
Development of
On-Board Embedded Real-Time Systems:

An Engineering Approach

TULLIO VARDANEGA

Copyright c
 T. Vardanega, 1998
DEVELOPMENT OFON-BOARD EMBEDDED REAL-TIME SYSTEMS:
AN ENGINEERING APPROACH.

1st edition (August 1998):
As doctoral thesis presented at the Technical University of Delft (NL).
Approved on October 6, 1998 by the following exam board:

Prof. O.J. Olsder, Technical University of Delft, chairman.
Prof. J. van Katwijk, Technical University of Delft, promotor.
Prof. A. Burns, University of York, (UK).
Prof. H. Koppelaar, Technical University of Delft.
Prof. J. Zalewski, University of Central Florida (USA).
Prof. J.-A. de la Puente, Technical University of Madrid (E).
Prof. H. Sips, Technical University of Delft
for Prof. F. Panzieri, University of Bologna (I).

Dr. W. Toetenel, Technical University of Delft
for Prof. K. De Vlaminck, Catholic University of Leuven (B).

2nd edition (November 1998):
As technical report for publication by the European Space Agency
Research and Technology Centre (ESTEC) at Noordwijk (NL).

Chapter 4

An Evolutionary Approach to the
Construction of New-Generation
Systems

4.1 Introduction

This chapter combines the components of the engineering strategy outlined in chapter 3 into
a comprehensive approach to the development of new-generation on-board embedded real-time
software. In the remainder of this work, chapter 5 and 6 will demonstrate the operation and fitness
for purpose of our concept.

The discussion in this chapter covers an extensive amount of material, which spans from the
conceptual description of the proposed development model up to the definition, implementation
and characterisation of the associated enabling technology.

The structure of this chapter is as follows:

a. Section 4.2 introduces our revisited interpretation of the PSS-05 development model, illus-
trates its focus on the support for the iterative and incremental consolidation of the real-time
structure of the system (i.e. the physical model) relates it to other known and relevant in-
novative approaches and summarises its overall rationale.

b. Section 4.3 describes the structure and organisation of development activities in the process
and identifies the requirements on the associated enabling technology.

c. Section 4.4 provides an overview of the design method which we have adopted as the centre
of our engineering approach.

d. Section 4.5 presents the technology that supports our iterative and incremental approach to
design, implementation and static analysis of new-generation systems.

51

An Evolutionary Approach to the Construction of New-Generation Systems Chapter 4

e. Section 4.6, finally, relates the projected benefits of our approach to the known limitations
of current practice.

4.2 Methodological Approach

4.2.1 Outline of the Proposed Approach

Earlier in this work, we have seen that new-generation satellite systems will be increasingly soft-
ware-intensive and confronted with the urge to dramatically compress the associated development
schedule. With software becoming central to the implementation of such systems, the suitability
of the current software process and associated support technology needs to be reconsidered in the
light of the emerging requirements. This was in fact the main object of chapter 3.

Section 1.4 had anticipated the strategic line of our work and argued that the future software
development process ought to be turned, from the classical waterfall model, into anexplicitly
iterative and incrementalprocess. This is an essential component of the productivity boost re-
quired to cope with increased software complexity in the context of a dramatically compressed
development schedule. The value of this strategic component was in fact advocated by chapter 3.

In anticipation of the increasingly concurrent and time-critical component of new-generation
systems, section 1.3 had also called for a more effective development paradigm capable of mit-
igating the labour intensiveness of the real-time verification activities. Chapter 3 placed special
emphasis on this particular aspect and outlined the essential ingredients of the desired evolution-
ary solution. In particular, chapter 3 highlighted one major deficiency of the PSS-05 development
model [ESA, 1991] in the respect of time-critical systems. In fact, the PSS-05 model, which cur-
rently informs the software development practice of European space industry, fails to recognise
that an important proportion of the real-time requirements on on-board software systems arise
assecond-orderrequirements in conjunction with the establishment of the physical model of the
system. The PSS-05 model requires that the requirements capture feed into but be kept separate
from the establishment of the physical model. This approach is therefore exposed to the risk that
second-order requirements may escape the elaboration and analysis destined instead to all the
first-order requirements captured in the SR phase.

The lack of explicit support for the capture and analysis of such an important baggage of
requirements implies that no comprehensive verification of the system concept can effectively be
carried out in the descending branch of the V-shaped PSS-05 development model (i.e. the design
and implementation phase). This deficiency causes theentireburden of verification to be deferred
to the ascending branch (the testing phase) only to result in the transfer of an improper extra load
to the IT—ST segment of the process shown in figure 3.1. Section 3.3 discussed this phenomenon
and nicknamed it the ”snow-plough” syndrome.

The effects of the snow-plough syndrome are particularly antagonistic to the required reduc-
tion of the development schedule. Any significant result in that respect, in fact, cannot be obtained
other than by decreasing the effort and complexity demanded by the testing activities, which often
take up to 60% of the overall development effort. In our interpretation, this essentially means that
the IT—ST segment must be offloaded of concerns which can be resolved earlier in the process.

52 Development of On-Board Embedded Real-Time Systems: An Engineering Approach

Chapter 4 An Evolutionary Approach to the Construction of New-Generation Systems

It is apparent that, in the face of the anticipated reduction of the development schedule, the
level of effort devoted to the testing phase cannot increase proportionally with the increase of
the real-time complexity of new-generation systems. In view of this, section 1.4 and 3.4.2 have
proposed to replace as muchlate dynamic real-time testing as possible by a functionally equiv-
alent amount of static real-time analysis performedearlier in the process, as a remedy to the
ill-balancedness of the present effort distribution across the life cycle.

As discussed in section 3.4.3, we want to achieve this objective by introducing two distinct
enhancements to the current software process, namely:

(1) The notion ofComputational Model(introduced in section 3.4.4), as the means to augment
the expressive power of the design definition phase to capture: (a) thereal-time attributes
andexecution characteristicsof the components from which the software system will be
constructed; (b) thereal-time execution modelwhich underpins the design of the system;
and (c) themeans of communication and synchronisationapplicable among components
and between them and the external environment.

(2) The introduction of a unifieddesign framework, to embrace the activities of the descending
branch (i.e. requirements analysis; design definition; design analysis and implementation)
into a single, unfractured development phase within which they can proceed in aniterative
andincrementalfashion and ordinately respond to thefeedbackarising from the progressive
consolidation of the system.

1

2

(Timing Estimation)

(Timing Measurement)

Detailed Design & Coding

Integration and System Testing

Problem Definition

(Schedulability Analysis)
Physical Model

Logical Model

TR

(Enforcement of Design Rules)

UR

SR

AD

DD

(Enforcement of Programming Interface)

Real-Time Development

Computational Model

Waterfall Model

Design Framework

(Verification)

(Verification)

(Verification)

Figure 4.1: The Proposed Software Process.

Development of On-Board Embedded Real-Time Systems: An Engineering Approach 53

An Evolutionary Approach to the Construction of New-Generation Systems Chapter 4

Figure 4.1 illustrates our development model and contrasts it with the conventional waterfall
approach.

The figure shows: (a) thedesign framework(the dashed box tagged with a (2) in the figure)
which embraces the feedback-based development iterations occurring within the the SR—DD
segment of the V model along with the consolidation of the system concept; and (b) the notion
of Computational Model(tagged with a (1) in the figure) which supports the establishment of the
physical model, the adoption of conforming design rules and implementation choices (denoted by
the left-headed arrows tagged ”enforcement” in the figure) and successive and incremental stages
of static timing analysis (denoted by the left-headed arrows tagged ”verification” in the figure).

As the figure portrays, our process concept is geared towards the capture and accommodation
of the design and implementation iterations caused by the feedback from requirements consolida-
tion and / or timing analysis. Thedesign frameworkis the structured development space in which
such feedback can be analysed and responded to by design and / or implementation refinements.
The Computational Modelis instrumental to this objective, for it allows the real-time issues to
be captured at the design level, coherently transformed into a conforming implementation and
statically analysed at all stages of development.

Section 4.3 will build on this initial concept in the definition of the process model that this
work wants to promote.

4.2.2 Relation to Other Development Approaches

The basic rationale of our development approach originates from the same motivations which un-
derpin the design methodology advocated by Fohler and the MARS team in [Fohler et al., 1990].
The goal of Fohler et al. in the cited paper is to propose a design methodology (seen as a col-
lection of complementary development methods and the relevant use rules) specifically suited for
the construction of time-critical systems. Fohler et al. argue that the construction of real-time
application software which does not consider the characteristics of the target system is totally
inadequate. The cited authors also insist that the consideration of time must form anintegral part
of the design methodology, from the initial requirements definition down to the implementation
level. Fohler et al. maintain that time must be represented in auniform and conciseway all
along the development process. Finally, the cited authors advocate the need for means capable of
supporting theearly evaluationof the design with respect to its timeliness requirements.

In fact, our work departs from that of Fohler et al. in the respect of technical choices made
to respond to the same core of identified needs. Kopetz in [Kopetz et al., 1993] outlines the im-
plementation approach taken by the MARS team in accord with the cited work of Fohler et al. In
contrast with that approach, our work acknowledges the occurrence of feedback-based develop-
ment iterations across a greater portion of the process than the Kopetz approach allows and builds
on them for the incremental consolidation of the system.

Our approach has also much in common with some of the views expressed by Kruchten in
[Kruchten, 1995]. According to Kruchten, common experience has it that the description of a
software architecture is not necessarily well served by a single architectural style. No single
style, in fact, is normally capable of providing the ”right” type and amount of information to all

54 Development of On-Board Embedded Real-Time Systems: An Engineering Approach

Chapter 4 An Evolutionary Approach to the Construction of New-Generation Systems

members and functions of one development team. There may exist as many styles of expres-
sion as the viewpoints that can be taken with respect to the software architecture as a product.
Kruchten voices this evidence and proposes a model which contemplates four concurrent views
to describe the same software architecture and one common space in which the various views
can come together through the illustration of selected use cases or scenarios. Kruchten recog-
nises the co-existence of: the logical view, to describe the functional behaviour of the system;
the process view, to describe the concurrency and synchronisation aspects of the system opera-
tion; the physical view, to describe the topology of the system architecture; and the development
view, to describe the static organisation of the system components in the development environ-
ment. Kruchten allows each view to have its own notation and be expressed in terms of the set
of architectural elements, representations and associated rationale and constraints that suit the
development perspective. Kruchten also advocates an iterative development in which the archi-
tecture is prototyped, tested, measured, analysed and refined in subsequent iterations. Kruchten
claims that this is better suited for ambitious and unprecedented projects — for which too little is
known at the end of individual phases to validate the architecture — than the conventional linear
approaches which contemplate backtracking merely as an exception.

Of the four views advocated by Kruchten, we are not interested here in the physical and the
development views, but we have clear parallels between his logical view and the PSS-05 logical
model and his process view and the PSS-05 physical model. We contend, however, that the
architectural notation used to describe the physical model can be based on the same, yet enhanced
conceptual framework used for the logical model. We argue that this provision simplifies the
transitions and iterations between the two.

4.2.3 Rationale of the Proposed Approach

The operational correctness of real-time systems needs to be verified in thevaluedomain as well
as in thetime domain. The latter concern demands that attention be paid to the constraints and
properties of execution on the run-time environment which may effect the time-domain behaviour
of the system (e.g.: hardware architecture, clock frequency, means of communication with the
external world).

For embedded real-time systems in general and on-board systems in particular, the nature
of the execution environment not only effects the time-domain behaviour of the system but also
plays a crucial role in the determination of its structure and operation. The most part of modern
real-time systems use run-time executives or operating system kernels to hide the properties and
constraints of execution on the run-time environment into an abstract ”presentation layer” offered
to the application components.

As a reflection of this basic engineering principle, real-time systems are normally structured in
the classical layered fashion. Consequently, the application components execute on top of a run-
time executive and are designed around the services, means and abstractions that the executive
provides.

Hence, the structure of applications in this domain is determined, to a great extent, by the need
to fit the abstractions and execution model supported by the run-time executive of choice.

Development of On-Board Embedded Real-Time Systems: An Engineering Approach 55

An Evolutionary Approach to the Construction of New-Generation Systems Chapter 4

This need obviously spawns a set of additional requirements on the transformation of the
logical modelof the system, as seen by the PSS-05 model discussed in chapter 3, into thephysical
modelsubmitted for implementation. In order to denote their derivative origin, these additional
requirements are normally referred to assecond-order requirements.

As opposed to first-order requirements, which directly originate from interpretation of the user
specification, second-order requirements emanate from design decisions which are autonomously
made by the design authority. Irrespective of their differing origin, though, both complements of
requirements equally determine the design of the system and therefore call for equally accurate
verification and verification.

The above concern was captured by section 3.3.1 and formulated as follows:

A.1 In the development of real-time embedded software, a considerable amount of second-order
requirements is incrementally defined in conjunction with the progressive establishment of
the physical model of the system.

Hence, the timely consolidation ofall of the requirements which effect the design and op-
eration of the system — which iscentral to the stability and cost-effectiveness of the overall
development — critically depends upon the timely establishment of the physical model.

In response to this concern, section 3.3.2 has asserted that:

A.2 The establishment of the physical model is greatly facilitated by the explicit and consistent
utilisation of a suitable Computational Model as the means to structure and automate the
verification of the operational correctness of the system in the time domain.

The concept of Computational Model was introduced in section 3.4.4 with the aim to cap-
ture and formalise, asexplicit design drivers, the properties and constraints which determine the
execution model of a real-time application.

AssertionsA.1-A.2 are central concerns to the conception of the software process advocated
by this work. We now want to refine the formulation of these assertions in a fashion which better
reflects the logic of the process which ensues from them:

A.1.1 The establishment of the physical model of the system proceeds in conjunction with the
incrementalcapture, refinement and formalisation of the second-order requirements which
complement the set of direct requirements established with the SR phase of the V model.

A.1.2 The introduction of second-order requirements may give rise to important amendments and
refinements to the design of the system as determined from the logical model.

A.1.3 The development process which ensues is inherentlyiterativeandincrementalas a reflec-
tion of the progressive consolidation and verification of the physical model and its impact
on the original logical model.

A.2.1 The consistency and productivity of this process are greatly facilitated by the explicitse-
lectionandenforcementof a suitable Computational Model and the systematicverification
of satisfaction of the required properties and constraints.

56 Development of On-Board Embedded Real-Time Systems: An Engineering Approach

Chapter 4 An Evolutionary Approach to the Construction of New-Generation Systems

Hence, in order to achieve the research objectives set forth in section 1.4 in the light of the
above assertions, we need to establish a software development process which:

C.1 Make of selection, enforcement and instantiation of an appropriate Computational Model
an explicit and integral part of the design process, so that definite rules and means for
system verification in the time domain can be effectively applied well ahead of integration
and system testing.

C.2 Cater for automated, incremental and iterative verification of the feasibility in the time-
domain of the current design since as early in the development as possible, so that every
such step of verification contributes to offload this concern from the effort and complexity
of integration testing.

C.3 Provide support for immediate analysis of the effect of modifications, enhancements and
adaptations to the system which may result from late consolidation of requirements, late oc-
currence of timing problems, need for in-flight modifications, etc., so that the development
process may become more controllably iterative and incremental and therefore achieve the
increased internal parallelism which is essential to compress its duration;

C.4 Be efficiently implemented using practicable enhancements to the HOOD and Ada technol-
ogy presently in use, so that its introduction can effectively be as smoothly evolutionary as
prescribed by section 3.3.

Each of the above-stated properties originates from assertions, requirements and assumptions
made at various points in the preceding chapters. In order to help the reader form an overall
picture of the mutual dependences between such arguments, table 4.1 traces requirementsC.1-
C.4 back to their originating motivation as presented in this technical report.

Table 4.1: Overview of Driving Requirements.
Required Property Justification Origin

C.1 assertionA.2.1 sect. 1.4 & sect. 3.3.1
C.2 assertionA.1.1-3 sect. 1.4 & sect. 3.3.2
C.3 requirementR.1, R.3 sect. 1.4
C.4 strategic decision sect. 3.3

This technical report maintains that one feasible instance of a development model capable of
adequately satisfying such properties can indeed be instantiated and enacted with conventional,
yet enhanced, PSS-05-based technology, in keeping with the required evolutionary approach.
Yet, no instance of PSS-05-based development model known to the author of this technical re-
port (e.g.: [ESA, 1992b], [ECSS, 1997] and other industry-own standards in Europe) appears to
exhibit enough of the required properties.

The constituting elements of the proposed solution, which have been outlined in section 4.2.1,
are discussed in detail in the following.

Development of On-Board Embedded Real-Time Systems: An Engineering Approach 57

An Evolutionary Approach to the Construction of New-Generation Systems Chapter 4

4.3 Supporting Concepts and Technology Requirements

4.3.1 Essential Elements of the Proposed Solution

The strategic decision discussed in section 3.3 requires that the proposed process amendments be
introduced in anevolutionaryfashion. We show in the following that this can be accomplished by
introducing a limited number of enhancements to the HOOD [HTG, 1993] and Ada [ISO, 1987]
technology which presently constitute the pillars of the software technology in use at European
space industry (cf. e.g.: [Ratcliffe, 1995]).

In particular, we contend that the methods and tools required to support the proposed devel-
opment model can be constructed along the following directions:

a. The introduction of a few definite enhancements to the HOOD method, aimed to augment
the conventional design process with theexpressive power, constructive guidelines and
verification meansprovided for by the Computational Model of choice.

b. The implementation of the selected Computational Model upon arestricted formof Ada 95
tasking [ISO, 1995], in accordance with the fixed priority preemptive scheduling model
selected as the preferred model in section 3.4.6, in a fashion which:

� suits the type of applications to be found in the reference domain (cf. chapter 2);

� is directly supported by the recent revision of the language standard.

c. The definition and integration of the enabling technology for the support of: (1) thead-
vanced verificationof the feasibility in the time domain of the physical model of the system
as well as (2) the effective deployment offeedback-based iterative design.

As discussed in section 4.2.1, itema. andc. above representessentialenhancements to the
current software process. Enhancementb., on the other hand, is anarbitrary corollary motivated
by our decision to retain Ada as the reference enabling technology.

Thedesign frameworkshown in figure 4.1 is the core of the process model we envision. We
now want to define the break-down structure which implements that process in an evolutionary
fashion and determine the flow of activities that are to occur within it.

The development activities within our design framework revolve around the four main stages
depicted in figure 4.2, as follows:

B.1 real-time design: this stage of the process is initially entered with the definition of the
problem as determined by the system specification (i.e. the user requirements); this stage
encompasses the definition of the logical and the physical model of the system and focuses
on the characterisation of the real-time attributes (commitments) required of the individual
components of the system; the activities at this level are supported by the use of an enhanced
version of the HOOD method;

58 Development of On-Board Embedded Real-Time Systems: An Engineering Approach

Chapter 4 An Evolutionary Approach to the Construction of New-Generation Systems

B.3(a)

Real-Time DesignComputational Model

Static Analysis

Design Framework

Feedback to Design

Binding to

Input to IT-ST
Application Program

(Platform Specific)
Characteristics

Execution Environment

Execution Profile

B.2

Design Enhancements

Definition
Problem

Real-Time Commitments

B.3(b)

B.4

Analysis Report

Legend:

process input/outputprocess transitionprocess stage

B.x

B.1

Figure 4.2: Design Activities in the Proposed Process.

B.2 binding to Computational Model: this stage of the process is entered at all times the abstract
design of the system is submitted to implementation; at this point, the application program
corresponding to the current level of design is automatically extracted from the design tool
and fed to the designated compilation system; the compilation system binds the program
to the selected Computational Model (thereby ensuring the use of the appropriate program-
ming interface) and determines the processing requirements associated with the worst-case
execution time (WCET) profile of the application components;

B.3 static analysis: this stage of the process is entered to statically determine whether the cur-
rent implementation of the system is capable of meeting the real-time commitments of the
corresponding specification when executed on the designated target platform; at this level,
we perform static response time analysis upon a stylised representation of the system and
associated real-time attributes, as derived from the current design (B.3(a)in figure 4.2) and
the WCET profile of the relevant program, as generated by the compilation system (B.3(b)
in figure 4.2);

B.4 feedback to design: this stage of the process is entered to review the results obtained from
the earlier stage of static analysis and determine the corrective measures (if any) required
to ensure that the system implementation meets the designated real-time requirements; the
determinations established at this level are then fed back to the design level in order for the
designer to keep current the actual real-time attributes of the system and either conclude
the design process or perform further steps of design (and / or implementation) increment
and corrective iteration.

Development of On-Board Embedded Real-Time Systems: An Engineering Approach 59

An Evolutionary Approach to the Construction of New-Generation Systems Chapter 4

The process model outlined above assumes a design method which supports the construction
of a real-time system in terms of the abstractions, execution characteristics, usage rules and con-
straints defined by the Computational Model of choice (cf.B.1). For systems designed in this
manner, the implementation effort is comprised of two complementary activities (cf.B.2): (a)
the derivation of theconcurrent structureof the system, which is obtained by transformation of
the structural components of the design into the corresponding code structures, as required by
the adopted implementation of the Computational Model; and (b) the incremental production (by
hand-coding or other means) of thefunctional componentsof the system and their insertion in
the relevant structural element. At any stage of this development process, the system thus con-
structed is comprised of: (i) thereal-time requirementsto be met by the system (cf.B.3(a)); (ii)
theexecution profileof the system corresponding to its current concurrent structure and the timing
measurements or estimates for its functional components (cf.B.3(b)); and (iii) thetiming char-
acteristicsof the execution environment. This information base is used to perform static analysis
of the real-time feasibility of the current version of system. The results of this analysis are re-
viewed by the engineering authority. The relevant deliberations are then fed back to the design
level either to leave the design process (and enter the subsequent phase of testing, as shown on
the upper-left corner of figure 4.2.1) or to iterate over the corrective consolidation of the design
and implementation (cf.B.4).

The implementation of each of these stages of development will be illustrated in chapter 5 by
means of a simple demonstrative example. Section 4.3.2, in the following, instead discusses the
technology requirements for the implementation of the proposed concept.

4.3.2 Technology Requirements

Section 4.2.1 has introduced the evolutionary amendments to the current software development
practice which are required to support the process depicted in figure 4.2. In the following, the
three main constituents of the proposal (identified as enhancementa.-c. in section 4.3.1) shall be
presented and discussed in isolation.

Selection and Enforcement of Computational Model

Enhancementa. calls for the introduction of definite enhancements to the HOOD method aimed
to augment the conventional design process with theexpressive power, constructive guidelines
and verification meansprovided for by the Computational Model of choice;

The use of the HOOD design method, as presently defined, does not require nor prescribe
nor even support the selection, enforcement and verification of any given Computational Model.
A HOOD design, in fact, isstatic in that it establishes the functional and operational interfaces
between objects without being equally prescriptive on thedynamicaspects of the execution of the
system. The HOOD method only allows for aloose expression of concurrency(i.e. the ”control
view” required to describe the overall control structure of the system) which, on the contrary,
ought to be regarded as one fundamental ingredient of the design of modern on-board systems.

In HOOD, basic rules exist for the designer to determine how threads of control are allocated

60 Development of On-Board Embedded Real-Time Systems: An Engineering Approach

Chapter 4 An Evolutionary Approach to the Construction of New-Generation Systems

to individual objects, but no binding prescriptions are formulated to dictate the rules governing
their concurrent execution at run time. In fact, this lack was rather deliberate, for the designers of
the HOOD method opted to trade prescriptiveness for generality.

Two components of the method may be used to express constraints on the execution model of
the system: (1) theprotocol constraints, which govern the interaction between the object requiring
a given constrained service and the object providing it (cf. section 3.2.2 for a discussion of the
basic protocols); and (2) theobject control structure, which is the design structure intended for the
user to express the constraints placed on the control behaviour of the object. The very existence
of protocol constraints on an object’s operation determines theactivestatus of that object. The
definition of active object does in turn assume the possession of own threads of control. Hence,
active objects are intended to execute concurrently. Yet, no other means than the two mentioned
above are provided to express the desired properties of the concurrent execution of active objects.

Even in the absence of a rigorous definition and explicit support for the determination of the
execution aspects, however, the design of an on-board real-time control systemalwayseventu-
ally entails the coupling between the application components (i.e. the HOOD objects) and the
execution platform. This necessity should take to the foreground the constructive elements of the
Computational Model of choice. More frequently, however, this step is limited to mechanically
forcing the needed run-time bindings into the application, with only late consideration given to
the real-time properties of the concurrency model imported with the run-time executive of choice.

This phenomenon denotes two important deficiencies of the typical development approach:
(1) the lack of effective means for the early enforcement and verification of the required real-time
behaviour of the system, which is clearly not addressed as a concern of the design level; and (2)
the divorce of the architectural design process from the concepts and abstractions which emanate
from the execution platform.

These deficiencies may incur onerous consequences, especially at the critical boundary be-
tween the design and the coding phase. They may in fact often result in the loss or decay of such
important properties as:

� design integrity
when components, services and interfaces provided by the underlying run-time system (that
is, the incarnation of the chosen Computational Model) are not designed, modelled nor ver-
ified with the same degree of accuracy or detail as demanded for the application software;

� functional cohesion
when requirements arising from the selected Computational Model introduce system parti-
tioning criteria which effect the structure of the system as established in the design phase;
this is, for example, the case when the need to allocate system activities to fixed cyclic exe-
cution slots introduces a system breakdown structure which differs from the one committed
at the end of the design phase (note that, with fixed cyclic scheduling, this case normally
occurs as late as at integration testing, when the time-to-completion pressure is typically so
high that the required structural changes to the system are treatedlocally at the code level
without returning to the design level);

� verification coherency

Development of On-Board Embedded Real-Time Systems: An Engineering Approach 61

An Evolutionary Approach to the Construction of New-Generation Systems Chapter 4

when the verification of the correct execution of the system on the adopted Computational
Model is not performed as part of the design verification but is deferred until integration
testing.

In our reference scenario, the core of the design process is carried out by use of the HOOD
method. We therefore devise and introduce enhancements to the method which can instigate an
explicit process of selection, enforcement and binding with the desired Computational Model.

We do maintain that the definition, implementation and enactment of the required enhance-
ments is in fact possible and economically achievable. Section 4.3 presents the proposed solution.

Predictable and Characterisable Concurrency

Enhancementb. calls for the implementation of the selected Computational Model upon are-
stricted form of Ada 95 tasking [ISO, 1995] in a fashion which: (i) suits the type of applications
described in chapter 2 and (ii) is directly supported by the recent revision of the language stan-
dard.

Chapter 1 has asserted that new-generation on-board systems are increasingly concurrent and
time-critical. Chapter 2 has shown that the control activities to be performed by such systems
exhibit a broad variety of execution requirements. Hence, the Computational Models for use
in the construction of such systems should desirably support flexible and predictable forms of
concurrency.

The decision to adopt an evolutionary approach to the amendment of the current software
technology raises the obvious question as to how well Ada positions itself with respect to such
demands. The question is particularly intriguing in that, in contrast to the vast majority of the most
commonly used implementation languages (Fortran, C, C++) the definition of the Ada language
embodies the elements of a preemptive priority-based (PPB) Computational Model.

The definition of the Ada 83 tasking model [ISO, 1987], however, was admittedly too broad
and general and exhibited several important shortcomings (e.g.: bulky heavy-weight implemen-
tation, exposure to priority inversion problems) which made it inadequate for usage in space
systems as well as in the vast majority of other high-integrity systems.

Because of such a distinct baggage of deficiencies, Ada 83 was solely employed as a plain
procedural language provided with custom-made bindings to the run-time executive of choice.

The divorce from the standard run-time environment of the language and the strategic need
for every system builder in the business to possess in house the elements for ready-made cus-
tom solutions gave rise to the birth of several differing implementations of run-time executives
intended to support Ada-based real-time on-board systems. The short-sightedness of most com-
mercial competitors, however, caused those endeavours not to join forces with major international
standardisation initiatives, such as, for example, the Catalog of Interface Features and Options
(CIFO) proposed by the Ada Run Time Environment Working Group under the auspices of the
ACM [ARTEWG, 1991] and, to a lesser extent, [ExTRA, 1994]. Not surprisingly, those industrial
efforts invariably resulted in proprietary implementations, which werelocal (i.e. non-standard
across company boundaries) andsemi-formal(i.e. hardly described in terms of any proper Com-
putational Model).

62 Development of On-Board Embedded Real-Time Systems: An Engineering Approach

Chapter 4 An Evolutionary Approach to the Construction of New-Generation Systems

One common characteristic of those proprietary developments was the generalised rejec-
tion of the Ada 83 run time system along with its tasking model. In spite of this, however,
some restricted form of PPB scheduling built around custom run-time environments progres-
sively started to appear and be used in an increasing number of space applications. The pro-
prietary executives described in [Matra Marconi Space and GSI-Tecsi, 1990], [MBB, 1991] and
[Saab Ericsson Space, 1996] are amongst the most notable examples of this trend. We read this
as a reflection of the distinct demand for flexible ways to model theinherent concurrencyof the
on-board processing activities.

Building on this evidence and along the line of argument initiated by [Locke, 1992] and sub-
sequently developed by [Burns and Wellings, 1995a], we argued in section 3.4.6 that compelling
reasons now exist to re-consider the suitability of the amended Ada 95 tasking model [ISO, 1995]
for new-generation on-board system. This choice would buy the designer the ability to build on-
board embedded real-time applications directly upon an international standard instead of upon
custom-made variants. In particular, section 3.4.6 maintained that a Computational Model based
on the deadline monotonic fixed priority preemptive scheduling paradigm embodied in the Ada 95
run-time support suits well the emerging requirements of new-generation satellite systems dis-
cussed in chapter 1 and the inherent characteristics of platform applications highlighted in chapter
2.

Section 4.5 will take this argument further and will demonstrate that we can define, implement
to maximum efficiency and fully characterise the Ada run-time support suited for the exploitation
of our Computation Model.

Support for Feedback-Based Iterative Design

Enhancementc. calls forthe definition and integration of the enabling technology for the support
of: (1) theadvanced verificationof the feasibility in the time domain of the physical model of
the system as well as (2) the effective deployment offeedback-based iterative design.

One distinctive property of the our approach stems from the aim to translate thedesign frame-
work concept introduced in section 3.3.2, to a practicable paradigm of development, centred
around the explicit recognition of theiterativeandincrementalnature of the design process and
the ability to provide direct support for it.

The goal is, in this respect, to enable the need for the design iterations shown on the left-
hand side of figure 4.1 to arise — and, to some extent, be promoted —under the assistance and
guidanceof support tools tightly integrated with the design process.

The central concept is, thus, for the designer to be able,at several points of the development
process(and ideally, as early as during the establishment of the logical model) to obtain predic-
tion, confirmation and verification or otherwise of the correct timing behaviour of the current
physical model of the system. This would allow the definition and implementation of any nec-
essary corrective actions to initiate well before the point in time when their impact and cost may
become intractable.

It is obviously important for the overall economy of the development that such an iterative
development concept placewithin the normal design process as opposed towithoutit; which, in a

Development of On-Board Embedded Real-Time Systems: An Engineering Approach 63

An Evolutionary Approach to the Construction of New-Generation Systems Chapter 4

sense, blurs the separation which the PSS-05 standard introduces between the SR and AD phase,
as shown by figure 4.3.

SR

AD

PSS-05 conventional development flow feedback-based iterative development flow

model

physical
model

logical

SR document

AD document

SR

AD

Figure 4.3: Feedback-Based Iterative Design Flow.

Therealisationof such a concept requires the ability to extract from the current design suffi-
cient information for successive stages of (schedulability) analysis to be performed and continu-
ally feed back to the design process.

The nature of the information required to perform such an analysis is manifold and depends
on the actual type of scheduling analysis which one wishes to adopt. In general, however, one
portion of the required information may directly emanate from known requirements on the current
design (e.g.: period, deadline, precedence activation constraints, functional and operational de-
pendences such as those expressed by the ”use” relationship in HOOD) whereas another portion
shall necessarily require knowledge about the execution performance (represented by the relevant
WCET profile) of the code presently or expectedly associated with the design.

Obviously, as the design evolves and consolidates, so do the stability and solidity of the ex-
tracted information. Hence, the need to enable this process to be iteratively repeated with the
progress of the development requires the ability to progressively replace initial timing predictions
with actual measurements based on the code being produced.

Limiting Factors to Achievable Innovation

It should be apparent to the reader that, in the face of the wealth of the possible technology
advances which might arguably meet the demands discussed in chapter 1, this technical report
has opted to set forth on a comparatively modest rate of innovation.

The reason for this resides with the need for any proposed technology innovation to negotiate

64 Development of On-Board Embedded Real-Time Systems: An Engineering Approach

Chapter 4 An Evolutionary Approach to the Construction of New-Generation Systems

with the non-technical factors specific of the industrial domain, which tend to set tight bounds to
the achievable extent of innovation. And this is particularly the case of such industrial domains
as the space industry in Europe, characterised — until the present moment —, as discussed in
chapter 1, by very specific technical needs and rather modest margins of investment, which justify
the option in favour of the evolutionary approach discussed in section 3.3.

Even within a moderately evolutionary scenario, however, non-technical considerations may
play a ponderous role. It may, thus, be anticipated that the relative merit of the propositions put
forward by this technical report shall be scrutinised by the intended user community not solely
from a technical stand-point. This is likely to be the case with the requirement for enhancement
b. in particular, which may constitute one of the maincultural obstacles to the general acceptance
of the overall proposal presented in this work.

The anticipated issue has the following two facets: in recognition of the anticipated increase
with the event-driven and concurrent nature of new-generation software-intensive satellite control
systems, the formulation of enhancementb. maintains that the desired Computational Model for
use in such systems should be based upon fixed priority preemptive scheduling and hence employ
a restricted form of the Ada 95 tasking model.

This proposition, however, places in striking contrast with the commonly-held view that on-
board control systems must be strictlydeterministicin order to bepredictable(where the term
”deterministic” is used to denote a system in which the execution sequence of its components
is completely predetermined and fixed for the entire operation of the system, as opposed to the
potential non-determinism of fixed priority preemptive scheduling systems).

The contrast between these two forms of scheduling is dated and certainly not exclusive to the
space domain. Once deprived of its deprecated ”religious” connotations, though, this contrast has
resolved, in numerous application domains (e.g.: avionics, car industry, process control) into a
fairly straightforward pragmatic design decision, normally made in full awareness of the relative
pros and cons of either option. As a result of which, an increasing number of moderate-criticality
applications have successfully transitioned to the use of preemptive scheduling.

Papers like [Locke, 1992] have greatly contributed to clarify that, whereas real-time systems
”must be capable of providing aprovable predictionof the ability of their design to meet all of its
timing requirements” — whence the term predictability —,determinism is, indeed, sufficient for
predictability but not necessary to achieve it. And, as the body of the rate monotonic scheduling
theory [Klein et al., 1993, Lehoczky et al., 1989] stands to demonstrate, provable predictions can
be routinely obtained for preemptively scheduled systems.

The acquisition of such a glaring evidence, though, is not yet seemingly in sight for the space
domain; quite possibly because of the notorious 8-year delay which apparently takes for ground
technology to reach and penetrate the space market (cf. [ESA, 1995b]).

It is clear, therefore, that the introduction of the proposed development model shall have to
overcome not only the knowntechnical difficultiesassociated with the use of fixed priority pre-
emptive scheduling (e.g.: more demanding run-time environment and potential pessimism in-
curred with the worst-case scheduling analysis techniques required to prove the predictability of
the system) but also thecultural barrierswhich continue to deny all forms of non-deterministic
concurrency in general, and Ada tasking in particular, any possibility of utilisation in critical

Development of On-Board Embedded Real-Time Systems: An Engineering Approach 65

An Evolutionary Approach to the Construction of New-Generation Systems Chapter 4

components of space systems.

4.4 HRT-HOOD as the Centre of the Development Process

The HRT-HOOD method [Burns and Wellings, 1994, Burns and Wellings, 1995b] was defined by
the Real-Time Group at the University of York (England) in the frame of a study programme
initiated by the European Space Agency with the aim to devise ways to improve the productivity
of HOOD and Ada technology in the construction of new-generation real-time on-board systems.
The author of this technical report actively participated in the project and the main lessons learned
from the programme (which are summarised in [British Aerospace, 1993]) provided the main
direction to the definition of the proposal discussed in this technical report.

It is not the intent of this technical report to provide an exhaustive presentation of the method.
The interested reader is referred to the relevant literature, in particular [Burns and Wellings, 1994]
and [Burns and Wellings, 1995b]. In the following, we shall only concentrate on the features
which are specifically relevant to the operation of the proposed concept.

The central goal of the method wasto amend the base HOOD method with all of the additions
and constraints deemed necessary to ensure that the design can be statically analysed for its
timing characteristics at all stages of development.

To this end, and in recognition of the requirements discussed in chapter 1 and 3, the definition
of the HRT-HOOD method was geared towards the following objectives:

1. to promoteevolutionaryenhancements to the base HOOD method that would not break but
retain the principles of the base method;

2. to establish explicit and direct bindings between the constructs, concepts and constraints
of design and a definite instance of Computational Model based on the revised form of the
Ada 95 tasking model;

3. to instigate the conduction of an iterative design process prompted by the feedback infor-
mation obtained from static analysis of the real-time properties of the system.

In keeping with the mandatedevolutionaryapproach, the HRT-HOOD method bases its root
in HOOD [HTG, 1993] (the main features of which have been briefly presented in section 3.2.2)
and enhances it along the following dimensions:

� recognition of thetype(e.g.: periodic, sporadic, protected) andcriticality (e.g.: hard, soft,
non-critical) of the typical real-time control activities of the application domain

� characterisation of thereal-time requirements(e.g.: period, offset, deadline) set on such
activities

� definition, utilisation and enforcement of thosedesign devices(e.g.: object cooperation ex-
clusively via protected data structures so as to ensure boundedness of blocking) which com-
ply with the rules, properties and constraints set out by the chosen Computational Model
for the sake of resulting in a statically analysable design.

66 Development of On-Board Embedded Real-Time Systems: An Engineering Approach

Chapter 4 An Evolutionary Approach to the Construction of New-Generation Systems

Building on the programming abstractions supported by Ada 95 [ISO, 1995], the HRT-HOOD
method retains thepassiveobject exactly as defined in HOOD; amends the definition of theactive
object by differentiating between:

� cyclic objects, which denote active objects used to model periodic activities

� sporadic objects, which denote active objects used to model event-triggered sporadic ac-
tivities;

and introduces theprotected object to denote those objects which provide protected access to
shared data structures. In line with the corresponding language abstraction, protected objects
(similarly to HOOD active objects) have control over when their invoked operations are executed,
but (unlike active objects) need not have any independent thread of control.

While retaining all of the HOOD standard execution requests described in section 3.2.2, HRT-
HOOD also supports the following two additional constrained operations on protected objects
which ensure mutually exclusive access to the protected data required by the operation:

protected synchronous (PSER): when control flow in the client is interrupted until completion
of the protected operation; PSER operations can be state-constrained.

protected asynchronous (PAER): when control flow in the client is interrupted only until the
execution request has been received (along with any required input parameters) and ac-
knowledged by the protected object; PAER operations cannot be state-constrained.

Protected objects can also provide any number of unconstrained operations.
Cyclic and sporadic objects may support execution requests for asynchronous transfer of con-

trol (ATC) which is intended to allow for other objects in the system to command the immediate
termination of the current operation of the object. ATC operations are asynchronous only and are
named ASATC for short.

Sporadic objects must also provide for the execution request which is to trigger their sporadic
operation. This execution request is modelled by an unconstrained START operation. On the
whole, therefore, cyclic terminal objects maysolely and optionallyprovide for an ASATC op-
eration, whereas sporadic terminal objects mayoptionallyprovide for an ASATC operation and
compulsorilyfor a START operation.

HRT-HOOD disallows the ”use” relationships which would cause objects to incur unbounded
blocking or arbitrary synchronisation. Furthermore, in keeping with the hierarchical object-based
nature of the HOOD method and in order to allow non-terminal active objects to be meaningfully
marked as cyclic, sporadic and protected, HRT-HOOD introduces some restrictions on the allow-
able parent-child relationships so that the type properties of the parent object are not violated by
any of its child objects. The relevant prescriptions are shown in table 4.2 and 4.3.

Table 4.2 shows that, while retaining the HOOD requirement that passive parent objects must
solelydecompose to other passive child objects, HRT-HOOD adds the corresponding prescrip-
tion that protected parent objectscannotdecompose to cyclic nor sporadic child objects as the
properties of the latter are incompatible with that of the former.

Development of On-Board Embedded Real-Time Systems: An Engineering Approach 67

An Evolutionary Approach to the Construction of New-Generation Systems Chapter 4

Table 4.2: Disallowed”Implemented By”Relationships.
CHILD cyclic sporadic protected passive

PARENT

cyclic
sporadic
protected X X
passive X X X

Table 4.3 shows that passive objects canonly use the operations of other passive objects
whereas protected objects can call operations of any other active (meaning cyclic, sporadic or
protected) objectsso long asthey are unconstrained (which ensures that their execution time can
be bounded).

On the whole, HRT-HOOD objects are described by: their provided operations; their threads
of control; their synchronisation requirements; and the real-time requirements set on their opera-
tions (i.e. criticality, period — or interarrival time —, deadline, WCET and priority).

Criticality, period and deadline areuser-assigneddesign attributes and are expected to change
only as a result of a design change. Conversely, WCET and priority arecomputedproperties; the
former may vary with the progress of the development (i.e. from a best-guess prediction, made
at a very early stage of design, to the value returned from WCET analysis against the final code);
the latter is calculated by the schedulability analysis tool based on the user-assigned criticality
and deadline of the object in question.

So long as the user maintains the design information current with the progress of the imple-
mentation, the semantic contents of an HRT-HOOD design is such that the associated analysis
tools permit to constantly verify its feasibility in the time domain and, accordingly, derive the
feedback necessary to steer the design and implementation to completion.

Figure 4.4 depicts the instantiation of the abstract process model shown in figure 4.2 that we
have constructed around HRT-HOOD.

The figure places emphasis on the iterative nature of the development flow we want to sup-
port. In our concept, such iterations represent incremental stages of development supported by
various forms of feedback information. Static analysis constitutes our primary source of feed-

Table 4.3: Allowed & Disallowed”Use” Relationships.
USED cyclic sporadic protected passive

USER

cyclic
sporadic
protected ASATC ASATC, START unconstrained

passive X X X

68 Development of On-Board Embedded Real-Time Systems: An Engineering Approach

Chapter 4 An Evolutionary Approach to the Construction of New-Generation Systems

Execution Profile Commitments
and

Real-Time Attributes

Schedulability Analyser

Execution Environment

Execution Profile
Generator

Static Analysis

(platform specific)
Characteristics

Scheduling Analysis Report

priorities WCET profiles

Feedback to Design

feasibility, sensitivity

Design Enhancements
HRT-HOOD

Real-Time Design

Problem DefinitionInput to IT-ST

Ada Program

Figure 4.4: Design Activities in Operation.

back. The figure shows the main components of the feedback from static analysis, that is: (1)
the confirmation of theschedulabilityof the individual threads of the system with respect to the
relevant real-time requirements; and (2) thesensitivityof the system timeliness to variations in
the processing requirements of individual threads.

Notably, the implementation of an HRT-HOOD design aid tool supportingall of the data
paths shown in figure 4.4 has recently been completed [Intecs Sistemi, 1996a] and successfully
demonstrated. The dashed rectangle in the figure depicts the sole stage of the process which is
not assisted by automated tools and relies upon the engineering authority’s interpretation of the
results obtained from static analysis.

In the following, we describe the key technology elements which are required to enable the
effective operation of our process model.

4.5 Enabling Technology

4.5.1 The HRT-HOOD Computational Model

HRT-HOOD [Burns and Wellings, 1994, Burns and Wellings, 1995b] extends the base HOOD
method by incorporating the abstractions supported by the revised tasking model of Ada 95
[ISO, 1995]. As a reflection of that, the HRT-HOOD Computational Model is based around the
principles of fixed priority preemptive scheduling described earlier in section 3.4.5. Moreover,
our implementation of the HRT-HOOD Computational Model places in perfect match with the
tasking profile identified at the 8th International Real-Time Ada Workshop as the most suitable
candidate for the support of concurrent time-critical applications [Baker and Vardanega, 1997]
and referred to as the ’Ravenscar profile’.

Development of On-Board Embedded Real-Time Systems: An Engineering Approach 69

An Evolutionary Approach to the Construction of New-Generation Systems Chapter 4

Systems designed with the HRT-HOOD method are concurrent and provided with a direct
mapping to the corresponding concurrency constructs at the language level. In particular, as
outlined in section 4.4, the HRT-HOOD Computational Model:

1. retains thepassiveobject exactly as defined in HOOD (i.e. an entity which has no internal
concurrency and no control over when its invoked operations are executed);

2. amends the HOOD definition ofactive object (corresponding to an entity with internal
concurrency and control over when its invoked operations are executed) by differentiating
between:

� cyclic objects, which denote active objects used to model time-triggered activities;
and

� sporadicobjects, which denote active objects used to model event-triggered activities;

and, finally,

3. introduces theprotectedobject to denote those objects which provide protected access to
shared data structures.

HRT-HOOD active objects are threaded and possess a well-defined mapping to one particular
instance of the basic unit of concurrency of the Ada language (i.e. the task). Conversely, protected
objects resemble active objects in so far as having control over when their invoked operations are
executed, but, unlike them and in accordance with the corresponding language abstraction, need
no independent thread of control.

The HRT-HOOD Computational Model requires that the threads of control associated with
active objects abide by the following rules:

� threads may access shared data in a protected manner by means of mutually exclusive calls
to dedicatedresourceservers, which are modelled as HRT-HOOD protected object;

� resource servers may offer a variety of services, each denoted by one distinct execution re-
quest; the execution requests exported by a resource server must ensure mutual exclusion to
concurrent callers and must be internally non-blocking (i.e. allow no functional activation
constraints nor perform blocking calls, for either would render static analysis impossible);

� threads may synchronise with one another by means of mutually exclusive calls to dedicated
synchronisationservers;

� synchronisation servers allow threads to suspend on synchronisation calls and other threads
to perform non-blocking triggering calls; the model requires that any thread which wishes
to suspend on a synchronisation call be allowed to do so exclusively through the services
of a dedicated synchronisation server. (In other words, no two threads can suspend on
one and the same synchronisation call so that no suspension queue be required for any
synchronisation service.)

70 Development of On-Board Embedded Real-Time Systems: An Engineering Approach

Chapter 4 An Evolutionary Approach to the Construction of New-Generation Systems

HOOD objects are defined by the service they provide for use by other objects. The provided
service is specified in theinterfaceof the object. The control behaviour of the object with respect
to the execution requests received at the interface is described in theobject control structure
(OBCS). The relevant services are implemented by a set ofoperation control procedures(OPCS).
HRT-HOOD retains these base principles and maps the resulting entities on to the abstractions
supported by the Computational Model we have just described.

Cyclic objects do not provide external operations that can be invoked by other objects, except
for those which request the termination of the current operation of the object or the reset (e.g.:
mode change) of its service status. Accordingly, the cyclic object is implemented by a maximum
of two cooperating entities, as follows:

� the thread, which is to perform the time-triggered operation of the object and maps to an
independent thread of control implemented as anentry-lessAda task with a single, time-
triggered invocation event and a potentially unbounded number of invocations; and

� the OBCS, which is needed only if the object is required to support execution requests
associated with termination or reset operations. The communication between the cyclic
thread and its OBCS can be asynchronous (and, therefore, implemented as an Ada 95
asynchronous transfer of control operation initiated by the OBCS and taking effect in the
thread) or synchronous (and, consequently, implemented as a synchronous status enquiry
performed by the thread towards the OBCS). In the latter case (which is, in fact, the pre-
ferred one) the OBCS of the cyclic object naturally maps to aresource server.

Sporadicobjects do always support at least one execution request, which triggers the sporadic
operation of the object. The triggering event may beexternal(i.e. an interrupt) orinternal (i.e. on
demand from another software object in the system). The object triggered by the former type of
execution request is calledinterrupt sporadic; the object triggered by the latter,software sporadic.
Similarly to cyclic objects, sporadic objects may also provide additional execution requests for
termination or reset operations.

Thesoftware sporadicobject is modelled by a maximum of two cooperating entities, as fol-
lows:

� the thread in charge of the sporadic operation of the object, which maps to an indepen-
dent thread of control implemented as an entry-less Ada task with a single, event-triggered
invocation event and a potentially unbounded number of invocations; and

� the OBCS, which is to receive the execution requests arriving from other objects in the
system and dispatch them to the sporadic thread. The triggering event is transferred from
the OBCS to its software sporadic thread as the release from a dedicated synchronisation
call. All other communications follow the model described for the cyclic object. As a
result of that, the OBCS of the software sporadic object naturally maps to asynchronisation
server.

Figure 4.5 portrays a simplified view of the task templates required to model the cyclic thread,
the software sporadic thread along with its OBCS (synchronisation server).

Development of On-Board Embedded Real-Time Systems: An Engineering Approach 71

An Evolutionary Approach to the Construction of New-Generation Systems Chapter 4

task Cyclic is
pragma priority (<value>);

end Cyclic;

task body Cyclic is
-- local variables

begin
-- set time reference T
loop

delay until T;
-- periodic action
T := T + Period;

end loop;
end Cyclic;

task Software_Sporadic is
pragma priority (<value>);

end Software_Sporadic;

task body Software_Sporadic is
-- local variables

begin
-- main loop external set up
loop

OBCS.Wait (<params>);
-- sporadic action

end loop;
end Software_Sporadic;

protected OBCS is
entry Wait (<params>);
procedure Signal (<params>);

end OBCS;

protected body OBCS is
-- local variables
entry Wait (<params>)

when (Barrier) is
begin

-- release actions
-- raise barrier

end Wait;
procedure Signal (<params>) is
begin

-- lower barrier
end Signal;

end OBCS;

Figure 4.5: Task Templates.

This modelling paradigm does not necessarily hold for the implementation of theinterrupt
sporadicobject, as the service it provides is typically immediate and short-lived and, hence, has
no use for termination operations while having an implicit (hardware) caller for the triggering
operation. Depending on the support provided by the underlying implementation language, the
interrupt sporadic object may map to an interrupt task (like in Ada 83) or a protected interrupt
procedure (like in Ada 95).

Whereas interrupt sporadic objects are a powerful aid for the designer to explicitly model the
service associated with the arrival of external interrupts (which are an essential ingredient of any
real-time embedded system) software sporadic objects represent a very flexible tool to express and
modelprecedence activation constraintsbetween concurrent activities. As discussed in chapter 2,
in fact, precedence activation constraints frequently arise between several of the data processing
functions which are performed on board. In particular, intelligent use of software sporadic objects,
in conjunction with suitable assignment of software priorities, caters for the achievement of the
increased responsivenessandmaximum utilisation of available processing powerrequirements
discussed in chapter 1 (R.4 andR.6 respectively).

4.5.2 Ada Implementation

The engineering concept depicted in figure 4.2 was expressly intended to operate with Ada 95
software production factories. However, while awaiting industrial-quality commercial implemen-
tations of the language standard, thecurrent implementation of the relevant industrial toolset
has been realised upon an existing Ada 83 technology baseline augmented by the introduc-
tion of a limited number of upward-compatible enhancements. Implementations of the pro-
posed concept based on actual Ada 95 technology will be realised as soon as mature tech-
nology becomes available. (Attractive concept demonstrators may possibly be implemented
by integration of such handy technology as GNAT [Ada Core Technologies, 1996] and STAMP
[Chapman et al., 1996].)

Implementation of the HRT-HOOD Computational Model on Ada 83 technology requires the
following distinct forward-compatible enhancements:

72 Development of On-Board Embedded Real-Time Systems: An Engineering Approach

Chapter 4 An Evolutionary Approach to the Construction of New-Generation Systems

� a large range of software priorities (� 64);

� the concept of passive task with similar semantics to the protected type of the Ada 95
language standard [ISO, 1995];

� the concept ofabsolutedelay to permit jitterless modeling of periodic tasks;

� the concept ofmonotonictime to avoid the overhead of the time-of-day based clock han-
dling.

Our Ada implementation was targeted to the 32-bit Embedded Real-Time Computing Core
(ERC32) [Gaisler, 1994, ESA, 1992a, Saab Ericsson Space, 1997], a SPARC v7 based chipset
inclusive of Integer Unit, Floating Point Unit and Memory Controller, intended for use inno-
cache no-virtual memorysingle-board computers for advanced new-generation on-board sys-
tems. Amongst other features, which are not discussed in this technical report, the ERC32 chipset
and associated Ada compilation system optionally supports board configurations which include
the ATAC (Ada Tasking Coprocessor) chip [Roos and Gomez-Molinero, 1992]. The ATAC is a
memory-mapped hardware device which performs Ada 83 tasking operations on behalf of clas-
sical software run-time systems. Reasons of source-level compatibility between systems built
for configurations with or without the ATAC dictated the use of Ada 83 interrupt tasks to model
interrupt sporadic objects.

We have recalled earlier in section 4.2.3 that our notion of Computational Model entails the
definition and the timing characterisation of the concurrency management mechanisms used at
run time for the execution of the system.

In the following, we provide a brief description of the tasking primitives which contribute to
the determination of the run-time scheduling behaviour of systems built in accordance with the
HRT-HOOD Computational Model. Subsequently, we provide a timing bound for the execution of
those primitives on our reference target platform. This shows that the run-time system required to
support the HRT-HOOD Computational Model is actually small, compact and fully characterised.

Cyclic tasks call primitive Delay Until to command the time of their next release and the
wake-up system uses an Interval Timer instead of the conventional periodic clock. The overall
worst-case execution time of the primitive results from the sum of two values: the placement of
the task control structure in the interval time queue (Delay Until(Enter)) and the return from the
call upon release (Delay Until(Exit)).

Interrupts off the Interval Timer are serviced by primitiveTimer Int. PrimitiveReadychanges
the released cyclic tasks’ status to ready. On modifications to the ready status list, primitiveSelect
is invoked to determine the ”best-task-out”; this may incur preemptive switch to a new running
task, which is performed by primitiveSwitch.

Primitive Int Handling initiates an interrupt accept statement in the body of the designated
interrupt sporadic task, whileInt Wait(Enter)and Int Wait(Exit) allow control to respectively
enter and leave the interrupt accept body.

PO Entry andPO Exit control respectively the access to and the release of server tasks and
include the relevant raising and lowering of the caller’s priority.

Development of On-Board Embedded Real-Time Systems: An Engineering Approach 73

An Evolutionary Approach to the Construction of New-Generation Systems Chapter 4

The implementation of the blocking call to synchronisation servers uses a primitive semaphore
structure: the software sporadic task’s call to the server’s guarded entry translates into the caller’s
suspension on the primitive semaphore (Sem.Wait(Enter)). Arrival of the releasing call causes the
suspended task to be freed from the semaphore’s queue (Entry QueueMgmt(which includes the
call toSem.Signal) exit from the suspensive call (Sem.Wait(Exit)) and potentially become the new
running task.

Primitive Selectinvolves queue management operations which are typically exposed to pes-
simistic bounds; the problem was circumvented by redesigning the primitive so as to preserve
minimal execution time and also achieve low worst-case bounds. The design restriction of having
at most one software sporadic task wait on any given synchronisation server’s semaphore queue
allows all of the relevant primitive operations to be easily bounded. All the other primitives in
the list exhibit deterministic execution time bounds. The characterisation of all such bounds on
execution on the selected platform is stored in the so-calledrun-time system characteristics file.

Table 4.4: Timing Characteristics of Basic Run-Time System Primitives (�s).

RTS Primitive Used by / for
DEM32 (10 MHz 0 Wait-states)

non-ATAC run-time ATAC run-time

PO Entry cyclic, sporadic, interrupt 8.0 13.8
PO Exit cyclic, sporadic, interrupt 11.0 11.0
Int Wait (Enter) interrupt 3.0 3.0
Int Wait (Exit) interrupt 3.0 0.0
Sem.Wait (Enter) sporadic 7.0 7.0
Sem.Wait (Exit) sporadic 3.0 3.0
Entry QueueMgmt sporadic 6.0 8.0
Select cyclic, sporadic, interrupt 5.0 0.0
Switch cyclic, sporadic, interrupt 34.0 41.0
Delay Until (Insert at Top) cyclic 39.0 23.0
Delay Until (Insert Lower) cyclic 22:0 +C � 3:0 23.0
Delay Until (Exit) cyclic 8.0 8.0
Timer Int cyclic 21.0 0.0
Ready cyclic 12.0 0.0
Int Handling interrupt 67.0 0.0
Max DeferredPreemption 130.0 65.0

Table 4.4 displays the results of a preliminary characterisation of the execution cost of the
tasking primitives in our Ada run-time system. The measurements were performed on an ERC32
demonstration board upon completion of the implementation of the relevant Ada technology. The
measurements were taken on board configurations with as well as without the ATAC and included
the determination of the longest deferred-preemption time incurred during run-time system op-
eration; as it will be explained in section 4.5.3, in fact, that value contributes to the determina-
tion of blocking overhead. The table also indicates the correspondence between the tasks in our
Computational Model and the run-time primitives required to support them. (Note that the term
”sporadic” in the table denotes the software sporadic task, whereas the interrupt sporadic task is
denoted by the term ”interrupt”.)

All expressions in table 4.4 are constant except for the one which describes the cost of placing

74 Development of On-Board Embedded Real-Time Systems: An Engineering Approach

Chapter 4 An Evolutionary Approach to the Construction of New-Generation Systems

a cyclic thread in the delay queue at a position lower than the top in the non-ATAC version of the
system. The actual position depends on the relative ordering of the required awake time by the
Interval Timer. TermC, thus, denotes the total number of cyclic threads currently placed ahead
of the presently suspending thread. The best value forC, for use by static analysis, obviously
depends on the knowledge available to the tool in question. In the case of our analysis model, this
value is defaulted to thetotal number of cyclic threads in the system. Conversely, in the ATAC
version of the system, this value remains constant as the thread queuing is taken care of entirely
by the ATAC chip itself.

4.5.3 Static Analysis

The key asset of the engineering approach shown in figure 4.2 lies in the ability to support the
design and implementation of a system which can be statically analysed for its real-time char-
acteristicsat all stages of development. We have claimed earlier in this chapter that this ability
descends from the adoption of the notion of Computational Model as the ”driving force” of the
design process. We now want to present the constructive elements of our approach to static analy-
sis and the way these provisions feed the iterative and incremental component of our development
strategy.

Foundations of Response Time Analysis

The static analysis model chosen for our engineering concept aims at the prediction of worst-case
response times (cf. e.g.: [Joseph and Pandia, 1986, Audsley et al., 1993]). The model stipulates
that one thread’s worst-case response time be defined as the longest elapsed time it takes for that
thread to complete its most demanding set of activities in response to an activation occurring
under maximum contention from the rest of the system. (The term thread is used in the following
as a synonym for task.) The worst-case response time of any thread�i does, thus, result from
suitable combination of the following three distinct components:

(i) Theworst-case computation timeof thread�i,WCCTi, which is defined as the sum of the
time cost of all�i’s sequential blocks of execution which lay in the statically determined worst-
case path enclosed within the thread’s main loop (the thread’s execution profile) in addition to the
time cost of the run-time system services required for the support of that execution.

(ii) The interferenceincurred by�i, Ii, which is caused by the occurrence of preemptive
execution of higher-priority threads and higher-priority run-time system services incurred during
�i’s ready period; in the HRT-HOOD Computational Model, the interference incurred from run-
time system operation is limited to the handling of the interrupts off the Interval Timer. All other
interrupts are, in fact, tied to the activation and execution of interrupt sporadic tasks and, therefore,
contribute to the response time of the relevant task.

(iii) The blocking experienced by�i, Bi, which originates from the possibility that a due
release of�i be delayed by other effects than those arising from preemptive interference; such
effects occur when the run-time system protects the execution of internal critical sections by tem-
porarily inhibiting (i.e. deferring) preemption as well as a consequence of usingpriority ceiling
emulationfor the implementation of mutual exclusion in the communications between tasks and

Development of On-Board Embedded Real-Time Systems: An Engineering Approach 75

An Evolutionary Approach to the Construction of New-Generation Systems Chapter 4

servers; use of priority ceiling emulation may, in fact, delay the release of tasks whose priority is
higher than the caller but lower than the server’s ceiling; response time analysis prescribes that
worst-case blocking be determined as thelargestpossible delay effect incurred from any of the
two sources.

For any thread�i, componentWCCTi is fully determined at compile time on the Ada closure
of the program, componentBi is a function of the assigned priorities and the system’s run-time
performance, and componentIi is a function of the system load.

ComponentWCCTi andBi are maximised by analysis. Care must be taken, though, to
avoid incurring excessive pessimism in their determination, as this may hinder the usefulness of
the analysis. The approach taken to the determination ofBi and the issues in the generation of
the worst-case execution profiles from whichWCCTi is determined are discussed separately in
the following.

ComponentIi is maximised by assuming all runs to occur under the notional concept of
critical instant, whereby:

� all cyclic tasks are assumed to be disjointly released at timet0 = 0

� all interrupt sporadic tasks are assumed to be disjointly triggered at timet0 = 0 and arrive
at their maximum frequency

� all software sporadic tasks are assumed to be disjointly released off their synchronisation
server’s queue at timet0 = 0.

The formulae which capture the interference effects on�i’s ready period over the interval[0; t)
are shown in the following, where notationj�HP (i) denotes that thread�j ’s priority is greater
than�i’s (i.e. Pr(�j) � Pr(�i)) notationj�LP (i) denotes the converse (i.e.Pr(�j) < Pr(�i))
andTj denotes�j ’s period (for cyclic threads) or minimum interarrival time (for sporadic threads):

Interference from Preemptive Execution of Higher-Priority Threads over [0,t) :

I
t
i =
X

j�HP (i)

d
t

Tj
eWCCTj (4.1)

Interference from Interrupts Off the Interval Timer over [0,t) :

C
t
i = Kt

i � (T imer Int+Ready + Select) (4.2)

The terms initalics in equation 4.2 denote the run-time primitives involved in the readying
of a (cyclic) thread off the delay queue. The constant values to use for the resolution
of these equation are those listed in table 4.4. TermKt

i determines how many times the
Interval Timer triggers over the time span under consideration. This number is determined
as follows:

76 Development of On-Board Embedded Real-Time Systems: An Engineering Approach

Chapter 4 An Evolutionary Approach to the Construction of New-Generation Systems

in ATAC mode (cf. equation 4.3) the ATAC filters out all the interrupts off the Interval
Timer andonly releases those which induce preemption:

Kt
i =

X

j�HPCY CLIC (i)

d
t

Tj
e (4.3)

conversely, in non-ATAC mode (cf. equation 4.4) there occurs no filtering and the calcula-
tion needs to consider also thefirst release of all the lower-priority cyclic threads assumed
to disjointly occur around the critical instant:

Kt
i =

X

j�HPCY CLIC (i)

d
t

Tj
e+

X

k�LPCY CLIC(i)

1 (4.4)

No further releases of lower-priority threads may occur before�i completes its critical-
instant activation.

The analysis devices foreseen in our engineering concept support two variants of analysis
techniques. The first variant, based on deadline monotonic (DM) theory [Audsley et al., 1991,
Audsley et al., 1993], assumes that tasks’ deadlines cannot exceed the respective period (or mini-
mum interarrival time) and determines, for every individual thread, the response time for asingle
critical-instant release. The other variant, based on the extended version of deadline monotonic
theory presented in [Tindell et al., 1994], referred to as arbitrary deadline (AD) assumes that dead-
lines may be arbitrarily greater than the relevant period (or minimum interarrival time) and, there-
fore, extends the solution space tomultiple, overlappingreleases of a task. The critical-instant
assumptions are, thus, worsened by tasks’ releases being delayed past their due time also by the
outstanding completion of their previous releases.

The equations for DM and AD response time analysis are shown in the following. Both are
based on recurrence relations in which thread�i’s response time,Rn

i , is expressed as a monoton-
ically increasing summation term. The DM recurrence is somewhat simpler than its AD variant
and guaranteed to converge when the system’s utilisation is not greater than 1. The AD variant,
albeit based on the same conceptual model as DM, is slightly more complex as its solution space
extends across multiple, overlapping releases; as shown by equation 4.12, the search stops as soon
as the response time for the last release of the thread no longer overlaps the next due activation.

Response Time (DM) :

Rn
i = Bi +WCCTi + I

R
n�1

i

i +C
R
n�1

i

i (n > 1) (4.5)

R1
i = Bi +WCCTi (4.6)

Response Time (AD):
Busy Window at (q+1)th release:

Rn+1
i (q) = Bi + (q + 1)WCCTi + I

Rn
i
(q)

i +C
Rn
i
(q)

i (q; n � 0) (4.7)

where:

Development of On-Board Embedded Real-Time Systems: An Engineering Approach 77

An Evolutionary Approach to the Construction of New-Generation Systems Chapter 4

R0
i (q) = Ri(q � 1) (q � 1) (4.8)

and

R0
i (0) = Bi +WCCTi (4.9)

Response Time at (q+1)th release:

Ri(q) = Rn
i (q)� qTi (4.10)

Worst-Case Response Time:

Ri = maxq�NRi(q) (4.11)

where:

N = fqg : Rn
i (q) > (q + 1)Ti =) Ri(q) > Ti (4.12)

Blocking Overhead Determination

The worst-case blocking effect incurred on one thread’s release is determined as the largest value
between the single longest period of run-time deferred preemption and the longest-duration entry
call to a higher-ceiling server performed by a lower-priority task.

The former value is aconstantcharacteristic of the run-time system implementation. In the
case of our Ada implementation, this value is minimised by the restrictive nature of the HRT-
HOOD Computational Model.

The latter value is avariable thread-specific attribute which depends upon characteristics of
the overall application, such as the assigned priorities and the performance of servers’ entries. The
pessimism potentially embodied in the determination of this value is minimised by the analysis
device discussed in the following.

In the HRT-HOOD Computational Model, calls to server entries conform to any of the types
shown in table 4.5:

Table 4.5: Types of PO Calls.
server type call type call denotation

resource server (RPO) unguarded service call RPO.Service
synchronisation server (SPO) unguarded releasing call SPO.Signal
synchronisation server (SPO) guarded suspensive call SPO.Wait

The contribution to one thread’s blocking overhead resulting from use of priority ceiling emu-
lation is, thus, determined by the single largest execution cost of any of the calls listed in table 4.5
in accordance with the definition given in section 4.5.3. This overhead includes theWCCT of
the relevant protected service and the execution cost of all the run-time system operations possibly
involved in the execution of that service.

Let us now look at the individual server calls in detail. Calls to resource servers are uncon-
ditional, hence incur a constant run-time system overhead. Calls to synchronisation servers are
guarded, hence exhibit worst-case and best-case execution profiles: a guarded suspensive call

78 Development of On-Board Embedded Real-Time Systems: An Engineering Approach

Chapter 4 An Evolutionary Approach to the Construction of New-Generation Systems

may find the guardopen(best case) and incur no suspension, orclosed(worst case) and incur
suspension and deschedule; an unguarded releasing call (SPO.Signal) may findno awaiting task
in the entry queue (best case) and let the caller continue undisturbed, oroneawaiting task (worst
case) and cause its release off the queue, the execution of the wait service and, eventually, the
potential deschedule of the signaller depending on the relative base priority of the waiter.

Table 4.6 lists theindividualoverhead components which are incurred on the execution of the
PO calls shown in table 4.5 under both worst and best case. The terms initalics in the table denote
the constant values associated with the relevant primitives as listed in table 4.4.

Notably, table 4.6 shows that the worst-case execution of an SPO.Wait call is made up of two
components that occur at two separate points in time, as follows:

� the prologue, identified as component (3.1) in the table, which occurs from the waiter’s
request to enter the SPO until waiter’s suspension and placement in the entry queue; and

� theepilogue, identified as component (3.2) in the table, which occurs from waiter’s release
from the entry queue until waiter’s departure from the SPO andalwaysdirectly follows the
execution of component (2) by the relevant signaller.

Table 4.6: PO Call Overhead.
call type execution components id case type

RPO.Service PO Entry + WCCT (Service) +PO Exit (1) worst,best

SPO.Signal
PO Entry + WCCT (Signal) +

(2) worst+ Entry QueueMgmt+ Switch

SPO.Wait (in)
PO Entry + WCCT (guardeval) +

(3.1) worst+ Sem.Wait (Enter)+ Select+ Switch

SPO.Wait (out)
Sem.Wait (Exit)+ WCCT (guardeval) +

(3.2) worst+ WCCT (Wait) + PO Exit
SPO.Signal (nowait) PO Entry + WCCT (Signal) +PO Exit (4) best

SPO.Wait (open)
PO Entry + WCCT (guardeval) +

(5) best+ WCCT (Wait) + PO Exit

The execution pattern of the prologue and the epilogue component of the SPO.Wait call di-
rectly emanates from prescriptions of the HRT-HOOD Computational Model and may effect the
worst-case blocking experienced by signallers upon call of (2). Our model does not allow tasks
to share the same priority level. In keeping with this prescription, the ceiling priority of server
tasks is set to (at least) one level higher than the maximum priority of their callers. Hence, in the
worst-case SPO scenario, as soon as the signaller relinquishes the SPO on completion of (2), it is
preempted by the waiter which, once kicked off the entry queue, is assigned the ceiling priority
of the SPO and can, therefore, execute (3.2). (This explains theSwitch component in the break-
down of (2).) This phenomenon must be taken into account in the determination of the priority
ceiling blocking experienced by the signaller tasks in the system, as follows:

� if the base priority of the waiter (w) is higher than the signaller’s (s) i.e. w�HP (s), the
execution cost of (3.2) is captured by the interference incurred by the signaller on its worst-
case execution (Is);

Development of On-Board Embedded Real-Time Systems: An Engineering Approach 79

An Evolutionary Approach to the Construction of New-Generation Systems Chapter 4

� otherwise,s experiences an extra blocking overhead, equal to the execution cost of (3.2)
plus theSelectandSwitch service components required to restore its execution context;
that extra blocking overhead is incurredfor every (2) callperformed in the worst-case ex-
ecution profile for whichw�LP (s); the resulting overheadadds to the general priority
ceiling blocking for that thread, which is determined in the manner described in the follow-
ing.

Response time analysis based on DM considers one single critical-instant release of the thread
subject of analysis under the run-time conditions which maximise the possible source of con-
tention and interference. With reference to table 4.6, therefore, DM is interested in the worst-case
service values only. Conversely, analysis based on AD contemplates multiple, potentially over-
lapping releases and may, therefore, need to consider best-case values, too. In fact, for example,
a software sporadic thread�i performing a guarded suspensive call at its q-th release (withq > 0)
will find the guard open if�i’s priority is lower than the releasing thread’s. Similarly, thread
�i performing an unguarded releasing call will find no awaiting thread in the entry queue if�i’s
priority is higher than that of the software sporadic thread associated with that synchronisation
server.

Table 4.7 prescribes how the individual PO call overhead components listed in table 4.6 con-
tribute to the determination of the bound for the priority ceiling blocking experienced by thread
�i.

Table 4.7: Call Overheads Accountable for Blocking.
call type blocking factor

RPO.Service SPO.Signal SPO.Wait Worst Case Best Case

Pr(Caller) vs
Pr(�i)

H H H none none
L H H (1) (1)
L L H max(1,2) max(1,4)
L L L max(1,(2+3.2),(3.1)) max(1,4,5)
H L L max((2+3.2),(3.1)) max(4,5)
H H L (3.1)+(3.2) (5)
H L H (2) (4)
L H L max(1,((3.1)+(3.2))) max(1,5)

The information in table 4.7 is to be interpreted as follows:

let J denote the thread set captured by equation 4.13:

f�jgj�J : (j 6= i) ^ (j�LP (i)) ^ (j =) PO:E) ^ (PO�HP (i)) (4.13)

where the notationj =) PO:E denotes that�j ’s WCET profile includes a PO call (PO.E)
of the type indicated by the relevant column header in the table;

with these provisions, entries tagged L in columns 2-4 denote the fact that:

9k : k�J ^ (WCCTk(E) = maxj�J (WCCTj(E))) (4.14)

whereby the PO.E call made by�k represents the largest priority ceiling blocking caused
on�i by PO calls of that type; conversely,

80 Development of On-Board Embedded Real-Time Systems: An Engineering Approach

Chapter 4 An Evolutionary Approach to the Construction of New-Generation Systems

entries tagged H indicate that the thread setJ is empty for that particular PO call type and,
consequently,�i experiences no priority ceiling blocking from PO calls of that type.

Characterisation of Task Management Overhead

The information contained in table 4.4, in conjunction with the analysis of the Ada implemen-
tation discussed earlier in this section, allows the run-time system contribution to one thread’s
WCCT to be fully characterised. In fact, table 4.8 uses the constant values listed in table 4.4 to
describe (and bound) all of the task management and administration services incurred by individ-
ual tasks under the initial conditions required for DM and AD analysis.

Table 4.8: Task Administration Overhead Bounds.

task / event
analysis case

DM & AD (q = 0) AD (q > 0)

Cyclic
on release Switch + Delay Until(Exit) 0

on suspension Delay Until(Enter) + Select + Switch 0

Int Sporadic
on release Int Handling + Select + Switch + IntWait(Exit) idem
on suspension Int Wait(Enter) + Select + Switch idem
Sw Sporadic

on release
SPO.Wait (out) if w�HP (s) idem
0 if w�LP (s) idem

on suspension SPO.Wait (in)
SPO.Wait (in) if w�HP (s)

SPO.Wait (open) if w�HP (s)

Any Task Type
RPO.Service as per table 4.6 idem

SPO.Signal
SPO.Signal(nowait) if w�HP (s)

SPO.Signal(nowait)SPO.Signal + SPO.Wait(out) + Select + Switch
if w�LP (s)

Interval Timer
on cyclic release Kt

i
* (Timer Int + Ready + Select) idem

General task execution overhead obviously includes those resulting from the server call ser-
vices listed in table 4.6 for every such call retained in the worst-case profile of the task. In
particular, in force of the discussion in section 4.5.3, thecritical-instantassumptions established
in section 4.5.3 for the determination of the task execution overhead shall be refined by requiring
that every waiter (software sporadic) taskw be considered as:

� released off its entry queue at timet0 = 0 in the respect of every thread�i : w�HP (�i);
and

� kicked off its entry queue by its respective signaller, for every signaller tasks : w�LP (s).

Development of On-Board Embedded Real-Time Systems: An Engineering Approach 81

An Evolutionary Approach to the Construction of New-Generation Systems Chapter 4

Worst-Case Execution Time Profile Generation

One distinguishing feature of our baseline technology resides with the implementation of a WCET
profile generator capabilitytightly integratedwith the Ada compilation system. The required
operation of this capability is described in [Thomson Software Products, 1995].

The function of the WCET profile generator is to determine, for every thread in the system,
the execution profile which controlledly maximises theWCCT component for that thread. As
indicated earlier in section 4.5.3, thread�i’s WCCTi is made up of two components: (i) the
sum of the time cost of all the sequential blocks of execution which lay in the path statically
determined by the WCET profile generator within�i’s main loop; and (ii) the run-time system
overhead incurred by�i in the execution of the selected path. The latter component is statically
determined on the thread’s type and the server calls retained in the profile. The relevant overhead
components are listed in table 4.8. Hence, the function of the WCET profile generator is to
provide a bound for the former part of the thread’s WCCT.

The design of our WCET profile generator is relatively simple, taking advantage of the fact
that the designated target hardware is a single-boardcache-lesscomputer based on the ERC32
core mentioned earlier in this paper. In fact, the present version of the WCET tool was primarily
designed to serve as a ”concept demonstrator”; role which it has successfully accomplished. Our
future plan is to thoroughly review the performance of the tool (particularly as regards the control
of pessimism) and push it further using the guidance of other important research work in the
domain, e.g.: [Park, 1993, Puschner and Koza, 1989, Chapman et al., 1996].

The WCET profile generator presently operates in two phases:

� Thecompile-timephase stores in the program library, for every compiled subprogram, the
call graph ofbasic blockscreated by the code generator. (The basic block being the largest
set of sequential instructions with no internal flow of control.) The basic block timing
information is used to decorate the abstract syntax tree which, in contrast with conventional
technology, is not disposed on exit from the front-end but retained to guide the WCET
processing of the subsequent phase.

� Thebind-timephase, which operates on theclosureof the supplied Ada program, recog-
nises the set oflegal threads which constitute the program (flagging the presence of any
illegal ones) and performs, for each of them, the traversal of the relevant set of call graphs
for the determination of the worst-case path. Legal threads are those which comply with
the required task template and do not perform difficult-to-bound operations, such as:

(1) direct and indirect recursion

(2) direct and indirect heap management

(3) dynamic task creation and deletion

The generation of the worst-case execution profile from the application source code must at-
tempt to capture both thelocal worst-case at thread-level and theglobalworst-case at application-
level, in a manner which incurs a controlled degree of induced pessimism.

82 Development of On-Board Embedded Real-Time Systems: An Engineering Approach

Chapter 4 An Evolutionary Approach to the Construction of New-Generation Systems

Excessive pessimism may arise, for example, when the resolution of a branch or the bounding
of an iteration within one thread’s profile fail to capture application-wide path exclusion condi-
tions (e.g.: mutually exclusive operating modes) or run-time best-bounding information. This
may cause otherwise provably impossible paths to be selected and consequently yield too conser-
vative predictions.

The execution profile generator mitigates the effect of such problems by providing means for
the user to annotate the source code with aloop-boundand apath-exclusionpragma, as follows:
(i) pragma Loop Count (< constant >) placed before a for or while loop construct allows
the user to supply the preferred bound to an otherwise unbound iteration; the compiler uses the
provided bound value to cost the iteration but returns warnings if it was able to statically determine
a better bound; (ii)pragma Exclude Wcet placed inside a conditional branch, procedure body
or task body causes the exclusion of the tagged construct from the selected path.

For the sake of the practicality of use of the present release of the tool, exception handlers
and basic blocks containing an explicitraise instruction are implicitlyexcludedfrom the WCET
path. The rationale behind this choice is that our baseline Ada technology did not ensure bounded
overhead for the determination of the handler to be associated with the raised exception. We
regard the assurance of a bounded (and acceptably low) overhead for this operation as an essential
pre-requisite for the handling of exceptions (whether pre-defined or user-defined) to be considered
in the generation of the WCET execution profile. Future releases of this tool will include this
ability.

In actual fact, the achievement of justified maximisation ofWCCTi is not the sole objective
of the WCET profile generator. There, in fact, exist two distinct ways for thread�i to effect
system’s responsiveness:

� a longerWCCTi induces a longerIj on thread�j8j : j�LP (i);

� a PO.Call performed by�i may contribute toBk for thread�k 8k : k�HP (i)^k�LP (PO).

The WCET profile generation algorithm must, therefore, also seek to achieve justified max-
imisation ofBk.

if <condition> then
-- branch A
<A1> -- sequential block
PO.Call
<A2> -- sequential block

else
-- branch B
 -- sequential block

end if;

Example 4.5.1:Effect of Blocking on Path Selection.

Consider the code fragment in example 4.5.1 and assume that< condition > cannot be
statically resolved. The example shows a classical case in whichlocal maximisation ofWCCTi

Development of On-Board Embedded Real-Time Systems: An Engineering Approach 83

An Evolutionary Approach to the Construction of New-Generation Systems Chapter 4

may degrade the determination ofBk for any thread�k in the system. This case occurs on the
selection of branch B, when no trace of PO.Call is retained in the thread’s profile.

The problem is resolved, in our model, by instructing the branch selection algorithm to keep
record of all the server calls performedoutsidethe retained profile and to require thatalternate
blocking analysis be performed of the potential blocking effect of such calls. This analysis may
possibly yield a largerBj value for some thread�j , thereby highlighting a potential conflict
betweenlocal and global worst-case path selection criteria. In any such case, the server call
responsible for thread�j ’s alternate blocking is identified to the user, who is advised to consider
repeating the analysis forcing the extraction of WCET execution profiles which include that server
call.

Feedback to Design

As long as the user maintains the design information current with the progress of the implemen-
tation, the semantic contents of an HRT-HOOD description allows the designer to perform static
timing analysis of the system and to derive the feedback necessary to steer design and implemen-
tation to completion.

It is central to our engineering concept that the designer be able to start performing this type of
analysis very early in the development life cycle. To this end, we enable the designer to actively
effect the determination of the WCET profile of the system. The designer may do so by supplying
override values for named subprograms via special directives submitted to the WCET profile
generator along with the program source. This provision allows the designer to start performing
informative analyses of the timing behaviour of the system since as early as the establishment of
the initial design skeleton.

The earliest skeleton of an HRT-HOOD system is typically comprised of as little as the ”use”
relationships placed between objects and the abstract outline of the objects’ operation control
structure (OPCS). In our model, the designer can decorate that initial skeleton with the expected
timing of the object operations, without having to necessarily provide all of the relevant code. The
measurements overridden by the designer-supplied values may thus well be nil, when the actual
subprogram code is still to be supplied, or else a partially representative value, as the subprogram
code is still incomplete. Along with the consolidation of the design and the provision of the real
code of the application, the designer would then progressively remove the override values and
replace them by the timing estimates actually computed by the WCET profile generator.

This feature facilitates the occurrence of design iterations triggered by the interpretation of
feedback from static timing analysis (which is intrinsically relevant to thephysical viewof the
system) to initiate from as early in the development as the initial design skeleton (which typically
corresponds to the baseline definition of thelogical modelof the system) and to occur within one
and the same HOOD-based design framework, as shown in figures 4.1 and 4.2.

The key elements of information obtained from static analysis include: (1) the confirmation
of the schedulabilitystatus of the individual threads of the system with respect to the relevant
real-time requirements; and (2) thesensitivityof the system timeliness to variations in the pro-
cessing requirements of individual threads. The results obtained for category (1) indicate, for
every thread: the priority level automatically assigned to that thread; the response time deter-

84 Development of On-Board Embedded Real-Time Systems: An Engineering Approach

Chapter 4 An Evolutionary Approach to the Construction of New-Generation Systems

mined for that thread and itsWCCT andB break-down components; and the adjudged cause
of the worst-case blocking incurred by that thread. The results obtained for category (2) indicate
what variations in one thread’sWCCT would be permitted without affecting the schedulability
status of the system.

4.6 Analysis of the Proposed Solution

This chapter has proposed an innovative evolutionary approach to the development of new gen-
eration software intensive on-board real-time embedded systems. The definition of the proposed
approach has been arrived at from analysis of the emerging requirements discussed in chapter 1
and the decision to adapt the current process model to the changing development scenario in the
fashion presented in chapter 3.

The proposed approach responds to the following demands:

� the need to perform informed selection and enforcement of a given Computational Model
as integral part of the design process;

� the availability of a characterisable, efficient and statically analysable implementation of a
Computational Model which meets the demands discussed in section 3.3.2 and the applica-
tion requirements presented in chapter 2;

� the ability to support the iterative and incremental development process which we advocate
as the primary means to meet the requirements discussed in chapter 1.

The main virtue of the proposed concept is that, in keeping with the choice for a smoothly evo-
lutionary approach, it builds upon such existing wide-spread technology as HOOD [HTG, 1993]
and Ada [ISO, 1987], only adding to it a limited number of distinct enhancements. The proposed
enhancements preserve the integrity of the originating design method and extend the expres-
sive and semantic power of the outgoing language standard [ISO, 1987] in a fashion forward-
compatible with its recent revision [ISO, 1995].

This chapter has further outlined the structure and operation of the enabling technology as-
sociated with our development concept. One specific toolset instance incorporating all of the
required enabling technology has recently been built [Logica, 1997] in the frame of a work pro-
gramme funded by the European Space Agency and conducted under the technical coordination
of the author of this technical report.

The block diagram of our toolset is depicted in figure 4.6. The toolset was designed as an
instantiation of the reference concept depicted in figure 4.2. Special emphasis was placed on the
provision of effective support to the four design stepsB.1-B.4, discussed in section 4.3.1, which
constitute the essence of our development strategy.

The toolset is presently comprised of the following components:

� an augmented version of the HOOD design method, called HRT-HOOD and defined in
[Burns and Wellings, 1995b], directly supportive of a Computational Model based on the

Development of On-Board Embedded Real-Time Systems: An Engineering Approach 85

An Evolutionary Approach to the Construction of New-Generation Systems Chapter 4

Target Description File
(Platform Specific)

B.1B.2

B.4

B.3(a)

Run-Time Support Characteristics
(Platform Specific)

Execution Skeleton File
(ESF)

Event Trace File Schedulability Analysis Report

Ada Program

B.3(b)

(UCF)
User Configuration File

Design Enhancements

Problem
Definition

HRT-HOOD

Schedulability

WCET
Profile

Input to IT-ST

ERC32 Cross

System

Analyser

Generator
Ada Compilation

Simulator
Scheduler Feedback to Design

Real-Time Design

Binding to Computational Model

Static Analysis

Figure 4.6: The Proposed Toolset.

deadline monotonic fixed priority preemptive scheduling theory developed by the Real-
Time Group at the University of York [Audsley et al., 1991] and [Audsley et al., 1993];

� a standard Ada 83 [ISO, 1987] cross compilation system augmented with Ada 95 real-
time features [ISO, 1995] and provided with: (i) a precise characterisation of the timing
behaviour of the run-time support to the Computational Model, and (ii) built-in capabilities
for the extraction of WCET profiles of the application components, the operation of which
is described in [Thomson Software Products, 1995, Thomson Software Products, 1996];

� a static analysis tool [Spacebel Informatique, 1996, Logica, 1996] designed in accordance
with [Joseph and Pandia, 1986] and [Audsley et al., 1991] to perform response time anal-
ysis of systems generated with the aid of the toolset; our process model facilitates the
iterative execution of this analysis stage on successive increments of the system; the analy-
sis device determines: (a) thepriority levelof the individual components of the system; (b)
their currentschedulability status; and (c) reports on thesensitivityof the current design to
variations in the execution time of its components.

Figure 4.7 depicts the intent and distinguishing features of the development approach dis-
cussed in this chapter in comparison to a schematic view of the current practice.

Any development method can be regarded as a structured aid to bridge the distance between
one problem and the proposed solution. The span between the problem and the solution shown
on the axis of the diagram in figure 4.7 broadly reflects the relative proportion of the main phases
of development of on-board embedded real-time systems. With reference to the V model shown
in figure 3.1, the three main phases of development are broadly referred to as:design, which is

86 Development of On-Board Embedded Real-Time Systems: An Engineering Approach

Chapter 4 An Evolutionary Approach to the Construction of New-Generation Systems

development time

Problem Solution

h/w - s/w integration testing

time-domain testing

functional testing

legend:

tool-assisted activity partly assisted activity unassisted activity

current practice

HOOD

functional testing

time-domain testing

h/w - s/w integration testing

other
specification
formalisms

proposed approach

implementation testingdesign

HRT-HOOD

(SR -- AD) (DD -- UT) (IT -- ST)

Figure 4.7: A Schematic View of the Proposed Approach.

comprised of SR and AD and typically represents 25-30% of the development;implementation,
which corresponds to DD and UT and typically absorbs� 15% of the development; andtesting,
which includes IT and ST and takes up the most part of the development effort, typically around
55-60%.

The lower portion of the diagram shows the span of the process actually covered by conven-
tional HOOD-based design. The span is rather modest and, as noted earlier, completely discon-
nected from the conclusive part of the implementation phase as well as from the various threads
of testing (those assisted by aid tools and those not).

Conversely, the higher portion of the diagram shows that the use of the HRT-HOOD method
aims at covering a much greater span of development by providing for (i) a unifieddesign frame-
work to facilitate and assist the occurrence of repeated feedback-based iterations across the de-
sign, implementation and testing activities and (ii) theexplicit definition and enforcementof
design constructs and constraints which emanate from the reference Computational Model and
include sufficient semantics to allow for static analysis of the system since the early stages of
development.

This approach may possibly increase the conceptual distance between the typical formulation
of the problem (UR) and the proposed design formalism based on the HRT-HOOD method. The
key assumption of this technical report, though, is that the projected benefits (support to design
iterations, support for enforcement and verification of the real-time properties) largely exceed the
incurred disadvantages.

This notwithstanding, it may well be the case that the use of other specification formalisms in
earlier phases of development — closer to the problem formulation and yet ”translatable” to an
initial HRT-HOOD design — may be a very desirable option to consider. This issue is presently

Development of On-Board Embedded Real-Time Systems: An Engineering Approach 87

An Evolutionary Approach to the Construction of New-Generation Systems Chapter 4

being investigated at the European Space Agency but its discussion falls outside the scope of the
work presented in this technical report.

Chapter 5 shall further illustrate the operation of the proposed development approach by
means of a simple demonstrative example.

88 Development of On-Board Embedded Real-Time Systems: An Engineering Approach

Chapter 5

Illustrative Example

5.1 Introduction

I n this chapter, we use a simple illustrative example to demonstrate the operation of the engi-
neering approach described in chapter 4.

The presentation of the example will progress across each of the four main development steps
B.1-B.4presented in section 4.3.1 and will use the instantiation of the associated enabling tech-
nology shown in figure 4.6. All the elements of the example presented in the following were pro-
duced using the enhanced Ada 83 technology [Logica, 1997, Thomson Software Products, 1996]
introduced in section 4.5.3 and developed as part of [Saab Ericsson Space, 1997]. Accordingly,
the example uses language constructs which are semantically equivalent, but syntactically differ-
ent, to those of Ada 95. Similarly, the syntax used to express the input and output of the static
analysis tools [Logica, 1997, Spacebel Informatique, 1996] referred to in the example is the one
supported by the technology developed in [Saab Ericsson Space, 1997].

5.2 Construction and Analysis of an HRT-HOOD System

The most prominent feature of any HRT-HOOD design lays in that it can be statically analysed
for its timing characteristicsat virtually all of stages of development. This is possible because
the method is structured so as to facilitate the definition, the extraction and the verification of the
design properties which determine the real-time behaviour of the system in accordance with the
rules and constraints of a well-defined Computational Model.

The Computational Model which we have retained as the centre of our engineering approach
is based on the deadline monotonic scheduling theory established by [Audsley et al., 1991] and
[Audsley et al., 1993]. Section 3.4.5 outlined the key elements of this theory.

Systems built in conformance with the deadline monotonic scheduling theory lend themselves
to static response time analysis. Systems designed with the HRT-HOOD method possess this

89

Illustrative Example Chapter 5

propertyby construction.
The basis to response time analysis as an advanced form of static timing analysis were first laid

down by [Joseph and Pandia, 1986] and subsequently furthered by [Audsley et al., 1991]. The
theoretical foundations of our approach to response time analysis were presented in section 4.5.3
(and, in a more concise form, in [Vardanega, 1996]). The analysis model stipulates that the re-
sponse time of one thread be defined as the longest elapsed time it takes for that thread to complete
its most demanding set of processing activities in response to an activation occurring under max-
imum contention from the rest of the system. Threads in the system are schedulable if and only if
they can fulfil their real-time commitments, expressed in terms of activation frequency and dead-
line, under those initial conditions. The example presented in the following shows how, in our
model, the development process takes these notions into account and progressively consolidates
across the four steps introduced in section 4.3.1.

While the structure of the chapter reflects the same global progression, the presentation will
also show that the overall development process entails the orderly execution of the following
finer-grained activities:

1. use of the HRT-HOOD objects (i.e. cyclic, sporadic, protected, passive) to establish the
initial logical model of the system;

2. determination of the real-time requirements associated with the operation of those objects;

3. construction of the operational profiles associated with the processing activity required of
those objects (e.g.: use and sequence of internal and / or external execution requests);

4. automated generation of the program structure corresponding to the system in terms of the
HRT-HOOD Computational Model and provision of the functional code associated with
the object operations;

5. automated extraction of the worst-case execution time profile for all objects in the system;

6. static analysis of the real-time operation of the system and interpretation of the results and
determination of the feedback information required for the completion / consolidation of
the development process.

The intended objective of each of the main development steps discussed in the following is
recalled at the beginning of the corresponding section.

5.3 Step B.1: Real-Time Design

Objective : the design of the system is established to the desired level of detail by use of the
HRT-HOOD design method.

Let us assume we want to implement (a portion of) a real-time system comprised of: (a) an
entity in charge of producing data at a fixed rate (say, 20 milliseconds) in a rigidly regular order;

90 Development of On-Board Embedded Real-Time Systems: An Engineering Approach

Chapter 5 Illustrative Example

and (b) an entity in charge of consuming those data on request from the Producer. Let us also
assume that the Producer and the Consumer have to place a time-stamped record of the correct
progression of their activity into a dedicated data structure and that the system is also to include:
(c) an entity in charge of transmitting the contents of that data structure to the system operator
also on request from the Producer. Let us finally assume that all of these entities also have to
perform a number of other auxiliary processing activities as part of every nominal activation.

We now want to describe these entities and their interactions in terms of HRT-HOOD ob-
jects and relationships. Moreover, we want to model the three main entities of our system (the
Producer, the Consumer and the transmitter) as distinct concurrent activities. To better illustrate
our point in this chapter, though, we will do so using as many of the HRT-HOOD objects as the
example can accommodate, in preference to seeking design and / or implementation optimisation.

We know from section 4.4 that HRT-HOOD objects may be cyclic, sporadic, protected or
passive. We also know that concurrent (i.e. active) objects may only be either cyclic or sporadic.
In our case, Producer clearly maps to a cyclic object, while the operation of Consumer and the
transmitter (which we will call PrintTool) is tied to an activation trigger coming from Producer
and, hence, can be regarded as being software sporadic. The data generated by Producer will be
stored in a dedicated protected object (which we will call Buffer) from which they will be retrieved
by Consumer. Similarly, Producer and Consumer will place their time-stamped report into another
dedicated protected object (which we will call Store). PrintTool will extract from Store the
information to be sent to the system operator. Finally, we will gather the auxiliary processing
activity to be performed by Producer and Consumer into a passive object called Background,
while we will place the auxiliary activity of PrintTool into another passive object named PrintFct.

Figure 5.1 shows our HRT-HOOD system as a collection of co-operating terminal objects.
The overall system is denoted by one single cyclic parent object namedSystemMain , which
includes:

� onecyclic terminal object namedProducer;

� oneprotectedterminal object, namedBuffer , which provides two protected synchronous
operations:ReadandWrite;

� onesoftware sporadicterminal object namedConsumer;

� anothersoftware sporadicterminal object namedPrint Tool;

� two passiveterminal objects, namedBackground andPrintFct , each providing one un-
constrained operation (WorkandOutputTextrespectively).

The SystemMain parent object is an active object and hence allows for internal independent
flow of control. This is allocated to all of the independent threads of control which the parent
object ultimately decomposes to, that is: one cyclic object (Producer) two software sporadic
objects (Consumer and PrintTool) and one protected object (Buffer) which globally cater for a
total of three threads, two OBCS (synchronisation servers) and one resource server.

The HRT-HOOD type of each object in the system is denoted by the letter tag placed at the top
left of the object icon: theC tag denotes a cyclic object;S denotes a sporadic object;Pr denotes

Development of On-Board Embedded Real-Time Systems: An Engineering Approach 91

Illustrative Example Chapter 5

C

C Producer BufferPr

Print_ToolS

S Consumer

PrintFct

E

E RTA

Pr Store

System_Main

Work

Output_Text

Write
Read

Start

Start
ASER

ASER

PSER
PSER

Store_Types

Background

Figure 5.1: A Simple HRT-HOOD System.

a protected object. A no-tag banner denotes passive objects. Software sporadic objects differ-
entiate from interrupt sporadic objects for the type of the respective triggering event: an ASER
asynchronous trigger would denote a software sporadic; conversely, an ASERBY IT would de-
note an interrupt sporadic (the latter not being used in the example system).

The boxes placed to the right of the SystemMain parent object denote further objects which
areusedby child objects of SystemMain but are definedexternallyto it.

TheE tag placed to the left of the object box denotes that the external object in question is
defined as anenvironmentobject (i.e. a system-level library). Environment objects are typically
used to provide for primitive data definitions (e.g.: types, constants, variables) of general interest
to the application.

In particular, theRTA environment object isalwaysrequired by any HRT-HOOD system for
it provides the base definition of all the real-time attributes needed by the real-time objects in the
system.

Furthermore, as every HRT-HOOD system may be used as a subsystem component of a
higher-level system, external objects may also be of any other HRT-HOOD base type and rep-

92 Development of On-Board Embedded Real-Time Systems: An Engineering Approach

Chapter 5 Illustrative Example

resent child objects of an external subsystem which are made visible to the child objects of the
local subsystem. This is, for example, the case with the protected objectStore, which will be
used — but not exclusively — by child objects of SystemMain.

HRT-HOOD objects may provide external operations (execution requests) for other objects to
invoke. The cyclic terminal object Producer in the example system shown in figure 5.1 provides
no external operation. Conversely, the external interface of both Consumer and PrintTool, each
of which is a software sporadic terminal object, provides theStartoperation required to trigger
the sporadic operation of the object. As required by the method, both instances ofStart oper-
ation are asynchronous, as denoted by the ASER tag placed next to the operation symbol. The
protected terminal object Buffer provides for two protected synchronous operations (PSER)Read
andWrite. The example system also includes two passive terminal objects each of which provides
an unconstrained operation.

The overall operation of the system is governed by the periodic execution of Producer (which
explains why the parent object SystemMain is marked as a cyclic object). At every periodic
activation, Producer:

� deposits a data item in the Buffer using the Write operation of the latter;

� performs a given amount of internal work using the Work operation provided by the Back-
ground object;

� records in Store, using the Write operation, the time-stamped mark of completion of the
current operation;

� activates Consumer and PrintTool which shall, respectively, retrieve the data item produced
by Producer and report to the output port on the current status of the system operation using
the activity record left by Producer and Consumer in Store.

The arrows between objects in the diagram denote the ”use” relationships in place between
any two objects in the system. In our case, the arrows departing from the Producer object denote
that Producer uses:

� the protected synchronousWrite operation provided by the Buffer protected object;

� the unconstrainedWorkoperation provided by the Background passive object;

� the asynchronousStartoperation provided by the Consumer sporadic object;

� the protected synchronousWrite operation provided by the Store protected object (not vis-
ible in figure 5.1);

� the asynchronousStartoperation provided by the PrintTool sporadic object.

Producer, Consumer and PrintTool areactiveobjects, hence possess independent threads of
control. The operation of each such thread of control is subject to specific real-time requirements,

Development of On-Board Embedded Real-Time Systems: An Engineering Approach 93

Illustrative Example Chapter 5

which are supplied with the definition of the relevant object. All the active objects in our system
will be mission critical.

Let us now define the real-time requirements placed on the overall operation of the system:
(a) Producer would have a period of 20 milliseconds and a deadline of, say, 9 milliseconds, so that
it can complete an activation before Consumer starts its; (b) Consumer would have a minimum
interarrival time strongly correlated with the period of Producer and a deadline placed slightly
earlier than the start of the next 20-millisecond cycle of Producer, say at 17 milliseconds, so as
to guarantee a tolerance margin for other activities in the system; (c) PrintTool would have the
same minimum interarrival time as Consumer but a deadline shorter than Producer, to denote the
criticality of its timely reporting to the user.

HRT-HOOD allows the designer to structure and formalise these real-time requirements at
the level of theObject Description Skeleton(ODS). The main requirements and design attributes
described in the ODS can be divided in two categories as follows: (1) those which are to be defined
directly by the designer as derived from the user specification; these areperiod, deadlineand
criticality; and (2) those which directly result from the rules of the scheduling theory underpinning
the Computational Model of choice; this is the case, for example, of thepriority attribute, which
results from application of the priority assignment algorithm embodied in the proposed toolset
concept and outlined in section 5.5. According to the convention adopted in the proposed toolset
concept, the criticality level of a real-time active object of type cyclic and sporadic may be HARD,
SOFT or NONCRITICAL to denote the highest, medium and lowest level, respectively.

Object Producer Is
Pragma Target_language(NAME => Hrt_language);

Cyclic
Description
Real_time_attributes

Period
Mode_1 => 0.020

Deadline
Mode_1 => 0.009

Priority
6

Importance
Mode_1 => hard

...
End_object Producer

Figure 5.2: HRT-HOOD Object Description Skeleton Fragment (Producer).

Figure 5.2 shows a fragment of the ODS of Producer, where the cyclic operation of the object
is assigned (among other) the following real-time attributes:

� aperiodof 0.020 seconds;

� adeadlineof 0.009 seconds;

94 Development of On-Board Embedded Real-Time Systems: An Engineering Approach

Chapter 5 Illustrative Example

� ahardcriticality (denominated ’importance’ by the tool in use);

� a priority level of 6 (which assumes that the first iteration of development stepB.3(a) —
where priority assignment is performed — has already been carried out).

In principle, the attributes set in figure 5.2 are mode dependent, as the actual operation of the
system (and, consequently, its real-time requirements) may in fact be mode dependent. In our
example, however, we will not address issues of mode change.

In addition to the object’s real-time requirements, the ODS is also used to specify exactly what
external operations the object requires from other objects in the system. This serves to qualify the
relationship at object level denoted by the arrows in the design diagram.

5.4 Step B.2: Binding to Computational Model

Objective : the Ada program corresponding to the current HRT-HOOD design is automatically
extracted from the design tool.

We have seen in section 4.5.1 that the HRT-HOOD Computational Model precisely defines
the Ada entities, constructs and implementation which correspond to the objects and relations
supported by the HRT-HOOD design method. This definition extends the general rules for the
extraction of Ada source files from HOOD design which are specified by the HOOD standard
[HTG, 1993] and permits the generation of a complete source Ada program from an HRT-HOOD
design. We formalised this definition as part of the work performed for the implementation of the
technology described in section 4.5. [Intecs Sistemi, 1996b] and [Intecs Sistemi, 1997] describe
the Ada code extraction rules required to map an HRT-HOOD design to a concurrent Ada program
compliant with the HRT-HOOD Computational Model. [Intecs Sistemi, 1996a] is an industrial-
quality implementation of an HRT-HOOD design tool which embodies a code extractor governed
by those rules. Thanks to these code extraction rules, the generation of the Ada program from
an HRT-HOOD design becomes a fairly straightforward exercise. The whole of the program
structure and a large proportion of other code components, in fact, directly emanate from the
attributes of the design objects and the relationships between them. In the following, we will
briefly illustrate how the code generation process works and show fragments of the Ada code
which correspond to the implementation of the example system introduced in the previous section.

All of the code fragments shown in figures 5.3 to 5.11 in the following are displayedexactly
as produced by our HRT-HOOD code extractor tool. In this respect, we must stress that our
emphasis here is placed on the illustration and demonstration of the concept rather than on the
optimisation of the generated code.

The interface and operation(s) of an HRT-HOOD object naturally map to thespecification
and thebody, respectively, of the Ada package destined to represent it. The object interface
must be visible and accessible to other objects and, therefore, maps to the specification of the
corresponding package. The internal operations of the object map to the package body. The
”use” relationship between objects at design level maps to the ”with” relationship between the

Development of On-Board Embedded Real-Time Systems: An Engineering Approach 95

Illustrative Example Chapter 5

corresponding Ada packages. This is reflected, for example, by figure 5.3, which shows the
”with” preamble of the package corresponding to the Producer object.

with Real_Time; use Real_Time;
--- REQUIRED OBJECT : Buffer |-- OPERATION(S) : Write

with Buffer;
--- REQUIRED OBJECT : Print_Tool |-- OPERATION(S) : Start

with Print_Tool;
--- REQUIRED OBJECT : Background |-- OPERATION(S) : Work

with Background;
--- REQUIRED OBJECT : Consumer |-- OPERATION(S) : Start

with Consumer;
--- REQUIRED OBJECT : Store |-- OPERATION(S) : Write

with Store;

package body Producer is -- CYCLIC object ...

Figure 5.3: ”With” Preamble of Producer (body).

� The real-time attributes defined in the ODS of Producer (cf. figure 5.2) are directly trans-
lated to the code of theProducer RTATT package (a fragment of which is shown in figure
5.4); one such package is created for every individual cyclic, sporadic and protected termi-
nal object in the system (passive objects have no real-time properties).

with System; use System;
with RTA; use RTA;
with Real_Time; use Real_Time;
package Producer_RTATT is

THREAD_PERIOD : constant MODE_DURATION :=
(Mode_1 => Real_Time.To_Time_Span (0.020));

THREAD_DEADLINE : constant MODE_DURATION :=
(Mode_1 => Real_Time.To_Time_Span (0.009));

THREAD_IMPORTANCE : constant MODE_IMPORTANCE :=
(Mode_1 => hard);

THREAD_PRIORITY : constant PRIORITY := 6;
...

end Producer_RTATT;

Figure 5.4: Producer Real-Time Attributes (Fragment).

� The periodic operation of Producer is modelled by the periodic task THREAD shown in
figure 5.6 and is based on the predefined cyclic task template discussed in section 4.5.

96 Development of On-Board Embedded Real-Time Systems: An Engineering Approach

Chapter 5 Illustrative Example

� The code structure of THREAD iscompletely standard, for the sole specific customisation
required to its operation are fully encapsulated in the procedureThread Action shown in
figure 5.5 and in the INTERNAL DATA section of the package shown in figure 5.6; both
units are based on the definitions and code components supplied by the user in the ODS of
the object.

procedure Thread_Action is
begin

Buffer.Obcs.Write (Item);
Background.Work (Workload);
Consumer.Obcs.Start;
Store.Obcs.Write (Item, 1, Real_Time.Clock);
Print_Tool.Obcs.Start;

end Thread_Action;

Figure 5.5: Operation of Producer (separate body).

The code corresponding to the sporadic object Consumer is generated almost exactly as de-
scribed for Producer. The only notable difference between the two lies in that Consumer is a
software sporadicobject and, hence, it needs an OBCS to command its activation on arrival of
the triggering event (which, in this case, is generated by Producer).

� The OBCS of Consumer must be visible to the object which supplies the required trigger
(i.e. Producer). The synchronisation server which implements the OBCS must be therefore
declared in the specification of the Consumer package (cf. figure 5.7) so that the latter may
be ”with”-ed by the body of the Producer package.

� The OBCS of Consumer is implemented as a classical Ada 83 passive task, as shown in
figure 5.8. The mapping model translates directly to an implementation based on an Ada 95
protected object with theWAIT Startoperation coded as a protected entry andStartcoded
as a protected procedure.

The same way the code generator encapsulates the periodic operation of cyclic objects within
a procedure namedThreadAction, the operation of sporadic objects maps to a procedure named
OPCSStart, as shown in figure 5.9.

The sporadic operation of Consumer shown in figure 5.9, which the User describes in the
code section of the ODS of the object, consists of reading out from Buffer the information item
previously stored by Producer, recording in Store the successful completion of the action and
performing a certain amount of internal work before returning control until arrival of the next
software trigger.

Whereas the OBCS of software sporadic objects map to asynchronisation servertask but
do not represent an HRT-HOOD object on their own,resource servertasks directly model the
HRT-HOOD protected object. Buffer is a protected object and, hence, maps to a resource server

Development of On-Board Embedded Real-Time Systems: An Engineering Approach 97

Illustrative Example Chapter 5

--| "with" preamble
package body Producer is -- CYCLIC object

--------- INTERNAL OPERATION(S) ----------
procedure Thread_Action;
--------- INTERNAL DATA ----------
Workload : constant Integer := 500;
Item : Integer := 0;

task THREAD is
pragma PRIORITY(Producer_RTATT.THREAD_PRIORITY);

end THREAD; -- from HRT attributes

task body THREAD is
T : Real_Time.TIME := RTA.SYSTEM_START_UP_TIME;

begin
loop

Real_Time.delay_until(T);
Thread_Action;
T := T + Time_Span(Producer_RTATT.THREAD_PERIOD(RTA.CURRENT_MODE));

end loop;
end THREAD;

----------- OPCS OF UNCONSTRAINED OPERATIONS ---------
procedure Thread_Action is separate;

end Producer;

Figure 5.6: Producer (body).

in which every protected synchronous operation (PSER) declared in the external interface of
the object maps to one dedicated protected entry provided with IN and OUT parameters. The
specification of the Buffer object is shown in figure 5.11.

5.5 Step B.3(a): Extraction of Design Requirements

Objective : a descriptive representation of the real-time requirements established on the sys-
tem is automatically constructed from the real-time attributes of the current HRT-HOOD
design.

As mentioned in section 5.2, the most prominent feature of an HRT-HOOD design is that it
lends itself, by construction, to response time analysis, which is the form of static timing analysis
adopted as part of our engineering concept.

In order to allow for response time analysis to be iteratively performed along with the progress
of the development, the toolset must be able toautomatethe extraction of the information required
for the analysis from all of the time-critical components of the system.

We know from the discussion in section 4.5.3 that response time analysis determines whether

98 Development of On-Board Embedded Real-Time Systems: An Engineering Approach

Chapter 5 Illustrative Example

with SYSTEM; use SYSTEM;
with RTA; use RTA;
with Real_Time; use Real_Time;
with Consumer_RTATT;
package Consumer is -- SPORADIC object

---------------- PROVIDED INTERFACE ----------------
type Start_PARAMETER_SET is record

OVERRUN : BOOLEAN := FALSE;
Start_TIME : Real_Time.TIME;

end record;
---------------- OBJECT CONTROL STRUCTURE --------
task OBCS is

pragma PRIORITY(Consumer_RTATT.INITIAL_CEILING);
-- from HRT attributes Consumer

pragma Passive;
entry Start;
entry WAIT_Start(THE_PARAMS : out Start_PARAMETER_SET);

-- called by THREAD task only
end OBCS;

end Consumer;

Figure 5.7: Consumer (spec).

every individual thread in the system can meet its real-time requirements under maximum con-
tention from the rest of the system. Response time analysis determines the worst-case completion
time of a thread as a function of the following components:

1. The worst-case processing requirement of that thread,WCCT), which results from the
worst-case execution time profile generated from the Ada program corresponding to the
HRT-HOOD design in the fashion described in section 4.5.3. The worst-case execution
profile generated for our example system is shown in figure 5.13 and discussed in section
5.6.

2. TheB factor, which is determined as the largest value between the single longest period of
deferred preemption potentially incurred at run-time time and the longest protected service
performed by a higher-ceiling server for a lower-priority thread. The former is astatic
property of the run-time environment; the latter depends on the ”use” relationships between
objects in the design and the chosen priority assignment.

3. TheI factor, which is a function of the priority levels assigned to the threads in the system
and, hence, of the overall system load.

The HRT-HOOD Computational Model assumes the use of priority-based preemptive schedul-
ing. Hence, threads have to be assigned the designated priority level before they can be subject
to response time analysis. With our approach, this assignment can be performed very early in
the development process and successively reconfirmed as often as desired. This function operates

Development of On-Board Embedded Real-Time Systems: An Engineering Approach 99

Illustrative Example Chapter 5

task body OBCS is -- Consumer.OBCS
begin

loop
select

accept Start do
if not Start_CALLED then

Start_CALLED := TRUE;
else

Start_PARAMETERS.OVERRUN := TRUE;
end if;

end Start;
or

when Start_CALLED =>
accept WAIT_Start(THE_PARAMS : out Start_PARAMETER_SET)

do
THE_PARAMS := Start_PARAMETERS;
Start_PARAMETERS.OVERRUN := FALSE;
Start_CALLED := FALSE;

end WAIT_Start;
or

terminate;
end select;

end loop;
end OBCS;

Figure 5.8: Consumer OBCS (body).

upon a textual representation of the user-defined design properties which effect the assignment.
These properties include:

� the criticality and deadline of all threads in the system (which are part of the threads’ real-
time commitments), for the relative ordering of the priority assigned to threads;

� the ”used by” profile of all servers in the system (which is a static property of every HOOD
design component), for the determination of the ceiling priority which they have to be
assigned.

Both complements of information can be statically determined from explicit properties of the
design. The former is extracted from the ODS of all cyclic and sporadic terminal objects and
recorded in a file called theUser Configuration File(a fragment of which is shown in figure
5.12). The latter can be obtained in the two following distinct ways: (1) from static analysis of
the ”use” relationships between objects in the design (this generation path uses the same principle
which provides for the determination of the ”with” preamble of an object like the one shown in
figure 5.3); (2) from WCET processing of the Ada program automatically generated from the
current design.

Technique (1) is very convenient when the system design is merely sketched and contains no
actual code other than the program structure. Conversely, technique (2) becomes very practical

100 Development of On-Board Embedded Real-Time Systems: An Engineering Approach

Chapter 5 Illustrative Example

procedure OPCS_Start(OVERRUN : in BOOLEAN;
Start_TIME : in TIME) is

begin
Buffer.Obcs.Read(Item);
Store.Obcs.Write (Item, 2, Real_Time.Clock);
Background.Work (Workload);

end OPCS_Start;

Figure 5.9: Operation of Consumer (separate body).

as soon as the system starts having some representative code components in it. Whatever the
generation technique, though, the resulting information is recorded in a textual file called the
Execution Skeleton File, a fragment of which is shown in figure 5.13.

The priority assignment algorithm requires that tasks must not share the same priority level.
This prescription ensures the same run-time scheduling behaviour in the face of implementation-
specific features of the run-time environment of choice. Tasks with decreasing criticality are
assigned decreasing priority levels. Tasks within the same criticality range are assigned priority
levels in deadline monotonic fashion. Server tasks are assigned a ceiling priority level which
is set at least one level higher than the maximum priority of their client tasks. As a result of
this scheme, the priority of all of the real-time active (terminal) objects in the system is readily
determined upon definition of theuser-defineddesign attributes established in the ODS of the
relevant objects.

The priority assignment function is embedded in both the Scheduling Analysis and Scheduler
Simulator tools shown in figure 4.6.

5.6 Step B.3(b): Generation of WCET Profile

Objective : the worst-case execution (WCET) profile of the system is automatically generated
from the Ada program extracted from the current HRT-HOOD system.

The primary means for the generation of the WCET profile of the application to be recorded
in the Execution Skeleton File is via the capability built in the Ada Compilation System.

The WCET profile generation capability, which operates in accordance with the principles
discused in section 4.5.3, uses a stylised syntax to describe the worst-case execution profile of all
threads and servers in the system.

Threads are described as follows:

THREAD <Ada_Name> -- full Ada name of thread
TYPE [CYCLIC | SPORADIC | INTERRUPT SPORADIC] -- thread type

-- worst-case execution profile expressed as a suitable
-- combination of the following statements

WCET Cp, Cmr, Cmw -- timing of basic block expressed as a triplet
-- of values for the corresponding amount of

Development of On-Board Embedded Real-Time Systems: An Engineering Approach 101

Illustrative Example Chapter 5

package body Consumer is -- SPORADIC object
--------- INTERNAL DATA ----------
Workload : constant Integer := 500;
Item : Integer := 0;
--------- INTERNAL OPERATION(S) ----------
procedure OPCS_Start(OVERRUN : in BOOLEAN;

Start_TIME : in TIME); -- unbuffered
Start_PARAMETERS : Start_PARAMETER_SET;
Start_CALLED : BOOLEAN := FALSE;
task THREAD is

pragma PRIORITY (Consumer_RTATT.INITIAL_PRIORITY);
end THREAD; -- from HRT attributes
task body THREAD is

Start_BUFFER : Start_PARAMETER_SET;
begin

loop
OBCS.WAIT_Start(Start_BUFFER);
OPCS_Start(Start_BUFFER.OVERRUN,Start_BUFFER.Start_TIME);

end loop;
end THREAD;
--| task body OBCS shown in figure 5.8
----------- OPCS OF CONSTRAINED OPERATIONS -----------
--|:OPCS_CODE <Start> shown in in figure 5.9

end Consumer;

Figure 5.10: Consumer (body).

-- processing cycles (Cp) memory read cycles (Cmr)
-- and memory write cycles (Cmw)

CALL_PO <Server_Ada_Name> <Entry_Name> -- for every server call
LOOP <Integer_Count> -- for every bounded loop in the profile

<Loop_Body> -- as a combination of WCET, CALL_PO and LOOP statements
END

-- list of protected calls which have been excluded from the
-- worst-case execution profile

PO <PO_Name> <Entry_Name>
END <Ada_Name>

The syntax used to describe servers varies slightly with their type with respect to our Compu-
tational Model. Resource servers are described as follows:

PROTECTED <Server_Ada_Name>
TYPE RESOURCE

ENTRY <Entry_Name_i> -- for every protected entry
-- worst-case execution profile of entry expressed using the
-- syntax shown for the execution profile of threads

-- list of protected calls which have been excluded from the
-- worst-case execution profile of the entry

PO <PO_Name> <Entry_Name>
END <Server_Ada_Name>

102 Development of On-Board Embedded Real-Time Systems: An Engineering Approach

Chapter 5 Illustrative Example

with SYSTEM; use SYSTEM;
with RTA; use RTA;
with Buffer_RTATT;
package Buffer is -- PROTECTED object

------------- OBJECT DESCRIPTION -------------
Minimum : constant := 0;
Maximum : constant := 100;
subtype Buffersize is integer range Minimum .. Maximum;
---------- OBJECT CONTROL STRUCTURE -------------
--- CONSTRAINED OPERATION(S) ---

-- Write constrained by PSER
-- Read constrained by PSER

task OBCS is
pragma PRIORITY(Buffer_RTATT.INITIAL_CEILING);

-- from HRT attributes Buffer
pragma Passive;
entry Write(Item : in Integer);
entry Read(Item : out Integer);

end OBCS;
end Buffer;

Figure 5.11: Buffer (spec).

Synchronisation servers (i.e. OBCS of software sporadic objects) are described as follows:

PROTECTED <Server_Ada_Name>
TYPE SYNCHRO
-- OBCS have one barriered entry

BARRIER WCET Cp, Cmr, Cmw -- worst-case time for the
-- evaluation of the barrier

ENTRY <Barriered_Entry_Name> -- only one
-- worst-case execution profile of barriered entry
ENTRY <Unbarriered_Entry_Name_i> -- for every other

-- unbarriered entry
-- worst-case execution profile of unbarriered entry

-- list of protected calls which have been excluded from the
-- worst-case execution profile of the entry

PO <PO_Name> <Entry_Name>
END <Server_Ada_Name>

All profiles are basically comprised of the three following distinct elements of information:

� The thread or server type, which the analysis tools use to verify that the corresponding
execution profile complies with the properties expected of the object.

� Theworst-case execution profiledetermined by the built-in capability of the compilation
system, which the analysis tools use to compute theWCCT component of the thread’s
response time; in order to allow for the order-sensitive scheduling simulation supported by

Development of On-Board Embedded Real-Time Systems: An Engineering Approach 103

Illustrative Example Chapter 5

THREAD DEFINITION
THREAD Consumer.THREAD

CRITICALITY hard
MINIMUM 200000
DEADLINE 170000

END -- Consumer
...
THREAD Producer.THREAD

CRITICALITY hard
PERIOD 200000
DEADLINE 90000

END -- Producer
END

Figure 5.12: Application User Configuration File (Fragment).

the proposed toolset, the worst-case execution profile generation maintains the canonical
order of all of the relevant execution components.

� The list of protected callspossibly made by the threadoutside the worst-case execution
profile; this information is needed to correctly reflect the use relationship of threads to
servers irrespective of the retained execution profile and accordingly assign the appropriate
ceiling priority to servers; this information is also used to flag he occurrence of cases in
which the blocking incurred by a thread from access to shared servers occurringoutside
the worst-case execution profile isgreaterthan that computed from the retained profile (we
discussed this event in section 4.5.3).

On the whole, the worst-case execution profile of a thread is comprised of sequential blocks
of execution (each denoted by aWCET entry) delimited by explicit server calls and or start of
bounded loops. All the< Cp;Cmr;Cmw > values specified inWCET entries of a thread’s
execution profile are determined by summation of the execution cost of the assembly instruc-
tions enclosed within the boundaries of the relevant source block and exclusively belonging to
the thread’s own code. The execution cost of the individual assembly instructions is specified in
a so-calledTarget Characteristics Filefor the chosen target board configuration. One thread’s
WCCT is, thus, computed by summation of all theWCET components and server calls in-
cluded in the thread’s profileplus the cost of all the run-time system services required for man-
agement and administration support of the thread’s operation.

A fragment of the WCET profile generated for the Ada program extracted from the HRT-
HOOD system shown in figure 5.1 is reported in figure 5.13. The reader is invited to relate the
execution profile of the thread of control of Producer with the call profile of the object as outlined
in section 5.3 and the code profile of the procedure ThreadAction shown in figure 5.5. Similarly,
the execution profile of the thread of control of Consumer may be easily related to the main-loop
body of the thread shown in figure 5.7 in conjunction with the body of the procedure OPCSStart
shown in figure 5.9.

104 Development of On-Board Embedded Real-Time Systems: An Engineering Approach

Chapter 5 Illustrative Example

PROGRAM SYSTEM_MAIN
THREAD PRODUCER.THREAD

TYPE CYCLIC
CALL_PO BUFFER.OBCS WRITE
WCET 50570, 12614, 4211
CALL_PO CONSUMER.OBCS START
CALL_PO STORE.OBCS WRITE
CALL_PO PRINT_TOOL.OBCS START

END
THREAD CONSUMER.THREAD

TYPE SPORADIC
CALL_PO CONSUMER.OBCS WAIT_START
CALL_PO BUFFER.OBCS READ
CALL_PO STORE.OBCS WRITE
WCET 50490, 12606, 4210

END
PROTECTED CONSUMER.OBCS

TYPE SYNCHRO
ENTRY START WCET 35, 2, 1
BARRIER WCET 6, 1, 0
ENTRY WAIT_START WCET 38, 5, 5

END
PROTECTED BUFFER.OBCS

TYPE RESOURCE
ENTRY READ WCET 89, 9, 5
ENTRY WRITE WCET 90, 8, 6

END -- ...
END

Figure 5.13: Application Execution Skeleton File (Fragment).

5.7 Step B.4: Feedback to Design

Objective : the data extracted from the current design of the system are fed to the static analysis
tools included in the proposed toolset so as to obtain prediction, confirmation and verifi-
cation or otherwise of the correct timing behaviour of the system and to amend and / or
consolidate the design of the system accordingly.

The key aim of introducing stepsB.2-B.3(b)as easily-achieved enhancements to the devel-
opment process is to provide direct support theiterativeandincrementalnature of real-time em-
bedded software development discussed in section 4.3.2. This allows the designer to analyse the
timing behaviour of the systemat virtually all stages of development and as early as from the
establishment of the logical model, The attributes of the system which are relevant to this analy-
sis include the real-time requirements established on the system (which are collected in the User
Configuration File generated in stepB.3(a)) and the worst-case execution profile of all threads in
the system (which is recorded in the Execution Skeleton File generated in stepB.3(b)).

Our timing analysis tools performschedulability analysisandscheduling simulationon the

Development of On-Board Embedded Real-Time Systems: An Engineering Approach 105

Illustrative Example Chapter 5

model of the system represented by the data files extracted from the current HRT-HOOD design.
The two forms of analysis serve complementary purposes. The former performs the classical
worst-case response time analysis and determines whether the current system is capable of fulfill-
ing the assigned real-time requirements; the latter predicts the sequence of scheduling events that
the current structure of the application should encounter at run-time under a user-defined scenario
(defining, for example, the desired pattern of arrival of external interrupts). The schedulability
analyser performs acoarseanalysis of the system’s ability to meet its real-time commitments.
The scheduler simulator provides the user with afiner-grainedinsight into the way in which
the execution of the system (described in terms of the succeeding scheduling events) progresses
within selected time intervals. Both tools operate on the same input base. This includes:

� theUser Configuration FileandExecution Skeleton Filediscussed in section 5.6; and

� theRun-Time Characteristics File, which describes the worst-case overhead to be encoun-
tered at run-time from the execution of the (restricted set of) thread management services
utilised by the application. We have shown in section 4.5.2 the timing characterisation of
our Ada run-time implementation.

Table 5.1 shows a fragment of the report generated by the scheduling analysis tool. The report
includes the following information items (all time figures are expressed in microseconds):

� the summary of theuser-defined real-time attributesattached to the individual threads of
control (namely:criticality ; period or minimum interarrival time;deadline);

� the summary of thecomputed real-time propertiesdetermined by response time analysis
for the individual threads (namely:priority ; WCCT — computed converting the cycle
count information obtained for the thread from its worst-case execution profile to the board
frequency and memory read and write wait states set for the target board under consid-
eration in the board-specific part of the User Configuration File —;response timeand
schedulability status; blocking time andblocking cause);

� the indication of thesensitivity of the thread’s WCCT to load increase / decrease (expressed
in percent of the current WCCT value for that thread) which would make (or keep) the entire
thread set fully schedulable;

� the list of servers used by the application with indication of the respective ceiling priority
and the relevant list of client threads

� the indication of the current level of worst-case CPU utilisation.

Threads and servers are identified in the report by the numeric identifier assigned according to
the respective lexical order of declaration in the User Configuration File. For example, the thread
of Consumer (Consumer.Thread) is identified in table 5.1 as thread #1; the thread of Producer
(Producer.Thread) is identified as thread #2; the OBCS of Consumer (Consumer.OBCS)

106 Development of On-Board Embedded Real-Time Systems: An Engineering Approach

Chapter 5 Illustrative Example

is identified as protected object #5; and the Buffer resource server (Buffer.OBCS) is identi-
fied as protected object #4 (servers being numbered after their lexical order of declaration in the
Execution Skeleton File).

Amongst other things, table 5.1 shows that all threads in the example system are schedulable
and incur worst-case blocking caused by the run-time system (as an indication that the adverse
effect of blocking caused from use of IPCI protection of shared servers is presently negligible).

Furthermore, the margin analysis data shown in the rightmost column of table 5.1 inform
the user that, for example, the WCCT of Producer (thread #2) can be increased by up to 22.9%
without effecting the schedulability status of the entire system. It can easily be noticed, in fact,
that, upon such an increase, the response time ofProducer.Thread would still be within
about 100�s from the relevant deadline (8,892 vs 9,000) while the overall CPU load of the
system would rise up to 83.22%, from the level of 75.21% reported in figure 5.1, without this
causing any threads to miss their deadline.

Table 5.1: Scheduling Analysis Report (Fragment).

List of all schedulable and unschedulable threads:
__
Sch	Th#	Crit	Deadline	Prio	WCCT	Period	Response	Blocking	Margin	
						MIAT	Time	Time	Origin	Analysis
yes	3	HARD	8000	9	160	20000	428	130	RTS	1.00E+03
yes	2	HARD	9000	6	6999	20000	7394	130	RTS	2.29E+01
yes	1	HARD	17000	5	6875	20000	14341	130	RTS	3.87E+01
yes	5	HARD	18000	2	213	40000	14521	130	RTS	1.63E+03
yes	4	HARD	34000	1	142	40000	14735	130	RTS	3.63E+03
__

List of all protected objects:
__
|PO#|Pr|Protected Type |PO User List |
| ... |
| 4| 8|RESOURCE |T#2, T#1, |
| 5| 7|SYNCHRONISATION|T#2, T#1, |
__

Thread Set Utilisation Factor: 7.52133E-01

The sensitivity information returned by this type of analysis represents a powerful means for
the user to determine the feasibility and the limits of pre- or post-launch modifications to the
structure and operation of (components of) the system.

Analysis data to the same effect can also be obtained from the scheduling simulator tool.
Table 5.2 shows, in fact, a fragment from the output report of the tool which provide a statistical
overview of selected aspects of the execution of the system.

Among other things, table 5.2 provides the following elements of information:

� the overall execution time of every thread in the system over the user-defined simulated
execution time (about 6 seconds in this case);

Development of On-Board Embedded Real-Time Systems: An Engineering Approach 107

Illustrative Example Chapter 5

� the corresponding amount and relative proportion of run-time system overhead incurred
over the observed execution; and

� the minimum and maximum margin from all the deadlines achieved (or to any missed
deadline) during the observed execution.

Interestingly, data reported in table 5.2 can be used to confirm and qualify predictions obtained
from the worst-case analysis performed by the schedulability analysis tool. For example, we can
observe that the CPU load (inclusive of the relevant run-time system overhead component, which
amounts to some 3.5%) measured by the simulator over a realistic user scenario is fairly close
to the worst-case CPU load predicted by the analyser (70.94 vs 75.21). This indicates that the
operation of the example system is rather steady. In fact, this is not really surprising, for the
simple system in the example receives no external interrupts and all the sporadic activities in the
reference scenario are triggered at fixed intervals by fixed-period cyclic activities. In this case,
therefore, the load predicted by the simulator is bound to be inferior to the prediction provided by
the analyser.

Table 5.2: Fragment of Scheduler Simulator Output (Statistics).

__
THREAD	TIME	ACHIEVED DEADLINE				
	CPU	RTS	min	max		
_________________	__SUM___	____%___	_SUM__	___%___		
_________________	________	________	______	_______	__ _____	________
CONSUMER.THREAD	2019928	33.70%	42861	0.72%	2930	9718
PRODUCER.THREAD	2005555	33.46%	88392	1.47%	1732	1811
...						
__						

Simulation_Time : 5994128 (usec)
Processing_Time : 4252489
Overall CPU : 70.94 %
Overall RTS : 3.52 %

The situation may significantly differ in the more typical situation whereby the system in-
cludes sporadic activities triggered by external events. In this case, in fact, the analysis is per-
formed on the basis of the design assumptions which bound the interarrival time of the external
interrupts, whereas the simulation may be run upon statistical arrival patterns. Under these cir-
cumstances, the results from the simulation may reveal deficiencies in the design assumptions
used for the analysis. Such deficiencies may, for example, take the form of an activity missing a
deadline in the presence of an interrupt burst not contemplated by the analysis assumptions or a
significantly higher CPU load under the same condition. These events suggest the need to revisit
the requirements and assumptions of the system and possibly iterate the analysis cycle.

To reinforce the argument that the results from the simulation may be used to confirm and qual-
ify the predictions of the analysis, it can be noticed that table 5.2 also shows thatProducer.-
Thread consistently completes its activations within a margin of about 20% to its deadline.

108 Development of On-Board Embedded Real-Time Systems: An Engineering Approach

Chapter 5 Illustrative Example

This reads very much in line with the data from the margin analysis reported in table 5.1 which
indicated for that thread the potential for a 22.9% increase in its WCCT component.

In addition to providing the statistics information shown in table 5.2, the scheduler simulator
also predicts the sequence of scheduling events incurred by the application at run time under a
given execution scenario and constructs for the user a log of the events occurring within a selected
window of observation. The ability to construct the execution scenarii for which to obtain (and
visualise) the predicted scheduling of run-time events is an extra aid for the designer to build
confidence in the expected operation and performance of the system.

Table 5.3: Fragment of Scheduler Simulator Output (Schedule).

__
TIME	EVENT	THREAD	PO	PRIO
6865	ENTER_PROTECTED	PRODUCER.THREAD	CONSUMER.OBCS	6
6888	LEAVE_PROTECTED	PRODUCER.THREAD	CONSUMER.OBCS	7
6888	LOWER_BARRIER	PRODUCER.THREAD	CONSUMER.OBCS	7
6888	ENTER_PROTECTED	PRODUCER.THREAD	STORE.OBCS	6
6925	LEAVE_PROTECTED	PRODUCER.THREAD	STORE.OBCS	11
6925	ENTER_PROTECTED	PRODUCER.THREAD	PRINT_TOOL.OBCS	6
6948	LEAVE_PROTECTED	PRODUCER.THREAD	PRINT_TOOL.OBCS	10
6948	LOWER_BARRIER	PRODUCER.THREAD	PRINT_TOOL.OBCS	10
6948	HOLD_THREAD	PRODUCER.THREAD		6
7008	LEAVE_PROTECTED	PRINT_TOOL.THREAD	PRINT_TOOL.OBCS	10
7011	ENTER_PROTECTED	PRINT_TOOL.THREAD	STORE.OBCS	9
7047	LEAVE_PROTECTED	PRINT_TOOL.THREAD	STORE.OBCS	11
7051	ENTER_PROTECTED	PRINT_TOOL.THREAD	STORE.OBCS	9
7087	LEAVE_PROTECTED	PRINT_TOOL.THREAD	STORE.OBCS	11
7093	ENTER_PROTECTED	PRINT_TOOL.THREAD	PRINT_TOOL.OBCS	9
7109	SPORADIC_WAIT	PRINT_TOOL.THREAD		10
7109	SELECT_AND_CONTEXT_S	PRODUCER.THREAD		6
7148	RESUME_THREAD	PRODUCER.THREAD		6
7187	CYCLIC_SUSPEND	PRODUCER.THREAD		6
7187	SELECT_AND_CONTEXT_S	CONSUMER.THREAD		5
7226	ENTER_PROTECTED	CONSUMER.THREAD	CONSUMER.OBCS	5
7251	LEAVE_PROTECTED	CONSUMER.THREAD	CONSUMER.OBCS	7
7251	ENTER_PROTECTED	CONSUMER.THREAD	BUFFER.OBCS	5
7281	LEAVE_PROTECTED	CONSUMER.THREAD	BUFFER.OBCS	8
7281	ENTER_PROTECTED	CONSUMER.THREAD	STORE.OBCS	5
7318	LEAVE_PROTECTED	CONSUMER.THREAD	STORE.OBCS	11
--

Table 5.3 shows excerpts from the log of events generated by the scheduler simulator for the
example system which are predicted to occur within the observation window between 6.8 and 7.4
millisecond.

The textual version of the simulation log reports on: thetime of occurrence(TIME) of the
logged event (expressed in�s); thetype of event(EVENT); the running thread (THREAD) at
the time of the event; theserver involved in the operation(PO) where applicable; theactive
priority (PRIO) of the running thread at the time of the event, which therefore reflects the effect

Development of On-Board Embedded Real-Time Systems: An Engineering Approach 109

Illustrative Example Chapter 5

of the priority ceiling emulation protocol on the active priority of threads entering and leaving
servers.

The same log is graphically represented in figure 5.14, where solid blocks indicate the running
status of a thread and grey areas are used to denote the occurrence of run-time system services in
support of the application (e.g.: to enter / leave a server, to release a thread, etc.)

6.88ms

6.88ms

6.92ms

6.92ms

6.96ms

6.96ms

7ms

7ms

7.04ms

7.04ms

7.08ms

7.08ms

7.12ms

7.12ms

7.16ms

7.16ms

7.2ms

7.2ms

5 3 6

5 3 6

3 3 6

6 3 3

CONSUMER.THREAD

PRODUCER.THREAD

PRINT_TOOL.THREAD

Figure 5.14: Scheduler Simulator Output (Gantt).

5.8 Summary

This chapter has illustrated the distinguishing features, performance and operation of our engi-
neering approach to the development of new-generation real-time on-board software systems.

The structure of our presentation in this chapter has reflected the progression of the develop-
ment process across the four stagesB.1-B.4 described in section 4.3.1 in the construction of a
simple example system. The demonstrative development has been assisted by use of the enabling
technology developed by European Space Agency contract 9848/92/NL/FM under the guidance
of the author of this technical report. ([Saab Ericsson Space, 1997] provides a comprehensive ac-
count of the result of that study contract.) The block diagram of the toolset developed as part of
that contract is depicted in figure 4.6. The very existence of this toolset contributes to demonstrate
the feasibility and practicality of our concept. Moreover, the direct utilisation of the toolset in the
construction of the example system has allowed us to illustrate:

� the use of the HRT-HOOD design method [Burns and Wellings, 1995b] as the centre of
our proposed development process and the support the method provides for the structured
definition of the real-time commitments of the system as well as for the enforcement of the
constructive prescriptions associated with the HRT-HOOD Computational Model;

� the support for the automated generation of a concurrent Ada program from an HRT-HOOD
design in a fashion which preserves the desired real-time attributes of the system;

� the use of response time analysis as the source of early and continuous feedback to the
consolidation of the design and implementation of the system.

110 Development of On-Board Embedded Real-Time Systems: An Engineering Approach

Chapter 5 Illustrative Example

By way of this presentation, we have demonstrated that our development process achieves the
objective of this technical report as set out in section 1.4 and fulfils the requirementsC.1-C.4
discussed in section 4.2.3. In particular, we have shown that our engineering approach:

1. Supports the construction of real-time systems in accordance with the prescriptions of a
well-defined Computational Model and ensures the compliance of the corresponding im-
plementation, as demanded by requirementC.1; (the relevant activities were illustrated in
section 5.3 and 5.4).

2. Provides for an iterative and incremental process of verification of the system in the time-
domain, as demanded by requirementC.2; (the relevant activities were illustrated in section
5.5, 5.6 and 5.7).

3. Supports the analysis and interpretation of the effects of modifications, adaptations and
enhancements to the real-time behaviour of the system, as demanded by requirementC.3;
(the relevant activities were illustrated in section 5.7).

4. Is implemented in an evolutionary fashion by means of simple enhancements to the HOOD
and Ada 83 technology presently in use at European space industry, as demanded by re-
quirementC.4.

Development of On-Board Embedded Real-Time Systems: An Engineering Approach 111

Illustrative Example Chapter 5

112 Development of On-Board Embedded Real-Time Systems: An Engineering Approach

