* Stood

Stood 5.3

AADL
User Manual

STOOD AADL User Manual © Ellidiss - October 2011 - page 1

* Stood

Pierre Dissaux
Ellidiss Technologies

page 2 - STOOD AADL User Manual © Ellidiss - October 2011

* Stood

Contents

IINtEOAUCHION . ettt 5
2General INfOrMAtION. c..ueeuiiitiieieei ittt ettt ee e 6
2.1Installation Of StOOd....cueiiiiiiiiiiiiiiiii it 6
2.2Start and QUIT & SESSTOM..cuuiiuiiesiiiiti ittt iite ettt ettt ettt e 7
2.30VerVIew Of StOOA. ..uuiiiuiiiiiiiiiiieeii ittt 8
2.45t00d 1ife CYCIE SClECEO . uuiiiuueiiiiiiiiiiii i 9
2.5AADL graphical @ditOr. . oouueeieueieiiiiiiiiii it 9
2.5. 1. AADL tOOl DAL . cuueiiieeiieieiieeeeeeeeeeeeeee e 10
2.5.2.AADL package or component contextual MENU........oeieeeeeviiiiiiiiiiiiiiiiiiiiiiiieieeeeeiieeeeeeieeeees 10
2.5.3.AADL sub package or subcomponent contextual MeNU........ccooveeeeviieereiiiieiiiiiiiiiiieeeeieieeeeenn 11
2.5.4.AADL feature conteXtual MENU......ceueeeeiiiiiiiiiiiiiiiiiieiii e 11
2.6 AADL teXtUaAl @AItOT. ecuuiieuiiisiiiiiiiti et 12
3Edition of AADL MOAEIS....ccuiiiiiiitiiiiiiiiiiii it 15
3.100ad exiSting MOACIS.....ciouuiiiieiiiiii it 15
3.1.1.OPEN A PIOJEC . eiiutiiiiutie ettt 15
3.1.2.1.0ad 2 design MOAEl....ccuviiiueieiiiiiiiiieeeee e 15
3.2Create NeW MOACIS. ..oouueeiieiieieeee et 16
3.2.1.Create @ NEW PIrOJECT. .cuiiitiiittiiti ittt ettt et ee et e et iteeieeeenes 16
3.2.2.Add or remove design models iN @ ProOJeCt.....c.eceuiiiuiiiiiiiiiiiiiiiiiiiiieiieieeeieeieeeeeeee 17
3.2.3.Create a new design MOlccueeeuiiiiiiiiiitiiiiiiiiiii e 17
3.2.4.Create a new design model from an existing AADL specification.........cceeceisciniininiiiienininnne. 17
3.2.5.Create a new design from existing Ada or C source fileS.........oeeevvvieieiiiiiiiiiiiiiiiiiiiiiieeeen.. 18
3.3AADL PACKAGES cuveiiiiiiiiiiii it eeeeeeeeennn 18
34AAADL COMPONECINES. .ttttieiieiieiiieiieeeee ettt ettt ettt ettt ettt ettt e et 20
341 AADL PrOCESS@S. uuuiieiieiuieiiiiiiiiiie ettt 22
342 AADL TRICAAS. .euvviiuiiiiiiiiiiiiiiiiei et 24
3.4.3. AADL Thread @rOUPS....eccuuiiiiiiiiiitiiiie ettt ettt eeee e 25
344 AADL DAAu.c.uiiiiiiiiiiiiiiii ettt eeeeeens 26
3.4.5.AADL Subprogram COMPONENES.cuueieuiiiriiieiiiiiiiiietieeeeeeeeee e et e eeeeeeeeeeeeeeieeeeeeann 27
3.5AADL fCAtUICS . .oeeuuiiiiieieiiie it 28
3.5 L AADL POITS. ettt 28
3.5.2. AADL FRatUI® GIOUDS. .uvveiiiiiiiuiiiiiiiieeieee ettt ettt ettt ettt ettt eteeee et eeeiieeaaeeaees 29
3.5.3.AADL Subprogram features............ocoueiiiiiiiiiiiiiiiiiiiiiiiiieieieee e 29
3.0AADL CONNECHIONS. .eeutiitiiiiiiitii ittt ettt ettt ettt ettt et eee et e e e eie e 30
3. TAADL PrOPEITICS. cuvieuiiitiiitiiiteie ittt ettt ettt ettt ee e 30
3.7.1.8t00d PIOPEILY SC...vviiiiusiiiitiiiiiiei ettt 31

3 BAADL MOAES. .ttt eeeeeen 32
B.OAADL ATOWS.teiiiiiiiiieieeee ettt 33
3.10BehaAVIOr ANNCK . .eiiiutiiiitiieiie ittt ettt 36
4Processing 0f AADL MOACIS. ..eiouuiiiieiiiiiiiiieeieeeieeeeeeeeeeeeeeeeeee et 38
4.1Generate design verification IEPOItS.....ceeuueiieeeiiiiieiiiiii it eeeiieees 38

STOOD AADL User Manual © Ellidiss - October 2011 - page 3

4.2Generate textual AADL COA@...uuuiiiuiiiiiiiiiiiiiiiiiiiiiiie i, 39
4.3Generate Ada SOUICE COAC...uuiiuiiiiiiiniiiiiiiiiiii ittt 41
4.4Generate C SOUICE COUC. uuuiiiuuiiiitiiiiiii ittt 42
4.5Generate design dOCUMENTALION. ..ee.uueeiisiiiiiiieiiiie ettt eeeeeeans 42

page 4 - STOOD AADL User Manual © Ellidiss - October 2011

* Stood

1 Introduction

The Architecture Analysis and Design Language (AADL) standard document was
prepared by the SAE AS-2C Architecture Description Language Subcommittee,
Embedded Computing Systems Committee, Aerospace Avionics Systems Division.
Release 1.0 of the AADL standard (SAE AS5506) has been issued in November 2004,
and Release 2.0 (SAE AS5506A) in January 2009. A set of annexes (SAE AS5506/2)
has been published in January 2011 that includes in particular the Behavior Annex.

AADL is a language used to describe the software and hardware components of a system
and the interfaces between those components. The language can describe functional
interfaces to components, such as data inputs and outputs, and non-functional aspects of
components, such as timing. The language can describe how components are combined,
such as how data inputs and outputs are connected or how software components are
allocated to hardware components. More detailed information about this language may
be found at: www.aadl.info.

Stood is a software design tool that is used for the same families of mission critical
systems as those for which AADL has been developed. Like AADL, Stood promotes
Model Driven Engineering (MDE) together with a Component Based modelling
approach. This manual describes the features that have been added to Stood, in order to
let software designers benefit from AADL. Some of the most important advantages of
Stood are that it offers a very good support of the modelling process, and brings a large
set of development features that have already been in use on many large scale industrial
projects. With the AADL customization of Stood it is possible to:

* Import legacy specifications written in textual AADL (. aad1 files).

» Edit graphically new or imported AADL models and generate corresponding textual
AADL specification.

e Transform software AADL architecture (AADL Process) into HOOD designs to
perform detailed software design activities.

e Produce design documentation, Ada and C/C++ source code from design models.

This manual is not a complete User Manual for Stood. It only provides a brief
description of the main features that can be useful for AADL projects developments.

STOOD AADL User Manual © Ellidiss - October 2011 - page 5

* Stood

2 General information

2.1 Installation of Stood

Stood can be easily and quickly installed on a Windows or a Unix workstation. On
Windows, follow the instructions given by the guided installation program. On Unix,
uncompress and expand the installation archive in an appropriate directory.

On Windows, default installation procedure will associate the following file extensions in
the registry:

.syc Stood project file

.sto Stood design model file

.sts Stood command file

In addition to this installation, it is recommended, but not mandatory, to also create one
or several working directories, properly separated from the installation directory. These
working directories will be used to store user’s models and set up user’s specific
initialization properties for Stood.

A Stood working directory should ideally contain:

* A link (Windows shortcut or Unix shell script) to the Stood executable file.
Windows shortcuts must have their start up property set to the current working
directory, so that new models will be created there.

* a stood.ini (on Windows) or .stoodrc (On Unix) initialization file, containing
only the user’s properties that differ from the default initialization file located in the
installation directory.

* aset of project files and design model directories.

A typical empty Stood working directory on Windows looks like as shown in the
following pictures.

page 6 - STOOD AADL User Manual © Ellidiss - October 2011

* Stood

) C:\Thi\Stood\workdir =Jo&d
m
J

Fichier Edition Affichage Favoris Outls 2

QPrécédente - %+ /-*' Rechercher

=

Adresse |2 C:\Tni\Stood\workdir | £ ok
=

Propriétés de stood.exe

Général | Raccourci | Compatibilité

Jﬂi'l stood.exe

Type de cible Application

Emplacement binw32

Cible : CATni\Stood\bin w32\stood exe

Démarrerdans: | CATni\Stood\warkdir

Touche de Aucun
FACCOUIE

Exécuter: Fenétre normale A4

Commentaire

Rechercher la cible] [Changerd'\céne][Avanceé

0K 1 [Annuler

2.2 Start and quit a session

It is recommended to launch Stood from one of the pre-set working directories (refer to
paragraph 2.1), by double-clicking on the Stood executable shortcut, or on a local project
file (. syc). It is of course also possible to launch the tool from the Windows start up
menu, or even directly from the installation directory. However, in these last cases, if the
default initialization file is not customized, new projects and design models will be
created within the installation directory.

Stood is a multi user environment. It is thus possible to launch several concurrent
sessions of the tool on a same project. Stood automatically manages the protection locks
for the shared parts of the project. To close a session, simply use File/Quit in the main
menu.

STOOD AADL User Manual © Ellidiss - October 2011 - page 7

* Stood

2.3 Overview of Stood

After the initialization process has completed, Stood main window is displayed. This
paragraph provides information about the organization and the main features of this
window. This window is composed of the following parts:

* awindow title showing a customizable message and the name of the current project.
* amain menu bar grouping all the main non graphical possible user actions.

* aproject area showing the structure of the current project.

* acomponent area showing details for the selected component in the Project area.

* aproperty selector acting as a filter for components details.

BElx

£1) Stood for AADL (beta) - mine_hunting
Fle Edt Design Component Feature Tools Help

window title

(design) mine_hunter mim.l im@ﬁ]ffﬂﬂhiﬂ Dgsign]Delai\ed Design I Chackers] Code] Documantat\on] Deployment I
— (design) GPS N P .
- (design) mh_types ~ UML N o LS a

— (design) mine_field & AADL
- & (design) mine_hunter
mine_hunter

sonar
op_center
nav_center 0
Ioca\izalion\{ pro_]ect arg
mine_field
on_shore_center
GPS
mh_types
sonar_types
— (design) on_shore_center
— (design)rta
L idasinnl sanar himas

TS
oo

life cycle |~
} >r._'-r' 5 . selector

151 ¢ 1 X

o

X% X & X

ods Iada] c} cpp] aadl L@st] checks]

= COMPONENT

& DESCRIPTION

= PROBLEM =i
o Statement of the Problem rk)perty | X)
e Sketch ofthe Problem K . B2
mReferenced Documents VIVLTUT

S
=)

b
@
El
[0
=
=)
o,
=
glm
e
5]
o
I
3

- PROVIDED INTE ‘?hf mine hunt

PROPERTIES Identified targe
PORT GROUPS

PORTS and SUBPROG
— REQUIRED INTERFACE
— DATAFLOWS

B IMPLEMEMTATION

- GENERATION

s component

text input
arga

arca

page 8 - STOOD AADL User Manual © Ellidiss - October 2011

* Stood

* amain editing area where the various graphical and textual editors are plugged.

* a text input area, that is displayed when a graphical editor is shown in the Main
editing area.

* acontextual and customizable tool bar.

* a project life cycle selector, to be used as a switch for the main activities of the
development process.

The project area, component area, text input area and main editing area also offer a
contextual menu, that usually simply recalls items of the main menu.

2.4 Stood life cycle selector
Stood covers all the life cycle steps from requirements capture to target source code
generation. Stood features that are available to support these various activities can be

activated thanks to the life cycle selector.

Reguirements] Graphic Design] Dretailed Diesign] Checkers Code] Dncumentation] Dreploym

Opens the
requirements
traceability
editor

Opens the
Opens Opens Opens the };gdlsn\g
the e Opens AADL -
AADL AADL Opens the document
graphical textual the AADL generator
editor editor AADL code
checker generator

2.5 AADL graphical editor

The AADL graphical editor of Steod is mainly composed of a button tool bar and a
contextual menu in the graphical edition area. The contextual menu varies according to
the current selection, depending on it is:

* an AADL component or package
* an AADL subcomponent or sub package
* an AADL feature

STOOD AADL User Manual © Ellidiss - October 2011 - page 9

* Stood

2.5.1. AADL tool bar

¢ UML
® AADL

New port

New feature group

New subprogram

New connection

(" Hood ﬁ/f”_—l OES) 5

Print diagram on default printer

New sub package or subcomponent

L Help

Zoom out

Zoom in

Open state diagram

2.5.2. AADL package or component contextual menu

Exit
Mew component

Rename...

Open state diagram

Go up in the hierarchy

New sub package or subcomponent

Rename component

Change component category

Delete/undelete component

Open state diagram

page 10 - STOOD AADL User Manual © Ellidiss - October 2011

2.5.3. AADL sub package or subcomponent contextual menu

Enter
Rename...
Change into

Bring to front
Send to back

Delete

Open state diagram

Export

2.5.4. AADL feature contextual menu

Go down in the hierarchy

~— 1 | Rename component

Change component category

\| Delete/undelete component

B —

Rename feature

* Stood

Connect to subcomponent feature

STOOD AADL User Manual © Ellidiss - October 2011 - page 11

2.6 AADL textual editor

In
Cut
In Qut

Data port
Event port
Event Data port

Subprogram

* Stood

The AADL textual editor of Stood is a customized configuration of the generic
structured design editor, called ODS editor in Stood terminology. The ODS is used to
store in a well structured way, all the features and properties for each AADL component
or package. The ODS can also hold additional design information like sketches and
textual comments. The ODS is at the same time a guide for entering details into an
AADL design model, and a frame for producing the AADL design documentation.

Next picture shows an example of the ODS of an AADL component. This list is
displayed within the component area and is automatically updated when features or
properties are created or deleted, and according to the category of the current component.

page 12 - STOOD AADL User Manual © Ellidiss - October 2011

de ==t 1 1 1
005 [ada [[cpp | aadttestoheche

* Stood

]

= COMPOMENT

£

]_

Y DESCRPTION T

PROBLEM
—em Statement of the Problem ——w |
—mma Sketch ofthe Problem
e Referenced Documents\

SOLUTION
—enGeneral Strategy
—maSketch ofthe Solution

—ezldentification of Subcomponents
—ez Justification of Design Decigl

PROVIDED INTERFACE
IE PROPERTIES /
PORT GROUPS
PORTS and SUBPROGRAMS —
If—]—l::::linput_global_pos
export or subpg description
mmport or subpg declaration
mmworst case execution time
F-cmstart_mission
FH-cmoutput_mission_report
FH-moutput_pulse
[
[

S8

J—

—

H-cinput_reflection
H-cminput_reverberation
F-cminput_noise
REQUIRED INTERFACE
DATAFLOWS
IMPLEMENTATIOMN
SUBCOMPOMNENTS
FORT GROUPS
= PORTS
input_global_pos
connectedto

=g

I

JLYAANN]

The ODS tab is selected

The ODS describes only one component or package

Informal textual description

Informal graphical description

List of AADL properties

List of AADL port groups

List of AADL ports and subprograms

Informal description of this port

Formal declaration of this port

Compute Execution Time property

List of subcomponents

start_mission

output_mission_report

output_pulse

input_reflection

input_reverberation

input_naise

E- BEHAVIOR

eabehavior description /

Eastate transition diagram
MODES
TRANSITIONS

Connections down the hierarchy

Informal description for the operational modes

State diagram for the operational modes

GEMERATION

AADL generation options

STOOD AADL User Manual © Ellidiss - October 2011 - page 13

* Stood

The colorized gauge at the left side of an ODS section shows the completeness of the
design model. A red gauge means that the corresponding section is still empty; a green
gauge means that some information is available, and a yellow gauge for a non terminal
section states that there are still empty subsections.

The ODS text offers the following contextual menu. Items of this menu may be greyed if
they are not appropriate for the current selection in the list.

/ Contextual help for selected ODS section

P / Storage information about selected ODS section
Location

Defintion _———] | Meta information about selected ODS section

Print (for diagrams only)

Create a new feature or property

Rename... \
Delete

Rename feature or property

Delete/undelete feature or property

Several filters may be defined on the global ODS descriptor. Next picture shows the
filtered view that is shown after textual AADL code has been generated. It is also
possible to access this view at any time by choosing the aadl tab in the property selector.

ods | ada] c] cpp aaﬂﬁtest ferectrt The AADL tab is selected
COMPOMNENT
PROVIDED INTERFACE
IMPLEMEMNTATION

GENERATION
Empragmas Textual AADL code generation options
exncode file header selecfed

AADL CODE | _— | AADL generation log file

mmextraction messages —
EIreverse messages
e aadl AADL generated file
makefile

mmprolog description

page 14 - STOOD AADL User Manual © Ellidiss - October 2011

* Stood

3 Edition of AADL models

3.1 Load existing models

3.1.1. Open a project

Design models are related to a project. A given design model may belong to several
projects, but it is always necessary to select and open a project before loading a design
model. In Stood terminology, the current project is called the system configuration, often
named system to make it short. Although there are many similarities, a Stood system
doesn’t always match an AADL system.

Use File/Open project... in the main menu to open an existing project. This opens a
standard file navigator asking a Stood system configuration file to be selected. These
files contain a list of references to design models, and are identified by a .syc file
extension.

When a project has been properly loaded, its name is displayed in the window title and
the list of the design models that are visible within this project is shown in the top left
area of Stood. This area is called the project area. 1f the project is empty or if the design
model references cannot be resolved, this area may be empty.

3.1.2. Load a design model

When a project is open, the design models it contains are not automatically loaded. When
a design model is not loaded, its name is shown in black in the project view.

Perform a single click on the name of a design model to load it in a read only mode. This
changes the colour of the name in the project view into blue, and initializes the other
areas of the window with the contents of the loaded design model. However, no change
will be permitted, and most menus and buttons will be inactive.

Perform a double click on the name of a design model, or use the Lock contextual menu
or Design/Lock design in the main menu to load it in a read write mode. This has the
same effect as a single click but a green padlock will be displayed at the left of the name
in the project area, and changes will be allowed.

STOOD AADL User Manual © Ellidiss - October 2011 - page 15

* Stood

The green padlock means that the design model is locked for all the other concurrent
sessions, thus providing a simple and efficient protection in a multi user environment. It
may happen that a red padlock is displayed at the left of the name of a design model.
This means that this model is currently in use by another user, and that it will not be
possible to lock it until it is released. It may also happen that a yellow padlock is shown.
This means that the design model is partially locked. In that case, a green or red padlock
should be visible at a lower level in the components hierarchy.

£i) stood for AADL (beta) - mine_hunting

File Edit Design Component Feature Tools
Not loaded

(design) mine_field

{design) GPS /—’ Loaded read only (unlocked)

(design} mh_types

- @ (design) mine_field
ming_field
data_types

B & (design) mine_hunter

- @ (design) on_share_center

— (design) rta \
— (design) sonar_types [T | Loaded read only (locked by someone else)
— (generic) antenna

Loaded read write (locked)

X XX

Loaded read only (partially locked)

3.2 Create new models

Any design model must be edited within a project. It is possible to create a new design
model inside an existing project (refer to paragraph 3.1.1), otherwise it is necessary to
firstly create a new project.

3.2.1. Create a new project

Use File/New project... in the main menu to create a new project. This opens a dialog
box asking the name of the project to be entered. The result of this action will be to create
a new Stood system configuration file with the given name and a . syc extension, in the
default working directory.

page 16 - STOOD AADL User Manual © Ellidiss - October 2011

* Stood

This newly created project is empty by defaults. This means that the project area will be
empty. It is necessary to either add existing design models to the project, or create new
design models within this project.

3.2.2. Add or remove design models in a project

Use File/Add to project... (resp. Remove from project) in the main menu or the Add...
(resp. Remove) contextual menu of the project view to let an existing design model be
visible (resp. invisible) within the current project.

A newly added design model will be added to the list in the project area, but will not be
automatically loaded. Please refer to paragraph 3.1.2 to know how to do to load a design
model. A newly removed design model will be hidden in the project area, but will not be
deleted.

3.2.3. Create a new design model

Use Design/New design/aadl... in the main menu or the New/design... contextual menu
of the project area to create a new design model. This opens a dialog box asking the
name of the design model to be entered. The result of this action will be to create a new
Stood design subdirectory with the given name, in the same directory as the project. A
directory can be recognized as a Stood design if it contains a file named Stood. sto.

The newly created design model will be added to the list in the project area, but will not
be automatically loaded. Please refer to paragraph 3.1.2 to know how to do to load a
design model.

3.2.4. Create a new design model from an existing AADL specification

It is possible to import an existing AADL specification into Stood. This AADL
specification is transformed into a Stood design model thanks to an embedded textual
AADL 1.0 syntactic analyser and a set of semantic transformation rules.

Use Design/New design from/aadl... in the main menu or New from/aadl... contextual
menu of the project area to create a new design model from an existing AADL
specification. This opens a standard file navigator asking a textual AADL file to be
selected. Files are recognized to be textual AADL files if they have a .aadl extension.

STOOD AADL User Manual © Ellidiss - October 2011 - page 17

* Stood

The result of this action will be to analyse all the textual AADL files located within the
same directory as the selected file, and to create a design model having the same name as
the selected file.

The newly created design model will be added to the list in the project area, but will not
be automatically loaded. Please refer to paragraph 3.1.2 to know how to do to load a
design model.

Note that Stood makes the assumption that the selected file has the same name as the
root of the AADL component or package hierarchy to be imported. When the textual
AADL source contains several AADL hierarchies, it is necessary to create several design
models, after having either selected the appropriate file in the source directory or
properly renamed the unique input file.

3.2.5. Create a new design from existing Ada or C source files

It is possible to reverse engineer existing Ada or C source code into Stood. This legacy
code is transformed into a Stood design model thanks to an embedded Ada and C
syntactic analyser and a set of semantic transformation rules.

Use Design/New design from/ada... (resp. c...) in the main menu or New from/ada...
(resp. c...) contextual menu of the project area to create a new design model from legacy
Ada (resp. C) code. This opens a standard file navigator asking an Ada (resp. C) file to
be selected. Files are recognized to be Ada (resp. C) files if they have a .ads or .adb
(resp. .h or .c¢) extension. The result of this action will be to analyse all the source files
located within the same directory as the selected file, and to create a design model having
the same name as the selected file.

Note that Stood makes the assumption that the selected file has the same name as the
main source code file to be imported. The newly created design model will be added to
the list in the project area, but will not be automatically loaded. Please refer to paragraph
3.1.2 to know how to do to load a design model.

3.3 AADL packages

To create a new AADL package, use Design/New design/aadl package in the main menu.
A package represents a library of reusable components. Unlike within a process, these

page 18 - STOOD AADL User Manual © Ellidiss - October 2011

* Stood

components are not instantiated. If no component has been defined inside a package, then
a dummy data component type will be generated to comply with the AADL syntax:

PACKAGE empty package
PUBLIC

DATA void
END void;

END empty package;

Although the AADL specifies a flat representation of package hierarchies, a sub package
will be graphically represented as being contained by its parent package:

Exit

New sub component *
2 Thread Group
Ename... Thread
Change into 4

Data
Undelete

Package

PACKAGE new_package
PUBLIC

DATA void
END void;

END new_ package;

PACKAGE new package: :new_subpackage
PUBLIC

DATA void

STOOD AADL User Manual © Ellidiss - October 2011 - page 19

* Stood

END void;

END new package: :new_ subpackage;

3.4 AADL components

In Stood, AADL components represent in effect subcomponents that are instances of
component types or implementations.

During AADL code generation, component type name will be set by default to
subcomponent name, and component implementation name will be set to others. It is
of course possible to change these default names so that several subcomponents can share
a same type or implementation. The renames dialog box can be used for this purpose.

[@ Rename Iﬁ

Mame |aBamcGPS
Type |GF‘S
Implementation |Bamc

[o |

Component extension is not shown during the design process in most cases. The AADL
code generation pragma extend must be used to specify that the specified component
holds a type or implementation extension. Refer to chapter 4.2 to get more details about
theses AADL code generation pragmas.

Note that it is possible to describe graphically data component extensions when they are
declared in a package and with the help of the UML editor (inheritance link)

example:

page 20 - STOOD AADL User Manual © Ellidiss - October 2011

* Stood

In the design model below, following AADL generation pragmas have been set:

Subcomponent type_name implementation_nam | extends
e
GPS - - -
GPS Basic GPS Basic -
GPS Handheld GPS Handheld GPS.Basic
GPS_Secure - - GPS
GPS Secure Handheld | GPS Secure Handheld GPS.Handheld

(design) CompaonentNames

- @ (design) CompanentNames
B ComponentMNames
GPS
GP5_Basic
GPS_Handheld
GPS_Secure
GPS_Secure_Handheld

>

" Hood
i LML
® AADL

Fequirements Graphic Design lDetaiIed Design] Checkers] Code] Documentation] Deplo_l,lmenll

1% % %% 4 ea @

X1 ¢ ¢ 3¢ ¢ 1

<

ods Iada] c] cpp] aadl] test] checks]

B COMPONENT
DESCRIPTION
PROVIDED INTERFACE
REQUIRED INTERFACE
DATAFLOWS
IMPLEMENTATION
= GENERATION
mpragmas

]

The corresponding textual AADL code that is generated is:

THREAD GPS
END GPS;

THREAD IMPLEMENTATION GPS.Basic

END GPS.Basic;

STOOD AADL User Manual © Ellidiss - October 2011 - page 21

* Stood

THREAD IMPLEMENTATION GPS.Handheld EXTENDS GPS.Basic
END GPS.Handheld;

THREAD GPS_Secure EXTENDS GPS
END GPS_Secure;

THREAD IMPLEMENTATION GPS Secure.Handheld EXTENDS GPS.Handheld
END GPS_Secure.Handheld;

3.4.1. AADL Processes

To create an AADL process instance, use Design/New design/aadl process in the main
menu.

Enter
Rename...

Change into 4 Process

L Delete

The AADL code that is generated for an empty process is as follow:

SYSTEM tests
END tests;

SYSTEM IMPLEMENTATION tests.others
SUBCOMPONENTS

new _process : PROCESS new process;
END tests.others;

page 22 - STOOD AADL User Manual © Ellidiss - October 2011

* Stood

PROCESS new process
PROPERTIES

Stood::Box Position => " (X1 => 222,Y1 => 101,X2 => 636,Y2 => 501)";
END new process;

Note that an AADL process is necessarily represented by a Stood design that is a root of
a hierarchy of software components that will be transformed into an executable
application or a linkable library, at the end of the software development process. If the
project contains several processes, it is thus mandatory to create several design models.

It is possible to represent the interface of other remote processes or used packages in the
enclosing system. These components or packages act as proxy of the actual processes or
packages that must correspond to other design models of the same project.

To create these proxies (also called environment components in Stood terminology),
create sibling components to the main process, and give them the name of an existing
design model of the project.

example:

The mine hunting project is composed of 8 design models. In the current session,
process mine hunter is being designed, and is locked. A proxy of processes GPS,
mine field and on shore center is used to show the interaction of the 4
processes within the system associated to the project. Additionally, 2 packages
mh_ types and sonar types are made visible, so that the various data types they are
exporting will be recognized as port or subprogram parameter classifiers. Note that 2
other design models are not shown graphically, because their role is different: antenna
is a generic component that is intanciated at a lower level in the design hierarchy,
whereas rta represents an library package used during Ada code generation.

STOOD AADL User Manual © Ellidiss - October 2011 - page 23

* Stood

C1) Stood for AADL (beta) - mine_hunting

MEIX|

Hie Edit Design Component Feature

(design) mine_hunter

(design} GP3

(desig h Wpes

|dea\gw field TTee-

- & (design mpY -
(design) on_shor ceﬁ&

(generic)

(design) rta “ -.
(design} s‘:inar tvp.ea '~.~

N
. Y .

anna o, . -~

ods]ada] o] cpp] aad| 1 test] checks I s

= PROJECT .
m Project Description
m Project Sketch
List of Requirements
Design Tree
Inheritance Tree

Proxy of a used package

Tools

Requirements Graphic Design lDetaiIEd Design] Eheckers] Enda] Documentation] Deplnyment]

Help

- B
(‘E:ﬂT_d &5 %% ea . .
Process being designed
& AADL
par_Tvpes
o
pilvpes
lq
Proxy of a remote process
¢ 2
| Project Description
simulates an underwater mine hunting systam. ~
ip (the mine_hunter)
- datai ted (the on_shore_center)
-3 VI tal positioning systam (the GPS) 'v

3.4.2. AADL Threads

To create a new thread in a process or a thread group, use the new AADL component
button in the fool bar, or the New sub component contextual menu. To create a new
thread in a package, only use the New sub component contextual menu, as the button
always creates a data component.

page 24 - STOOD AADL User Manual © Ellidiss - October 2011

* Stood

MR _process

Exit

Mew sub component *
Thread Group

Rename... Thread
Change into 4

Data
Undelete

Open state diagram

Threads are created with aperiodic dispatch protocol. It is however possible to specify a
periodic or sporadic dispatch protocol with the Change into ... contextual menu.

PEW_process

[ETTEEE L Enter
Rename...
R Change into 3

Delete

Open state diagram Periodic Thread
Sporadic Thread
Subprogram
Data

3.4.3. AADL Thread groups

To create a new thread group in a process, a thread group or a package, use the New sub
component contextual menu.

Stood also allows temporarily defining a thread subcomponent within a thread
component. The container thread will then be automatically changed into a thread group.

STOOD AADL User Manual © Ellidiss - October 2011 - page 25

* Stood

3.4.4. AADL Data

Data components created within a package are mapped to a class in the Stood model. It
will be sometimes more appropriate to use the UML editor to better show class structure
(attributes and operations) and their relationships (inheritance, aggregation). Next
pictures show both views for the same model:

B+ & (design) new_package

new_package
new_data
superclass
aggregate

— (design} new_process

S E=JPN
e

(=B
=4
=4

(" Hood

" UML ﬂ*}*.}*o*l—)%@\@\@

& AADY

ds lada] c] cpp] aadl]test]checks]

(=]

B COMPOMENT
DESCRIPTION
PROVIDED INTERFACE
REQUIRED INTERFACE
DATAFLOWS
- IMPLEMEMNTATION
H-emnew_data
L e=mSUBCOMPONENTS
PROPERTIES
BEHAVIOR
FUNCTIOMAL BEHAVIOR

=+ & (design) new_package

new_package
new_data
superclass
aggregate

— (design) new_process

Il 5 |
=

o

ds]ada] c] cpp] aadl]tesl]checks]

P _2aTa

SperaTion

E- COMPOMEMNT
DESCRIPTION
PROVIDED INTERFACE
REQUIRED INTERFACE
DATAFLOWS
E- IMPLEMENTATION
FFemnew_data
L = SUBCOMPONENTS
FPROFPERTIES
BEHAVIOR
FUMNCTIONAL BEHAVIOR

- .
SUBCOMPOMNENTS
";TIRIEUTES attribute : attribute
&3 8@E@FE @ %y
(o UML
" AADL
s Irterfocess new_package
rew_package
<cOperatiorss > superchuss
«Typees new_gata
17 . rF i i
LLLONSTanTs > ariribute © ariribu
<<Exceptinss cperation I— anaresate
<]
SUBCOMPONENTS
”;TTRIEUTES attribute : attribute

page 26 - STOOD AADL User Manual © Ellidiss - October 2011

* Stood

On the contrary, data components that are created as subcomponents of a process, thread
group or thread are mapped to a shared protected object in the Stood model. Use of data
access connections in the AADL graphical notation will show the actual data sharing:

3.4.5. AADL Subprogram components

In most cases, subprogram components will be automatically created during the AADL

code generation, from the definition of subprogram features.

example:

AADL generated code from the diagram above will contain the definition of the two
subprogram components read and write, although they don’t appear in the diagram.

DATA shared data
FEATURES
read : SUBPROGRAM read;
write : SUBPROGRAM write;
END shared data;

SUBPROGRAM read
END read;

SUBPROGRAM write
END write;

STOOD AADL User Manual © Ellidiss - October 2011 - page 27

* Stood

3.5 AADL features

3.5.1. AADL Ports

To create a port, use the new port button in the tool bar. New ports are created as in
event by default. Use the Change into ... contextual menu to change the port kind and

direction:

Set layer...

Rename...

Connect...

Left alignment
Right alignment

Change into

Add to feature group...

Remove from feature group

Delete

3 In
Cut
In Qut

Data port

Event port
Event Data port

Subprogram

When a port is selected in the graphical editor, its formal declaration is shown in the text

input area:

5 PORTS and SUBPROGR
IJ:'I—E::Jnew_port
exnport or subpg desc..
caport or subpg decla.
emworst case executi...
— REQUIRED INTERFACE
— DATAFLOWS

—————————————

B IMPLEMENTATION
t PROPERTIES
BEHAVIOR

port or subpg declaration

new_port(Event : in T_Ewvent; Flow : in T_Flow);

page 28 - STOOD AADL User Manual © Ellidiss - October 2011

* Stood

In a Stood design model, AADL ports are stored as operations with parameters. An event
or event data port has an Event parameter. A data port or event data port has a
parameter which name must be other than Event. Default name for a data parameter is
Flow, and may be changed, as well as its parameter type which is set to T Flow by
default. Removing or renaming the Event parameter will remove the event nature of the
port.

To validate a change in the port declaration section, it is mandatory to use the Save text
button, or contextual menu or the Ctrl-S keyboard shortcut.

3.5.2. AADL Feature groups

To create a new feature group, use the corresponding button of the tool bar. It is then
possible to drag new ports or other feature groups inside the two enclosing brackets
delimitating the feature group. A feature group may be open or close as shown in the
pictures below:

To open a closed feature group, double click on its name or use enter contextual menu.
To close an opened feature group, double click on its name or use exit contextual menu.

To include a feature to a feature group, drag it inside the opened port group or use add to
feature group contextual menu. To remove a feature from a feature group, drag it outside
the opened feature group or use remove from feature group contextual menu.

3.5.3. AADL Subprogram features

To create a new subprogram feature, use the corresponding button of the tool bar. A new
subprogram is created without any parameter by default. To edit the parameters list of a
subprogram feature, use the port or subpg declaration section of the ODS.

STOOD AADL User Manual © Ellidiss - October 2011 - page 29

* Stood

od

)

ada] C] c:|:-|:-| aadl] test] checks]

- PROVIDED INTERFACE
PROPERTIES
PORT GROUPS
PORTS and SUBPROGRAMS
Ii'l—c:::sewer_mlbprogl'am
exnport or subpg description
mport or subpg declaration
mmworst case execution time
— REQUIRED INTERFACE
— DATAFLOWS
B+ IMPLEMENTATION
PROPERTIES
BEHAVIOR
=- FUMNCTIONAL BEHAVIOR

DESCRIPTION ~

I < |

port or subpg declaration

server subprogram(argl : in T_param;

arg? :

out T_param);

To validate a change in the subprogram declaration section, it is mandatory to use the
Save text button, or contextual menu or the Ctrl-S keyboard shortcut.

3.6 AADL connections

The new connection button of the tool bar must be used to create:

a connection between two ports

a connection between two feature groups
an access connection between a data component and a thread component

3.7 AADL properties

The list of all the predefined AADL properties is included into the ODS. To insert the
property value for the selected component or feature, select the corresponding property
name in the list and write the value in the text editing area.

page 30 - STOOD AADL User Manual © Ellidiss - October 2011

* Stood

ads lada] l:] Cpp] aadl] test] checks]

- COMPOMNENT
+ DESCRIPTION
- TYFE
FEATURE GROUPS
+ FEATURES
- PROPERTIES
+ Predeclared Deployment Properties
Predeclared Thread Properties
Predeclared Timing Properties
Predeclared Communication properties
- Predeclared Memory Properties
ElSource_Code_Sizel
0 Sounce_Data_Size
Predeclared Programming Properties
Predeclared Modeling Properties
0 User Defined Componert Type Properties (aadl)
+ IMPLEMEMNTATION
= pragmas

To validate a change in the property section, it is mandatory to use the Save text button,
or contextual menu or the Ctrl-S keyboard shortcut.

Save text | | | Source _Code_Size
128 EBvtes b

3.7.1. Stood property set

In order to be able to propagate graphical information through AADL specifications,
Stood AADL code generator automatically introduces a few specific properties.
Generation of these properties may be avoided by using the pragma no_graphics.

property set Stood is
Box Position : aadlstring
applies to (system, data, subprogram, thread, thread group,

STOOD AADL User Manual © Ellidiss - October 2011 - page 31

* Stood

process, memory, processor, bus, device);
Link Position : aadlstring
applies to (connections);

end Stood;

3.8 AADL modes

Stood offers an incomplete support for AADL modes. It is possible graphically define
the operational modes of a process thanks to a state transition diagram. However, There
is currently no support of the in modes statements.

Use the mode diagram button of the tool bar or choose open state diagram in the
contextual menu when the main process component is selected in the AADL diagram.
The process must provide one or several event ports that may be used as transition
triggers.

Enter
Rename...

Change into 4

Delete

Open state diagram

When the state transition diagram is open, a specific tool bar is available to create an
initial mode, standard modes and transitions. When a transition is selected, use the select
transition event button to associate one of the provided event ports of the process.

page 32 - STOOD AADL User Manual © Ellidiss - October 2011

* Stood

B IMPLEMENTATION
SUBCOMPOMNENTS e
PORT GROUPS R
PORTS
BEHAVIOR
mabehavior description
ez state transition diagram

= MODES

TRANSITIONS

F- GENERATION

[+

Following AADL code will be generated from this model:

PROCESS new process
FEATURES
start : IN EVENT PORT;
stop : IN EVENT PORT;
restart : IN EVENT PORT;
END new process;

PROCESS IMPLEMENTATION new process.others
SUBCOMPONENTS

new thread : THREAD new_ thread;
MODES

init : INITIAL MODE;

running : MODE;

suspended : MODE;

init -[start]-> running;
running -[stop]-> suspended;
suspended -[restart]-> running;

END new process.others;

3.9 AADL flows

Stood can be used to declare flow specifications. There is however currently no support
for flow implementations and end to end flows. Stood represents internally AADL data
ports as operations with parameters. The name of the operation is used for the port name;
if not Event, the type of the parameter is used for the data port classifier; and the name
of the parameter is used to specify flows. Default value for a data port operation
parameter is F1low. There will be no flow specification generated for default values of
this parameter, however, if this parameter name is changed to the name of a flow, then

STOOD AADL User Manual © Ellidiss - October 2011 - page 33

* Stood

corresponding flow specifications will be generated in terms of flow paths, flow sources
and flow sinks.

example:

The various ports that are shown in the example below have the following Stood port or
subpg declaration in their ODS section:

In process new_proces S
datal (aFlowSink : in T Flow);

input (aFlowPath : in T external);
output (aFlowPath : out T external);
data2 (aFlowSource : out T Flow);

In thread flow processing 1:

cons (aFlowSink : in T Flow);

input (aFlowPath : in f_external);
output (aFlowPath : out T internal);

In thread flow processing 2:

input (aFlowPath : in T internal);
output (aFlowPath : out T external);
prod(aFlowSource : out T Flow);
= COMPOMNENT A
= DESCRIPTION B

5 PROBLEM

1 Statement of the Problem

1 Sketch of the Problem

mReferenced Documents

F- SOLUTION

E- PROVIDED INTERFACE

— PROPERTIES

— PORT GROUPRS

E- PORTS and SUBPROGRAMS
F-cmcons

F-eminput -
maport or subpg description <

mmport or subpg declaration — .
P P9 e port or subpg declaration
mmwaorst case execution ime

moutput ||i:11:ut (aFlowPath : in T_external);

The AADL code that is generated is as follow:

page 34 - STOOD AADL User Manual © Ellidiss - October 2011

* Stood

PROCESS new process

FEATURES
datal : IN DATA PORT T Flow;
input : IN DATA PORT T external;
output : OUT DATA PORT T external;
dataz : OUT DATA PORT T Flow;

FLOWS
aFlowPath : FLOW PATH input -> output;
aFlowSource : FLOW SOURCE dataZz;
aFlowSink : FLOW SINK datal;

END new process;

PROCESS IMPLEMENTATION new process.others
SUBCOMPONENTS

flow processing 1 : THREAD flow processing 1;

flow processing 2 : THREAD flow processing 2;
CONNECTIONS

PORT datal -> flow processing l.cons;

PORT input -> flow processing l.input;

PORT flow processing 2.output -> output;

PORT flow processing 2.prod -> data2;

PORT flow processing l.output -> flow processing 2.input;
PROPERTIES

Stood::Box Position => "361 212 719 456";
END new process.others;

THREAD flow processing 1
FEATURES
cons : IN DATA PORT T Flow;
input : IN DATA PORT T external;
output : OUT DATA PORT T internal;
FLOWS
aFlowPath : FLOW PATH input -> output;
aFlowSink : FLOW SINK cons;
PROPERTIES
Dispatch Protocol => Aperiodic;
Stood::Box Position => "398 143 682 295";
END flow processing 1;

THREAD flow processing 2

FEATURES
input : IN DATA PORT T internal;
output : OUT DATA PORT T external;
prod : OUT DATA PORT T Flow;

FLOWS

STOOD AADL User Manual © Ellidiss - October 2011 - page 35

* Stood

aFlowPath : FLOW PATH input -> output;

aFlowSource : FLOW SOURCE prod;
PROPERTIES

Dispatch Protocol => Aperiodic;

Stood::Box Position => "373 410 689 563";
END flow processing 2;

3.10 Behavior Annex

The ODS contains sections that can be used to insert AADL Behavior Annex code for
Thread and Subprogram components.

ads]ada] c] cpp] aadl]test]checks]

- COMPOMNENT
+ DESCRIPTION
+ TYFE
- IMPLEMEMNTATION
+ PROPERTIES
- BEHAVIOR
0 behavior description
o state transition diagram
MODES
TRANSITIONS
- BEHAVIORAL CODE
L bobes code (aad)
obcs code (ada)
obcs code (c)
obcs code (cpp)
+ FUNCTIONAL BEHAVIOR
= pragmas

To validate a change in a Behavior Annex section, it is mandatory to use the Save fext
button, or contextual menu or the Ctrl-S keyboard shortcut.

page 36 - STOOD AADL User Manual © Ellidiss - October 2011

| | | obes code (aadl)

states »
3 : initial complete final state;
transitions
t + 8 —-[on dispatch]-> s |
D1 '«<;
computation {3 ms);
D2 «<;
D2 I»;
D1 >

The AADL code that is generated is as follow:

THREAD IMPLEMENTATION T.il
PROPERTIES
Dispatch Protocol => Periodic;
Compute Execution Time => 5ms..5ms;
Period => 15 ms;
Stood::Box Position => "266 333 449 516";
ANNEX Behavior Specification {**
states
s : initial complete final state;
transitions
t : s -[on dispatch]-> s {
D1 !<;
computation (3 ms);
D2 !<;
D2 !'>;
D1 !>
}i
**};

END T.il;

* Stood

STOOD AADL User Manual © Ellidiss - October 2011 - page 37

* Stood

4 Processing of AADL models

4.1 Generate design verification reports

To enter the design verification mode, select the Checkers tab in the life cycle selector:

Hequilements] Graphic Dezign] Detailed Design EDdB] Diocumentation] Deplnyment]

Stood includes an internal cross reference table and several embedded design model
verification tools:

* requirements traceability matrix

schedulability analysis (basic test only)

design architecture metrics

HOOD rules compliancy

AADL legality rules compliancy (under development)

To activate one of these verification tools, perform the following sequence of actions:

» stepl: select the set of rules to verify in the component area

» step2: click on the check design button in the tool bar

* step3: select a result file in the component area. If a red gauge is shown, this means
that the result file is empty and that there is no error.

page 38 - STOOD AADL User Manual © Ellidiss - October 2011

* Stood

£1) Stood for AADL (beta) - mine_hunting

ME] x|

(design) mine_hunter

Fle Edt Design Component Feature Tools

— (design) GPS

— (design) mh_types

— (design) mine_field

= & (design) mine_huntar

mine_hunter

mine_field
on_shore_center
GPS
mh_types
sonar_types

— (design) on_shore_center

— (design)rta

— (design) sonar_types

— (generic) antenna

1 X X0 X X X

ods | ada | ¢ cpp] aadl] test checks 1 /

Help

Haquirements] Graphic Deswgn] Detailed Design Checkers]Code] Documantat\on] Deployment I

AROL ADA G PLUDD

“og o @
language : aadl sort: by onent upto date:yes
isusedby: ig symbol

uses:

<pa= detect
<pa= enabled
<pa> Event
<pa= global_pos
<pa= low_power
<pa= mine

<pas noise

<pa= position
<pa=raw_signal
<pa= receive
<pa= reflection

1. Select the set of
rules to verify

2. Press check
design button in
the tool bar

xraw www

check messages (adl checker)

wraw

=~ DESIGMN VERIFICATION REPORT
—emacheck messages
(—Eacheck comments
F-emhood rules [hood checker]
=-engadl rules [aadl checker]
LmLega\it‘_\f [rule
F-Enmetrics [metric chacker]
F-endatabase [database checkear]
#-eascheduling [scheduling checker]
-mmrequirements [requirements checker]
F- designs comparison
—mmcheck prolog description
AADL CROSS REFS
PSEUDO CODE CROSS REFS
Ada CROSS REFS

PN alnlaYatalinininisl

i

=== begin check: Wed Jan 4 15:15:32 2006
—> rule L032 checked..
—> rule L034 checked
-->rule L108 checked..

Halt. Program terminated normally
===end check: Wed Jan 4 15:15:32 2006

3. Select a result file to view
errors. A red gauge means
empty file and no error.

4.2 Generate textual AADL code

Textual AADL code can be generated at any time from the current design model. To
activate the AADL code generator, switch the life cycle selector to the code tab.

Requirenents] Graphic Dezsign] Detailed Design] Checkers

D ocumentation] Deployrent]

If aadl has been specified as the default target language, then this will automatically
open the AADL code generator. Else, it may be necessary to select the aad! tab in the

property selector.

aad| l =] checks]

“ nds]ada]c]c

STOOD AADL User Manual © Ellidiss - October 2011 - page 39

* Stood

The first view of the code sub window gives access to generation options, called pragmas
in Stood terminology and that are described below. To set an option, first select the
component on which it should apply, then click on the add pragma button, and select the
appropriate pragma in the list. When a pragma is set, its name is preceded by a >> tick.
The list of all the currently set pragmas is shown in the editing area where it is possible to
remove or dupplicate them, and change the value of their arguments. Supported pragmas
for the AADL code generator are listed in the next sections. If no pragma is set, default
code generation rules will be applied.

. . . . 1. Set ti ti
Requirements] Graphic Dezign] Detailed S BRI QT

| | | pragmas 2. Start code generation

To start the generation of the textual AADL code, select Tools/Code/Full extraction in
the main menu or simply press full extraction button in the tool bar, then select OK in the
dialog box. When completed, the result of the code generation process is shown in
another view of the code sub window, showing the result of the generation process. By
default, this view shows generation log messages if the root component is selected in the
project area.

For each package or component of the design model, select the .aadl section in the
component area to edit the corresponding generated AADL code. If the pragma
one_file per component was not set, then the whole AADL specification will be shown
when the root component or package is selected.

The AADL syntax can be checked with the check aadl button of the tool bar. In addition,
it is possible to launch external tools that will process or analyse the textual AADL
specification that has been generated. For instance, it is possible to use OSATE to
transform textual AADL generated by Stood into XML AADL files. Note that the
analysis tool AADL Inspector is automatically launched after AADL code generation.

It is possible to make changes in theses source files using the text input area. Changes
must be saved with Save text button or contextual menu, or the Ctrl-S keyboard shortcut.

page 40 - STOOD AADL User Manual © Ellidiss - October 2011

\‘| NditrAlADhasdges

* Stood

Requirements] Graphic Design] Detailed Design] Checkers Code Documentatinn] Depln}lment]
(design) Base_Types am || o

(design) shared_data

(design) Data_Model " D|:| (7)
(design) HW zadl
’:E_h_demglj}:hafi_data g PACEAGE
FUBRLIC
my_platform E | lw1TH HW;
£ my_process EX] Check AADL syntax
SY5TEM shared data
END shared data:
od: ada o cpp aad'ltest]checks Launch OSATE
— COMPONENT SYSTEM IMPLEMENTATION shared data.o
L TYPE SUBCC'MPC'HI‘ENIS)
% IMPLEMENTATION my_platform : SYSIEM EHW::RMA board; Launch AADL
my process : PROCESS my process.others;
Kopragmas FROFERTIES Inspector
o code file header Betual Processor Binding =» (reference (my platform.cpu) | &pplies to
= AADLCODE Stood::Box_Position => "(¥1 =» 500, ¥1 =»> 200, ¥2 =» 914, Y2 => &00)"
mm extraction messages END shared_data.others;
Kreverse messages
II:IE FROCESS my process
mm makefile END my process;

mmprolog description

In addition, if the pragma reverse was set, any changes in the generated source files that
are done between the round trip engineering tags will be fed back to the design model
thanks to the round-trip engineering feature of Stood. To activate this feature, you must
press the reverse button of the tool bar. Note that this feature is currently active for
Behavior Annex behavioural sections only (refer to chapter 3.10).

The AADL source files can also be edited directly from the file system. Default location
of generated code is the aadl subdirectory in the directory of the design. To open it
from Stood, use Tools/Open directory/Design directory in the main menu.

4.3 Generate Ada source code

Ada source code can be generated at any time from the current design model. To
activate the Ada code generator, switch the life cycle selector to the code tab.

Hequilements] Graphic Dezign] Detailed Design] Checkerocumentation] Deplo_l,lment]

If ada has been specified as the default target language, then this will automatically open
the Ada code generator. Else, it may be necessary to select the ada tab in the property

STOOD AADL User Manual © Ellidiss - October 2011 - page 41

* Stood

selector.

“ nd@] cpp] aadl] test] checks]

4.4 Generate C source code

C source code can be generated at any time from the current design model. To activate
the C code generator, switch the life cycle selector to the code tab.

Hequilements] Graphic Dezign] Detailed Design] Checkerocumentation] Deplo_l,lment]

If ¢ has been specified as the default target language, then this will automatically open
the C code generator. Else, it may be necessary to select the ¢ tab in the property
selector.

| nds] ad@pp] aadl] test] checks]

4.5 Generate design documentation

To enter the documentation production mode, select the documentation tab in the life
cycle selector:

Hequirements] Graphic Design] Detailed Design] Checkers] Code eployment]

To create a full printable document from the current design model, operate as follow:

» stepl: select the components to be printed, or select all with the appropriate button
o step2: select the output format among HTML, MIF (for FrameMaker™), PDF,
PostScript, RTF (for Word™) or ODT (For OpenOftice).

* step3: click on the print button.

This opens a standard file dialog asking an output file name to be entered. Default
location for generated documentation is the doc subdirectory of the current design
model directory. The current design directory can be opened from Stood by choosing
Tools/Open directory/design directory in the main menu.

page 42 - STOOD AADL User Manual © Ellidiss - October 2011

* Stood

£1) stood for AADL (beta) - mine_hunting g@
Fle Edt Design Component Feature Tools Help
(design) mine_hunter Haquirements] Graphic Deswgn] Detailed Desian I Chackers] Code Documentation | Deplayment I
— (design) GPS -~
L) Eadl @ ™ 7]
— (design) mh_types Q Q IE 4
— (design) mine_field & Sectiond ormat Tool
- & (design) mine_hunter (default) |
(design) mine_hunter (default) = PROMCT o ||[pdf =] [is ~|
B mine_hunter (default) =1 — ProjostDescription ol
2 sonar(defauli =)= " Projsctetch Canfiguration
B transmitter (default) =4 — ListofReq)Nements |
pulse_generator (default) =] — Design Tree 2 1 3 start
power_amplifiar =4 L Inheritance Tree 1 lick . select inti
trans_array =) . Or click on printing
_aray L AADL Diagram the output
receiver * e comeoNENT select all el
detector > : .
instance parametgr:
classifier > 1 DESCF‘\IF[‘JTION button in the
sequencer x PROBLEM tool bar
- op_center x Statement of theFrobtemT
I~ Inavfrcen.ter : ™ Sketch of the Problem
e — Referenced Documents

ode Iada] o] cpp | aad| test | checks | SOLUTION [Sortcomponents alphabetically

» default & General Strategy
Sketch ofthe Solution O Dz
0 o |dentification of Subcomponents (" Breadth traversal
L. click on the prlnter AADL Diagram (" Alphabetic fraversal
icon to enable Justification of Design Decisions B
2. g E- PROVIDED INTERFACE
printing for each PROPERTIES
individual component real time properties
property name
property description
property definition (3adl)

constant pre-declaration (ada)
constant definition (ada)

constant definition (c}

constant definition (cpp) -

STOOD AADL User Manual © Ellidiss - October 2011 - page 43

* Ellidis

www.ellidiss.com
stood@ellidiss.com

[RpPp—

Ellidiss Software Ellidiss Technologies
Triad House
Mountbatten Court 24 quai de la douane
Worall Street 29200 Brest
Congleton Brittany
Cheshire France
CWI12 1DT
UK
+44 1260 291 449 +33 298 451 870

www.aadl.info

http://www.ellidiss.com/

