSTD graphical syntax.

.

Figure 5 - Example of an Object State Transition Diagram

return state in

operation execution request

Legend

initial transition origine

Exit transition to

call to other FSM

local state

calling state

start
STOPPED

EMPTY

FULLDEGRADED

failure

push

put
push|pop

STACK

stop

stop

reset

Timer_it,other_it

 calling FSM

N_E_N_F

pop

start

page -10

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 10

State, Concurency, and Protocol constraints are orthogonal concepts that may si-
multaneously apply to a same operation. Time constraints may only be combined
with protocol constraints. Operation constraints are graphically represented by attach-
ing a “trigger arrow” to an operation:

• arrows without label indicate that an operation is solely state constraint (see Start
and Stop operations inFigure 4 -)

• arrows with a label indicate that an operation has a combination of State, Concuren-
cy or Protocol constraints (see operation PUSH and POP inFigure 4 -). This label
holds a textual description of the constraint and may be used later for automated
code generation. In that case, a precise syntax (as defined insection 14) shall be
used.

Figure 4 - Graphical Representation of Constrained Operations

3.2.3.1 State Constraints Description

State constraints may be described as a state transition system where transitions are
triggered solely by provided constrained operation execution requests. This model im-
plements theprecondition and postcondition programming approach [MEYER88],
[MOTTET95]for the specification of an operation and shall be described, in the textual
formalism, within anObject State Transition Diagram (OSTD). As a result:

• a state in an OSTD is a subset of the global state of the object, where one or several
provided constrained operations may be triggered. An OSTD state is represented
graphically as a square box.

• a transition of an OSTD can only be labelled with a constrained operation name. A
transition is represented graphically as a labelled arrow. Several transitions with
same label are allowed from one state towards another6 (including cycles).

6.non determinism of such descriptions shall be solved from the client code (OPCS) which shall be able to set the OSTD
states according to locally known conditions.

PUSH
POP
GetCurrentSize

STACK

LSER

HSER

Start
Stop

page -9

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 9

andconstraining the execution associated to operations, thus warranting a given se-
mantic and state.

Some operation executions (such as iterators, or state copies) may never enforce a se-
mantic change in the object state, whenever time they are triggered. However others
mustenforce a givenprotocol, synchronise, enforce pre-conditions andpost-conditions
to ensure a correct semantic for the object.

Let us take a STACK object represented inFigure 4 -as an example. Such an object
should never execute a PUSH operation when the STACK is FULL.Hence the PUSH
operation shall be “state constrained”.

The following kinds of constraints are defined and may be combined orthogonally to-
gether:

• State constraints
The execution of an operation within the server object depends on its internal state
possibly resulting from previous executions. In order to avoid any behavioural im-
pact, HOOD recommends a non-blocking implementation implying only the current
(client)execution thread4.

• Concurency constraints
The execution of an operation may take place within a server thread in concurency
with multiple other threads. The MUTEX constraint shall be used to specify that the
target operation code is to be executed in mutual exclusion[BURNS90].
The ROER constraints shall be used to specify multiple read only access for the tar-
get operation code according to a reader-writer schema[BURNS90]
The RWER constraints shall be used to specify exclusive write access within the tar-
get operation code according to a reader-writer schema.

• Protocol constraints
A server receives an operationexecution request and reacts in order to implement
the associated communication protocol. Note also that the implementation of such
constraints imply at least one client and one server execution threads to fulfil the op-
eration.

• Time constraints
The execution of an operation or a request may be limited in time. Therefore time
constraints shall allow to specify how long an execution request can last in the worst
case. The behaviour of the client execution thread when such deadlines are met, is
as follows: when it gets control back5, it may check that the deadline was overrun
and execute an appropriate action.

4.This results from pragmatic experience of client using possibly blocking code. The best working strategy is in case of
automated code generation generally the non-blocking one, where the client is just to be warned tat the service he wanted
was not available at the time he requested it.
5.The exact behaviour is not specified and left to implementation, e.g. an exception Time_Constraint_Error could be
raised, or asynchronous transfer of control could happen, or a status could be updated in the client thread memory space.

page -8

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 8

• theasynchronous model where the client resumes its execution just after issuing
the request to the server, whatever the state in the server2.

3.2.2 Control Flow and Dynamical Behaviour

Thedynamical behaviourof a system is associated to the temporal ordering of execu-
tion threads and is a key issue in the design of complex systems.At the opposite of pop-
ular OO methods such as[OMT91], [COAD91], [[SH&M92], [BOOCH86] and others,
HOOD addresses concurrent, real time and distributed processing. HOOD provides a
consistent framework to master the design of a wide range of operational systems such
as embedded and control process ones.A key feature of this framework, regarding
system behaviour, is the concept of constrained operation. This concept (seesection
3.2.3) allows execution threads behaviours to be specified one by one, in an implemen-
tation independent way.

System behaviour is achieved as the composition of thread behaviours resulting from
their execution within operations and their interactions as objects communicate.A con-
trol flow behaviour is associated with an execution thread3 and may be:

• Sequential:in this case the same execution thread flows from a client operation into
a server one andno interaction with another execution thread can take place.
The flow of control is executing fullysequentially within the internals of the oper-
ation i.e. in the OPeration Control Structure (OPCS). After completion, the con-
trol returns back to the client.

• Concurrent:in this case interactions between the client execution thread and other
threads may take place as the control “flows in” the server. The OBject Control
Structure (OBCS) receives execution requests from client threads. Reaction to
such requests will depend on the server internal state as well as on the communica-
tion protocol constraint.

3.2.3 Constrained Operations

In order to model the interactions of sequential and concurrent behaviours of threads
in real time software systems, HOOD provides a consistent set ofoperation constraints
allowing various aspects of real time software design to be taken into account, includ-
ing support for schedulability analysis.Full communication and synchronisation pro-
tocols between a client and a server may be specified by attaching execution requests

2.This requires that the implementation provides an intermediate resource (such as a mailboxes) to hold/store the request
until the server is able to process it.
3.Such a thread has first to be seen as a logical one, and may be implemented in the target system as a scheduled entity
such as simple Ada task or physical thread, or even as a physical heavyweight process[MULLER89].

page -7

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 7

• The interface part defines the services (types, classes, constants, operations [with
associatedparameters] andexceptions) provided by the object, as well as the serv-
ices required from other objects.

• The internals part defines the implementation of the provided interface, by internal
types, constants, operations and exceptions,or through internal objects and/or
classes. This property allows a set of object specifications to be defined in term of
child object descriptions. This is a key feature for refinement that distinguishes
HOOD from other design methods.

3.2 DYNAMIC PROPERTIES

3.2.1 Communication between Objects

Communication between objects is only possible by service requests, which are similar
to Smalltalk method calls or Ada procedure / task entry calls. The communication is
then achieved by execution of operations. An object requesting execution of an opera-
tion is called aclient object. An object performing execution of an operation is called
aserver object. The following conditions must be satisfied :

• the provider of the service must be named by the client.

• the name of the client is not known by the server.

• a client object requesting a service from a server object is said touse1 the server
and this is represented graphically by a bold use arrow. (seeFigure 14 - Use Rela-
tionship Recommendations).

• there is a many-to-one connection pattern, reflected by the naming scheme.

• information and data items can be exchanged between communicating objects and
the associated information flow may be bidirectional and is represented by arrows
along the use relationship one (seeFigure 19 - Dataflow Representations in section
6).

HOOD supports two models of communication:

• thesynchronous modelwhere an operation execution request defines a synchroni-
zation point between the client and the server; if the server is busy when the client
send the request, the latter is suspended until the server is able to service the request.

1. This communication model (which should be enough detailed at the design level) abstracts from any implementation
model which may be synchronous (i.e. when the client send a request to a server, it is suspended if the server is not ready
to process it) or asynchronous (i.e. when the client issues a request, it is not impacted by the state of the server). Imple-
mentation issues are further discussed insection 3.2.4 below.

page -6

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 6

3 OBJECT AND
OPERATION CONCEPTS

HOOD provides mechanisms to overcome the limitations of flat design descriptions in
the field of large and complex systems by defining an object model and architecture
through a globally top-down stepped design process allowing validation and verifica-
tion procedures to be improved.

The formalisation of the object concept is based on both graphical and textual notations
and supported by the Object Description Skeleton (ODS). These formalisms are used
in a complementary way in order to capture both static and dynamic properties of an
object.

3.1 STATIC PROPERTIES

An object has a visible part (theinterface), and a hidden part (theinternals) which
cannot be accessed directly by external objects. An object is only accessible from the
external world by its name. The associated graphical representation is shown inFigure
3 -

Figure 3 - Graphical Representation of a HOOD Object

Object_Name

Provided

required
interface

USED OBJECTS

provided
interface

internals

Operations environment

page -5

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 5

2.2 SYSTEM DESIGN

A system to be designed may be modelled according to three views corresponding to
different abstraction levels :

• the logical space view, consisting of adesign space structured as a set of design
trees and a set of ENVIRONMENT trees that define formally the environmental and
reusable software. In order to factorize descriptions of similar and context-free re-
usable objects, GENERIC objects or classes may be defined either within the design
space or in a dedicated generic space.

• adistribution spaceview, which deals with the definition of indivisible units of dis-
tribution andphysical processes by allocation of objects.

• aphysical spaceview, which deals with the definition of physical nodes byconfig-
uration of distribution units.

HOOD deals with logical and distribution views as illustrated inFigure 2 - System De-
sign Views.

Figure 2 - System Design Views

Distribution space

Logical space = set of object design trees
Generic space = set of generic object design trees and generic class patterns
Distribution space = set of distribution unit design trees
Physical node space = set of physical node design trees

Physical Node space

Generic space

 DESIGN space

 LOGICAL space

page -4

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 4

HOOD defines a design technique which allows structuring of a software solution in
modules both associated to the above design entities and enforcing the following prin-
ciples of:

• Abstraction, information hiding and encapsulation :
An object is defined by the servicesit provides to other objects, the services it re-
quires from other objects and itsbehaviour, whereas itsinternal structure is hid-
den to clients. An object is thus defined through itsinterfaces with respect to its
environment. Hence a system can be built by interconnecting objects and verified
according solely to the properties provided by the interface descriptions.

• Hierarchy and Refinement :

- Objects mayrequire execution of operations provided by other objects, so that
a system can be represented as ause interconnection graph. This graph should
be structured into a senior-junior hierarchy as suggested in[GOOD86]

- Objects maybe decomposed into other objects and classes, so that a system
can be represented as aninclude graph orparent-child hierarchy of objects
[GOOD86], [MOTTET91].

- Successive breakdowns andrefinementsof parent objects into child objects al-
low complexity to be mastered and aHOOD design tree(HDT) (seesection 5.1
below) to be defined.

- Classes are defined as terminal objects that can berefined by aattribution and
inheritance, allowing their implementation to be factorized by sharing common
structures and properties.

• Separation of operation and object dynamical behaviours according to concur-
rence and client -server spaces:
Operations of objects areactivated and executed alongcontrol flows correspond-
ing to the execution oflogical threads which may be:

- encapsulated in objects or in virtual nodes.
- implemented on an underlying target machine, or on several physical computing

resources.
- There may be several control flows operating simultaneously in an object. Con-

trol flows appear through asynchronous events in real time systems and further-
more through implementation of parallelism on sequential machines.

Control structures are used to describe such thread execution behaviour or
control flows:

- sequential operation executions are described within anOPeration Control
Structure (seesection 3.2)

- temporal ordering of operation executions and/or concurrent behaviour of ob-
jects are described within anOBject Control Structure (seesection 3.2), which
may be implemented over a client and server memory partition.

page -3

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 3

2 HOOD OVERVIEW

2.1 BASIC CONCEPTS

Historically OOD[[BOOCH86]] was first a technique usingobjects as the basic unit
of modularity in system design. The earlier definition of HOOD object relied fully on
this terminology. Later, as work in Object Oriented (OO) area and terminology matured
[[MEYER88]], the concept of class emerged as the unit of modularity in OO, and the
term object was used with the meaning “instance of a class”.

This did not preclude modifying existing HOOD concepts and instead,a HOOD object
remains the unit of modularity, but is now defined as an encapsulation of services con-
taining OO classes, OO objects(as OO class instances),data(as primitive type instanc-
es) and associated operations. Moreover a class (seesection 9) is a module shared by
its instances, and is represented itself as a special HOOD object.

A HOOD object is thusa software module specification, being primarily an encap-
sulation of servicesprovided to other client software, and which contains types,
classes, data and operations working on that data. A HOOD object may be mapped e.g.
into an Ada package, or a C++[STROU91] module, whereas an elementary operation
may be implemented as an Ada procedure or C++ function.

In order to avoid any misunderstanding, the following terminology rules have
been enforced throughout this book :

• the term“object” is always used to mean a module of software (possibly re-
ferring to a simple module of software, an OO class, a generic unit, or a virtual
node), unless specified otherwise;

• The term“class instance” is always used instead“OO object” to designate the
entity associated to an OO class instance.

page -2

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 2

• the include hierarchy, allowing an object to be a composition of other objects, and
which is necessary to properly subcontract pieces of software.

• the inheritance hierarchy, allowing definition of objects/classes by increments
over shared code with other objects/classes.

These considerations led to the merging of Abstract Machines and Object Oriented De-
sign into a common direction, thus defining the Hierarchical Object Oriented Design
methodology. The HOOD method has been adapted by CISI, CRI and MATRA-MAR-
CONI-SPACE, in order to meet the needs of the EUROPEAN SPACE AGENCY.

Since, the HOOD method has been enhanced by the HOOD TECHNICAL GROUP
(HTG) under control of the HOOD User’s Group (HUG) comprising major aerospace
and industry companies in Europe.

The major enhancements of the present release named HOOD4 over previous official
release[HRM3.1] have been experimented and validated by the HTG from 1994 on and
are:

• OO classes and inheritance supportallowing HOOD to be used as the unique de-
sign representation for components developed either with classical languages or
with object oriented languages.

• enforcement of separation principles from design through target code into:

- pure sequential code through the concept of operation control structure
- state integrity code through the concept of state constraints and concurency con-

straints
- inter-process communication code through the concept of protocol constraints

This separation allows the overall complexity to be broken down in sub-areas, thus:

- dedicated techniques, development standards, target code, and people may be
used for developing and verifying in parallel specific, separated properties of the
software,

- the test and verification activities are more efficient.

• multi-target code generation supportfor several target platforms:

- HOOD4 provides the designer with an Object Oriented Framework by means of
the HOOD RUN TIME SUPPORT library together with automated code gener-
ation.

- HOOD4 thus supports the development of highly reusable components by
shielding HOOD object designs and associated target code from complex se-
mantic differences between multiple OS platforms.

page -1

HOOD REFERENCE MANUAL rev 4 HRM 4 - 10/12/95

Copyright 1995 by HOOD User’s Group page 1

1 INTRODUCTION

HOOD (Hierarchical Object Oriented Design) is a design method which is fully com-
pliant with Ada[ADA] , other Object Oriented languages such as C++[STROU91] and
more classical languages program developments. HOOD supports identification of an
object architecture and leads naturally into detailed design where operations and objects
or classes are further refined and coded. HOOD also supports testing activities by struc-
turing the object properties and providing a unified documentation framework for both
the target code and testing code. Figure 1 indicates HOOD usability within the life-cy-
cle [BSSC91].

Figure 1 - HOOD in the Software Life-Cycle

HOOD has resulted from merging MATRA-MARCONI-SPACE’s experience on Ab-
stract Machines (AM) [[MACH85]] and CISI’s experience on Object Oriented Design
(OOD) [[BOOCH86]]. The concepts of object and machine are quite similar, and even
complementary: AM enforces a hierarchical structure of objects which is lacking in
OOD and is recognized as a key issue for large projects, whereas OOD enforces the de-
sign of more coherent objects.

However for very large projects, and to cope with the problem of distributing the devel-
opment among several companies, the hierarchical features had to be enhanced, and
therefore three types of hierarchies had to be defined :

• the use hierarchy, already present in the AM concept, in which objects on top of
the hierarchy control and use objects underneath. This concept is necessary for
structuring numerous objects into virtual layers of high cohesion and low coupling;

Requirement definition Architectural design Detailed design Coding Testing

HOOD

