

STOOD AADL Tutorial © Ellidiss – February 2015 - page 1

Stood 5.4

AADL
Tutorial

page 2 - STOOD AADL Tutorial © Ellidiss – February 2015

Pierre Dissaux
Pam Flood

Ellidiss

STOOD AADL Tutorial © Ellidiss – February 2015 - page 3

Contents

1 Introduction ... 5
2 Define a workspace.. 6

2.1 Stood shortcut.. 6
2.2 Stood initialization file ..7
2.3 Requirements file ..8
2.4 Launching Stood ... 8
2.5 Create a Stood project ... 9

3 Create an AADL system.. 11
3.1 Create a new design of type “aadl system” ... 11
3.2 Lock the system to enter edit mode... 11
3.3 Document the project .. 12
3.4 Document the system .. 13
3.5 Create subcomponents... 15
3.6 Rename and give a type to subcomponents... 16
3.7 Create bus access connections... 17
3.8 Create ports ... 18
3.9 Rename and customize ports ... 19
3.10 Create port connections .. 20
3.11 Generate the AADL code for the system.. 21
3.12 Show generated AADL code.. 23
3.13 Create a design report ... 24
3.14 Save the design ... 27

4 Create an AADL package.. 28
4.1 Create a new design of type “aadl package” ... 28
4.2 Lock the package to enter edit mode... 28
4.3 Create Data component classifiers inside the package .. 29
4.4 Rename the Data component... 30
4.5 Specify component type and implementation.. 31
4.6 Define subcomponents of a Data component .. 32
4.7 Define Data component extension... 32
4.8 Define the public section of the package... 33
4.9 Define Data Subprograms ... 34
4.10 Specify Subprogram Parameters... 35
4.11 Add AADL Properties .. 36
4.12 Add textual comments .. 38
4.13 Show full AADL diagram of the package .. 39
4.14 Generate the AADL code for the package.. 39
4.15 Show generated AADL code.. 41
4.16 Generate C++ code ... 42
4.17 Save the design ... 42

5 Create an AADL process ... 43
5.1 Create a new design by export... 43
5.2 Import a list of design requirements .. 43
5.3 Clean up the environment.. 45
5.4 Import a package ... 45
5.5 Change data ports type .. 47
5.6 Add ports to the process .. 48
5.7 Add subcomponents to the process ... 49
5.8 Create and customize ports in subcomponents.. 51
5.9 Connect ports between a component and its subcomponents.. 52
5.10 Connect ports between subcomponents.. 52
5.11 Specify flows .. 53
5.12 Specify real-time properties.. 54
5.13 Specify modes .. 55
5.14 Generate the AADL code for the process... 57

page 4 - STOOD AADL Tutorial © Ellidiss – February 2015

5.15 Show generated AADL code.. 58
5.16 Generate Ada code.. 59
5.17 Save the design ... 60

6 Conclusion... 61

STOOD AADL Tutorial © Ellidiss – February 2015 - page 5

1 Introduction

The purpose of this document is to describe the standard modelling process to be used to build
a new AADL project with Stood. It is not a complete tutorial or user manual for Stood and
knowledge about AADL is a prerequisite for using this document. Please refer to the official
AADL web site (www.aadl.info) to learn more about this standard.

In addition to the various modelling concepts defined by the AADL standard, we need to
introduce the following additional ones that are more development process oriented:

A Stood Design is the main modelling entry point. It represents the root of a hierarchy of
components or packages. A Design may be used to define the overall system, a particular set of
concrete components describing an executable software application, or a library of abstract
components. In the first case, the Design is directly associated to an AADL system instance. In
the second one, it will represent an AADL process instance, whereas in the last case, it will
represent an AADL package. A fourth case, still subject to deeper investigations, concerns the
software to hardware binding activity, for which the current entry point is an AADL processor.

A Stood Project refers to a set of Designs that collaborate in a common realization. The
Project specifies the scope of the realization, and restricts the access to other non-referenced
Designs.

A Stood Session begins when a user launches the tool and ends when Stood is closed. Stood is
a multi-user environment, so several Sessions may be opened on the same Project, or even on
the same Design.

A Stood Workspace is a user-defined disk area where Projects and Designs can be stored.

This tutorial includes the following sections:

1. Define a Workspace, launch Stood and create a Project
2. Create a Design representing an AADL system
3. Create a Design representing an AADL package
4. Create a Design representing an AADL process

page 6 - STOOD AADL Tutorial © Ellidiss – February 2015

2 Define a workspace

It is possible to launch Stood from the start-up menu or from the desktop icon that is created by
the Windows installer program. However, any customization of the tool requires altering the
original distribution, which may be an issue if several users or several Projects require
different customizations.

This is the reason why it is recommended that you launch Stood from a Workspace that can
be dedicated to each user or Project. Such a Workspace consists of a simple directory that
must contain at least two elements:

- a shortcut to the Stood executable file (under Windows) or a redirecting shell script
(under Unix)

- a local initialization file (stood.ini under Windows or .stoodrc under Unix)

In addition, this Workspace may contain other Project related data such as lists of textual
requirements or subdirectories with legacy source code to be reused in the Project.

2.1 Stood shortcut

A Stood shortcut must be created by one of the standard Windows procedures. However, it is
necessary to customize it so that the Workspace can be used as the default storage area for the
newly created Projects when Stood is launched from there.

Open the properties box of the shortcut, select the shortcut tab, and check that the target field
points to the correct installation file and that the start in field points to the current Workspace
directory instead of the installation one, as shown below:

STOOD AADL Tutorial © Ellidiss – February 2015 - page 7

2.2 Stood initialization file

The second customization that may be required consists of modifying one or more of the
properties that are specified in the Stood initialization file (stood.ini under Windows or
.stoodrc under Unix). A complete specification of these properties is provided in the Stood
Administrator Manual.

Only the properties that differ from the default initialization file located in the installation
directory need to be specified locally. All the other properties will be automatically inherited.
Typical properties that may be customized locally are the various environment variables that
are used by Stood to interact with external tools, such as compilers or verification tools.

[Environment]
ADA_PATH=C:\cygwin\bin
C_PATH=C:\cygwin\bin
CPP_PATH=C:\cygwin\bin
REQTIFY_PATH=C:\reqtify\bin.w32
OSATE_PATH=/cygdrive/C/osate2/osate.exe

page 8 - STOOD AADL Tutorial © Ellidiss – February 2015

2.3 Requirements file

The Workspace directory may also contain one or more Project specific textual requirements
files that may be imported into Stood. Once imported, it is possible to specify requirements
coverage for each modelling entity.

The internal format for Stood compliant requirements files is quite simple as it consists of
plain ASCII text declaring one requirement per line. Each requirement is expressed by a
unique identifier and a free comment, separated by a tab character.

CALC101 interact with the Keyboard
CALC102 interact with the Screen
CALC111 define integer type
CALC112 define real type
CALC121 add integers
CALC122 add reals
CALC123 sub integers
CALC124 sub reals
CALC131 scan the Keyboard
CALC132 perform the operation
CALC133 display on Screen

Such a requirements file may be easily generated by a requirements management tool such as
Doors™. Note that thanks to a specific connection feature, it is also possible to directly import
requirements and export coverage information from and to a traceability graph defined in the
Reqtify™ tool.

2.4 Launching Stood

If not launched from the Workspace shortcut, Stood can be launched either from the desktop
shortcut or from the standard Windows start up menu.

Note that these two options are not available if the corresponding set up has been deactivated
during the installation process.

STOOD AADL Tutorial © Ellidiss – February 2015 - page 9

When launched, Stood shows a start up screen during its initialization phase, and then opens its
main windows, as shown is the diagram below:

2.5 Create a Stood project

First step of the modelling process consists of either opening an existing Project or creating a
new one. Projects can be managed from the File menu.

For the purpose of this tutorial, we create a new Project and specify its name in the dialog box.

We can now import existing Designs within the scope of our Project using the File/Add to
project menu, create new Designs from existing source code using the Design/New design
from… menus or create new local Designs using the Design/New design menu.

This last choice offers several options. The new created Design may be profiled as a HOOD
Design, in which case one of the options design, generic or virtual node must be selected, or as
an AADL Design, in which case one of the options aadl package, aadl system, aadl process or
aadl processor must be selected.

This tutorial explains how to create in the context of a consistent Project:

page 10 - STOOD AADL Tutorial © Ellidiss – February 2015

- AADL Systems to define concrete system wide architectures composed of hardware
and software components.

- AADL Packages to specify libraries of abstract components, and especially abstract
Data components to be used as classifiers for ports and parameters.

- AADL Processes to perform complete software design activities including architectural
design, detailed design and coding, model analysis, source code and design
documentation generation.

These three modelling processes are described in the next three sections. The last section
explains how to quit Stood.

STOOD AADL Tutorial © Ellidiss – February 2015 - page 11

3 Create an AADL system

Specifying a System with Stood consists of building a System Instance. Instead of creating
abstract component types, component implementations and then instantiating them as
subcomponents, the designer can directly define subcomponents in a hierarchical way, and then
specify whether they correspond to instances of already defined abstract components or of
anonymous abstract components that will have to be automatically created while producing the
textual AADL specification.

3.1 Create a new design of type “aadl system”

To create a new System inside the current Project (cf.§2.5), use the menu Design/New
design/aadl system… and then specify its name in the dialog box.

Note that a Design name in Stood must be alphanumeric (i.e. only contain characters ‘a’ to
‘z’, ‘A’ to ‘Z’, ‘0’ to ‘9’ or the underscore character ‘_’).

3.2 Lock the system to enter edit mode

When it has just been created, the new System design is automatically loaded and it is shown
in the AADL graphical editor as an empty box at the middle of a larger one representing the
Project.

page 12 - STOOD AADL Tutorial © Ellidiss – February 2015

However, this System design is set to read-only mode by default. To enable modification of
this System, it is necessary to “lock” it so that no other user is allowed to get a concurrent write
access to the model.

When a System design is locked (may be modified in the current Session), a green padlock is
shown to the left of its name.

3.3 Document the project

When the System design is selected in the upper left list of Stood window, the lower left list
shows description sections for the local view of the Project. Default sections are textual
descriptions and a graphical sketch that will be included inside the design documentation.

Note that each time some text is entered in the text input area, it must be saved by pressing the

STOOD AADL Tutorial © Ellidiss – February 2015 - page 13

Save text button, or using the corresponding contextual menu or the Ctrl-S keyboard shortcut.

(Note that shown items may vary depending on the tool configuration)

Note that sketches are provided for documentation purpose only and that they do not carry any
semantic information.

Note also that the other sections List of Requirements, Design Tree and Inheritance Tree are
automatically filled in by Stood.

3.4 Document the system

When the System design tree is deployed in the upper left list, it shows another line with the
same name. This corresponds to the System component instance to be edited.

Note that when a component is selected in the upper left list, the current selection of the
graphical editor and contents of the lower left list are automatically updated. It is thus possible
to complete the textual sections and sketches that are available to describe each component
individually.

The Statement of the Problem section (see figure above) must be used to provide textual details
about how the currently selected component contributes to solving a particular modelling
problem.

page 14 - STOOD AADL Tutorial © Ellidiss – February 2015

The Sketch of the Problem section (see figure below) can be used to complete this information
by an informal drawing that is included in the design documentation.

(Note that shown items may vary depending on the tool configuration)

The following figures show other examples of documentation sections that can be filled in for
each component.

(Note that shown items may vary depending on the tool configuration)

(Note that shown items may vary depending on the tool configuration)

Stood promotes the concept of “incremental documentation” that consists of asking the
designer to document each modelling element independently at the time they are performing
the modelling actions. The final design documentation compiles all these elementary sections
to build a complete report.

This modelling process also recommends documenting each component before going deeper
into the architecture hierarchy. For instance, the Identification of Subcomponents
documentation section can be used as a guideline for actually creating the subcomponents (see
next chapter).

STOOD AADL Tutorial © Ellidiss – February 2015 - page 15

(Note that shown items may vary depending on the tool configuration)

3.5 Create subcomponents

In the graphical editor, a component can be represented either by its “black box” view which
shows the contents of the corresponding component type, or by its “white box” view which
shows the contents of the corresponding component implementation.

In the picture below, the “black box” view of the System component is shown. To show its
“white box” view, it is necessary to go one step down the hierarchy. This action can be
performed by double-clicking inside the component box or using the enter contextual menu.

After using the enter menu, the “white box” view of the System is shown. It is now possible to
add subcomponents to its implementation. To add a new subcomponent, use the new AADL
component button, or the New component contextual menu. The button will create a component
of a pre-defined category, which can be modified later using the Change into contextual menu.
The New component contextual menu offers the full choice of valid categories for creating
subcomponents within the current component implementation.

We can for instance create seven subcomponents inside the System implementation:

- One component whose category is Processor
- Two components whose category is Memory
- One component whose category is Bus
- Two components whose category is Device
- One component whose category is Process

page 16 - STOOD AADL Tutorial © Ellidiss – February 2015

Note that a default name is given to newly created components, and that this name is the name
of the concrete subcomponent within the enclosing System, which may differ from the
corresponding component type classifier and component implementation names.

3.6 Rename and give a type to subcomponents

When a component is selected in the graphical editor, the rename contextual menu can be used
to perform the following actions:

- Change the name of the selected concrete subcomponent.
- Change the corresponding abstract component type (by default, it is assumed that the

subcomponent and component type name are identical)
- Change the corresponding abstract component implementation name (by default, it is

assumed that this name is NIL). If the implementation name is left to NIL and that a
component implementation becomes required while generating the AADL code, then
the default name others will be used.

STOOD AADL Tutorial © Ellidiss – February 2015 - page 17

This is used to give the following names to the seven subcomponents of the System

3.7 Create bus access connections

To create bus access connections, use the new connection button of the graphical editor.

Then click on the accessed bus component before clicking on the accessing component.

page 18 - STOOD AADL Tutorial © Ellidiss – February 2015

This results in a graphical bus access connection between the Bus and the Memory
components.

Additional connections may now be added inside our System implementation.

3.8 Create ports

To express for instance that the Process can exchange data with the Device components it is
necessary to add ports. To create a port in a component type, use the new port button of the
graphical editor. Click on the button (a), drag the mouse on the target component (b) and then
click to create the port (c).

 (a) (b) (c)

STOOD AADL Tutorial © Ellidiss – February 2015 - page 19

We can now create four ports as shown in the figure below:

Note that these ports have been created with a default name and as In Event Ports by default.
The next section explains how to modify the name, the direction and the type of the ports.

3.9 Rename and customize ports

To rename a port, select it and use the Rename contextual menu.

To change the direction of a port, select it and use the Change into contextual menu.

page 20 - STOOD AADL Tutorial © Ellidiss – February 2015

To change the type of a port, select it and use the Change into contextual menu.

By default, ports are attached to the left border of the component. It is possible to move them to
the right border, using the Right alignment contextual menu. In a similar way, a port attached to
the right border can be moved back to the left border using the Left alignment contextual menu.

We can now customize the four ports as follow:

3.10 Create port connections

To create connections between ports, use the new connection button of the graphical editor.
First click on the button (a), click one of the connected ports (b) and then the other port (c).

Note that port compatibility is verified before creating the connection. These verifications
check, port kind, port direction and port type for Data Ports and Event Data Ports.

STOOD AADL Tutorial © Ellidiss – February 2015 - page 21

 (a) (b) (c)

We can create port connections between the Process and each of the two Devices.

3.11 Generate the AADL code for the system

Our model has been created with just a few mouse clicks in the graphical editor. Even so you
can still generate a full AADL specification from it.

To generate textual AADL code from a graphical model in Stood, the Code tab must be
selected.

The new button bar shows two buttons. The first button on the left is called add pragma and
may be used to customize the code generation. Pressing this button opens a dialog box showing
the list of the possible options that can be selected.

page 22 - STOOD AADL Tutorial © Ellidiss – February 2015

In most cases, it is not required to activate these options. The AADL code generation is started
by pressing the full extraction button. This opens a dialog box which is used to specify the part
of the Design to be generated. Mostly, we need the whole Design to be generated, which is the
default.

When the Ok button is pressed, the extraction messages are displayed and the AADL
Inspector is opened in a separate window to view and analyse the code generated. Please refer
to the AADL Inspector User manual to learn about the provided model analysis tools, such as
scheduling analysis and run-time simulation.

STOOD AADL Tutorial © Ellidiss – February 2015 - page 23

The display lists the component types and implementations that were created to fully describe
our System instance.

3.12 Show generated AADL code

The AADL generated code is shown by changing the selection in the lower left list of the
Stood window from extraction messages to aadl.

The AADL code can be edited with Stood, although the corresponding file in the repository is
easily located for remote access. To locate a particular file, select the corresponding entry in
the lower left list and use the Location contextual menu.

page 24 - STOOD AADL Tutorial © Ellidiss – February 2015

3.13 Create a design report

Stood also offers a way to create design documentation reports. Such reports compile all the
appropriate information that was entered while building the model. This includes textual and
graphical entries. To switch on the report settings tool, select the documentation tab.

First define the components to be included in the report. To select all components, use the
select all button.

The effect of this action is to display a green tick over the small printer icon to the left of the
component showing that it is included in the report (the small floppy disk icon means that the
component has not been saved yet).

STOOD AADL Tutorial © Ellidiss – February 2015 - page 25

Next select the output format for the report. This can be done by selecting the appropriate
button among html (default), mif, pdf, ps, rtf and odt. Select rtf.

Next start the document generation by pressing the print button.

A standard Windows file navigator is shown to select the output file. A default filename and
directory is provided.

Once the document generator has finished, the report can be viewed by opening the file from
its saved location. If the default output file location is used, it can be found by using the menu
Tools/Open directory/design directory.

page 26 - STOOD AADL Tutorial © Ellidiss – February 2015

The design directory contains all the information related to the Design. Generated
documentation is found under the _doc subdirectory.

Note that the AADL code that was generated previously is found under the _aadl
subdirectory.

STOOD AADL Tutorial © Ellidiss – February 2015 - page 27

The figure below shows the result of the documentation generation for the RTF format.

3.14 Save the design

It is recommended that the design is saved to the design directory regularly. This is done by
selecting Design/Save design.

Note that the save icons that are shown at the right of the component names will disappear once
they are saved.

page 28 - STOOD AADL Tutorial © Ellidiss – February 2015

4 Create an AADL package

In the previous section, we did not explain how existing component classifiers could be
referenced in other AADL models. This is however mandatory to enable proper component
reuse.

In order to be properly referenced with a Project wide scope, it is a good practice to group
component classifier definitions within AADL Packages. In theory, this should be done for
any category of component, however the particular case of Data component classifiers is
especially important as they are not only instantiated to create subcomponents, but also to
specify the actual data type of Data Ports, Event Data Ports or Subprogram Parameters.

This section explains how to create an AADL Package that provides a set of Data component
classifiers.

4.1 Create a new design of type “aadl package”

To create a new Package inside the current Project (cf.§2.5), use the menu Design/New
design/aadl package… and then specify its name in the dialog box.

Note that a Design name in Stood must be alphanumeric (i.e. only contain characters ‘a’ to
‘z’, ‘A’ to ‘Z’, ‘0’ to ‘9’ or the underscore character ‘_’).

4.2 Lock the package to enter edit mode

Once created, the new Package design is automatically loaded and shown in the AADL
graphical editor as an empty box in the middle of a larger one representing the Project.

STOOD AADL Tutorial © Ellidiss – February 2015 - page 29

This Package design is set to read-only mode by default. To enable modifications on this
Package, you need to “lock” it to prevent other users getting concurrent write access to the
model.

When a Package design is locked (may be modified in the current Session), a green padlock is
shown to the left of its name.

4.3 Create Data component classifiers inside the package

To create components in the Package, it must be opened first. To open a Package, it must be
selected using the contextual menu enter option. An alternate way of doing this is to perform a
mouse double click inside the boundaries of the Package.

page 30 - STOOD AADL Tutorial © Ellidiss – February 2015

Once the Package is opened and selected, you can create components, either with the new
AADL component button (in which case a Data component classifier is created by default), or
with the new component contextual menu. After the button or the menu has been used, a new
box is shown on the diagram and a new component is added to the top left list. The default
name given to new components is the name of the container box followed by an integer value.

4.4 Rename the Data component

To rename the new component, select it (on the diagram or in the list), and select the contextual
menu rename option. This opens a dialog box where the actual name of the component can be
entered.

Note that a default value for the Type field is automatically updated when the Name field is
edited

STOOD AADL Tutorial © Ellidiss – February 2015 - page 31

Also note that within a Package, only component classifiers are described, so the Stood
component name generally matches the AADL component type name. However, in case where
several components are the same type, but different implementations, the box name is used to
distinguish them, as explained in next chapter.

4.5 Specify component type and implementation

Within a Package, a unique Stood component is used to represent both the AADL component
type and implementation. If two components have the same type and different
implementations, two Stood components must be created. The three fields of the rename
dialog box are then used to specify the unique Stood component name, the AADL type name
and the AADL implementation name.

In the example below, two Stood components keyboard_digit and screen_digit
have been created. They have the same AADL type name digit and different implementation
name keyboard and screen.

page 32 - STOOD AADL Tutorial © Ellidiss – February 2015

Note that if no implementation has to be produced for the component type, the value NIL must
be entered in the Implementation field. However, if an implementation becomes required to
generate a correct AADL specification (for Instance, if the component has subcomponents), the
default value others is used.

4.6 Define subcomponents of a Data component

According to the AADL standard, a Data component classifier can accept subcomponents that
must also be instances of Data components. As a special case, subcomponents of Data
component classifiers are managed by Stood as a list of typed Attributes. This is in fact
compliant with the way software structured data types (Ada record, C struct, C++ class) are
handled by the tool.

When a Data component classifier is selected on the diagram or in the top-left list, a dedicated
SUBCOMPONENTS section is available inside the component descriptor in the bottom-left list.
This section contains a formal declaration of the list of the Data subcomponent names
associated with their corresponding classifier reference (name of a Data component classifier).
Note that keyword ATTRIBUTES must not be removed and that the list separator is a comma.

To illustrate this, we can create a new Data component classifier called real and specify that
it has two subcomponents int_part and dec_part that are both instances of integer.

Note: do not forget to use the save text button after any change in the text input area.

4.7 Define Data component extension

According to the AADL standard, a Data component classifier may be specified as an
extension of another Data component classifier. Such an extension mechanism can be
compared to software class inheritance in object-oriented languages. The fact that a Data
component classifier extends another Data component classifier can be expressed on the
diagram using a graphical connection. To create this connection, for example to specify that
integers and floats are types of numbers, perform the following:

(a) create a new Data component classifier called number

(b) click on the new connection button of the AADL graphical editor

STOOD AADL Tutorial © Ellidiss – February 2015 - page 33

(c) select the descendent Data component classifier

(d) select the ancestor Data component classifier.
Note: the graphical representation of the extend connection does not comply with the
recommendation of the annex A of the standard.

This component extension information can also be edited textually. It can be accessed by
selecting the EXTENDS section of the component descriptor while the component is selected
on the diagram or in the top-left list.

4.8 Define the public section of the package

When adding Data component classifiers in a Package with Stood, they are put in its private
section by default. To make a Data component classifier public, select it and use the contextual
menu Set public option.

page 34 - STOOD AADL Tutorial © Ellidiss – February 2015

To distinguish between public and private Data component classifiers, the former are listed on
the left border of the Package box in the diagram. Note this graphical notation is specific to
Stood. For the purpose of our example, we can specify that Data component classifiers
integer, float, keyboard_digit and screen_digit are public, whereas number
remains private.

4.9 Define Data Subprograms

Similar to other object oriented languages, it is possible to define the methods or member
functions that are associated with a Data component classifier. In AADL they are called data
Subprogram features.

To create Subprograms, click the new subprogram button in the AADL graphical editor, and
select a Data component classifier.

STOOD AADL Tutorial © Ellidiss – February 2015 - page 35

The new Subprogram is given a default name. The rename contextual menu is used to change
it.

4.10 Specify Subprogram Parameters

Whereas Ports can carry a single event or data message, Subprograms can express more
complex dataflows that are defined by a list of directional typed Parameters. In Stood, this
parameter list must be entered in the Feature Declaration section as shown in the sequence of
screenshots below.

The syntax used by Stood to specify a list of Parameters for a Subprogram is the one
recommended by HOOD which is very similar to the one defined by the Ada standard. The
syntax for a single Parameter is (list separator is a semicolon):

<parameter_name> : <direction> <parameter_type>

(a) Select the Subprogram in the diagram or in the list. The default list of Parameters is
shown in the text input area. In case of a data Subprogram defined in a Data component
classifier, the default Parameter is the receiver whose default name is “me” and default type is
the Data component classifier.

page 36 - STOOD AADL Tutorial © Ellidiss – February 2015

(b) Modify the Parameters in the text input area. Do not forget to save the changes with the
button, contextual menu or keyboard shortcut.

(c) Note that the specified Parameter type is checked against a Stood cross reference table and
the result of this analysis is shown in the right hand side of the text input area.

By specifying proper Parameters, we can express that the two data Subprogram features of
Data component classifier number are from_digits with an input Parameter of type
keyboard_digit, and to_digits with an output Parameter of type screen_digit.

4.11 Add AADL Properties

AADL entities specification can be refined by a set of predefined or project-specific
Properties. In Stood 5.4, all the predefined Properties have been included into the default
configuration, which simplifies their use. Note that it is possible to customize this list in the
tool configuration files, to hide the Properties that are not relevant for the current Project.

When a component or a feature is selected, the list of possible valid Properties is shown in the
TYPE section. A contextual help is available for each individual Property.

STOOD AADL Tutorial © Ellidiss – February 2015 - page 37

To add a Property association, select the appropriate AADL entity (here, keyboard_digit
Data component classifier), and the chosen Property in the list (here,
Source_Data_Size).
Note that for each predefined Property, a help text can be displayed thanks to the Help
contextual menu

Then enter the Property value in the text input area and save with the button, the contextual
menu or the keyboard shortcut.

page 38 - STOOD AADL Tutorial © Ellidiss – February 2015

Note that a default value is proposed for each Property. To display this default value, use
paste from template contextual menu of the text input area.

4.12 Add textual comments

It is recommended that you insert comments and other textual information inside the design
data structure while creating new entities. These comments may be used to provide
explanations about the “why”, “what” and “how” of each component or feature. The standard
configuration of the tool presents a structured list of comment sections that can however be
customized to better fit any other documentation strategy. To fill in one of the proposed
documentation sections, select the appropriate entity and one of the proposed (text) sections.

Text can be entered inside the text input area and must be saved using the button, contextual
menu or keyboard shortcut.

STOOD AADL Tutorial © Ellidiss – February 2015 - page 39

4.13 Show full AADL diagram of the package

The complete AADL diagram for our Package is now as shown below:

Note that the corresponding graphical representation of the same model in UML and HOOD is
also available, simply by switching the notation selector. If the switch is inactive, please use
the main menu Design/Change design model and select ANY to enable the multi-view display.

4.14 Generate the AADL code for the package

To generate textual AADL code from a graphical model in Stood, the Code tab is selected
instead of the Graphic Design one. The new button bar shows two buttons. The first button on
the left is called add pragma and may be used to customize the code generation. Pressing this
button opens a dialog box showing the list of possible pragmas that can be selected. Note that
some pragmas may have already been automatically inserted by Stood, as it is the case here.

page 40 - STOOD AADL Tutorial © Ellidiss – February 2015

The AADL code generation is started by pressing the full extraction button. This opens a
dialog box that can be used to specify which part of the Design has to be generated. More
often, we need the whole Design generated, which is the default.

When the Ok button is pressed, the extraction messages are displayed and the AADL
Inspector is opened in a separate window to view the code generated.

STOOD AADL Tutorial © Ellidiss – February 2015 - page 41

4.15 Show generated AADL code

The AADL generated code is shown by changing the selection in the lower left list of the
Stood window from extraction messages to aadl.

The AADL code can be edited with Stood, although the corresponding file in the repository is
easily located for remote access. To locate a particular file, select the corresponding entry in
the lower left list and use the Location contextual menu.

page 42 - STOOD AADL Tutorial © Ellidiss – February 2015

4.16 Generate C++ code

Without changing anything in the design model, you can generate Ada, C or C++ source code.
The process for generating C++ code (for example) is very similar to generating the AADL
code, i.e.:

(a) Select the Code tab:

(b) Change the source language tab from aadl to cpp:

(c) Press the full extraction button, followed by the OK button in the dialog box. The generated
files are shown by selecting the appropriate items in the selection list:

4.17 Save the design

It is recommended that the design is saved to the design directory regularly. This is done by
selecting Design/Save design.

STOOD AADL Tutorial © Ellidiss – February 2015 - page 43

5 Create an AADL process

The third kind of Design that can be managed with Stood is associated with an AADL
Process. Such a Design represents a software program for which you can generate a complete
set of target language source files that can be compiled and linked to produce an executable
file. To create a Design of type AADL Process use the Design/New design menu. Another
option is to create a new Design by exporting a Process subcomponent defined in an AADL
System.

5.1 Create a new design by export

In the Design calc_system, we have defined a Process subcomponent called
calc_process. It is possible to refine the contents of this Process within this Design.
However, it may be interesting to isolate the pure software part of the System in a separate
Design to complete software design and coding activities until the end.

To do so, load the calc_system Design, select the calc_process component and use the
export contextual menu option, as shown below:

A new Design is added to the list of the Project AADL_calculator. This new Design now
needs to be selected (loaded) and locked (opened in read-write mode) as shown below.

5.2 Import a list of design requirements

It is possible to import the list of software requirements that must be covered by the current
design and coding activities. The simplest way to import such a list of requirements consists of
reading a tabulated ASCII text file that is produced using any requirements management tool.
Such a file must be formatted as follows for import into Stood:

- one requirement per line
- two fields separated by a tab character per requirement: the unique requirement ID and

a comment.

page 44 - STOOD AADL Tutorial © Ellidiss – February 2015

When such a file is available, switch the Stood lifecycle tab to Requirements:

Then click the button load requirements from text:

A file navigator dialog is shown so that the appropriate file can be selected. Our Workspace
contains a file called Requirements.txt whose contents were described in chapter 2.3.

(Note that shown items may vary depending on the actual directory contents)

Once the file is loaded, the corresponding list of requirements appears in Stood. Note that a
small red gauge is shown at the left of each individual item, which means that the requirement
is not covered yet by any design entity.

STOOD AADL Tutorial © Ellidiss – February 2015 - page 45

5.3 Clean up the environment

The current Design has been created by exporting a Process subcomponent of an AADL
System in another Design. This export function also propagates information about the
environment of the exported component, and in particular, all the sibling subcomponents.
However, they are not all relevant in the context of our new Design.

To clean this environment up, switch to the Graphic Design tab to show the AADL diagram,
select each component you wish to remove and use the Delete contextual menu as shown
below:

Once all the components that are not required in calc_process are deleted, the cleaned
model now looks as follows:

5.4 Import a package

In the model we have imported from calc_system, we did not specify the data types
associated with the Data Ports. We now need to reference the Data component classifiers that
were defined in the numbers Package to give a type to the Data Ports. The easiest way to do
this in Stood requires the Package to be imported within the Design scope.

page 46 - STOOD AADL Tutorial © Ellidiss – February 2015

In the AADL diagram, with the outer box selected (aadl_calculator), use the New
package contextual menu to create a local representation of a remote Package:

A new box is added to the diagram, with the default name Extern. To change this name, use
the Rename contextual menu (the Extern Package must be selected).

Now give this local Package the name of the actual Package we created in the Project, i.e.
numbers.

Stood has now made the association between our local Package and the actual remote Design
of the same name. This will allow us to use the various Data component classifiers defined in
the Package numbers in the current Design. To check the available Data component
classifiers, double-click on the local Package numbers:

STOOD AADL Tutorial © Ellidiss – February 2015 - page 47

Note that if changes are made to the remote Package, they will be propagated to the local copy
only during a Design load.

5.5 Change data ports type

When we added Data Ports to subcomponents in section 3.8, we did not care about the
associated data type. A default data type T_Flow was used. It is now possible to reference the
Data component classifiers provided by the imported Package to specify the actual type of the
Data Ports. To illustrate how a port definition can be modified, select the Feature declaration
section for port input in component calc_process.

The right hand list, called symbol table, shows that type T_Flow is unknown. Let us modify
the port declaration to use type keyboard_digit instead. Do not forget to save the changes
using the button, the contextual menu or the keyboard shortcut. The new port declaration will
look as follows:

Note that the data type is now recognized in the symbol table. However, the Data Port
connection between Device KEYBOARD and Process calc_process has suddenly
disappeared from the diagram.

The reason is that the two ends of the connection are no longer type compatible. The
declaration of port output in component KEYBOARD must also be changed in the same way:

Note that the Data Port connection becomes visible again in the diagram as soon as both ends
become type compatible again.

page 48 - STOOD AADL Tutorial © Ellidiss – February 2015

We can now do similar changes to port output of component calc_process and port
input of component SCREEN. The data type these two ports should reference is screen_digit.

5.6 Add ports to the process

Currently, the Process only shows Data Ports in its interface. Data Ports can be used to
describe data flows between components. We are now going to add Event Ports to specify
control flow entry points for the Process.

To create a new Event Port, use the new port button of the button bar in the AADL diagram
editor then click inside the calc_process box. The default name port0 can be changed
using the Rename contextual menu, as shown below:

After adding a second Event Port called off, the diagram will look as follows:

STOOD AADL Tutorial © Ellidiss – February 2015 - page 49

5.7 Add subcomponents to the process

We now need to provide some details about the internals of our Process. The current graphical
representation of calc_process only shows its interfaces. It is its black box view. In order
to edit its internal details, we must enter the component to show its white box view. The Enter
contextual menu, or a double-click, is used to do this:

According to the AADL rules, a Process component implementation can contain Thread
Group, Thread or Data subcomponents. To create a subcomponent, use the new AADL
component button of the button bar in the AADL diagram editor, or the New component
contextual menu. The newly created component is renamed using the Rename contextual menu
as shown below:

page 50 - STOOD AADL Tutorial © Ellidiss – February 2015

As already explained in section 3.6, the Rename dialog box is also used to specify the AADL
component type and component implementation of the subcomponents.

Our model can now be enriched by two other Thread subcomponents representing local
Device interface software.

The graphical representation of the internals of our Process as shown in the diagram below:

STOOD AADL Tutorial © Ellidiss – February 2015 - page 51

5.8 Create and customize ports in subcomponents

Following a top-down modelling process, we must now specify the interface of each
subcomponent. Let us add ports as shown below:

The details for new port declarations are given below for each subcomponent:

page 52 - STOOD AADL Tutorial © Ellidiss – February 2015

5.9 Connect ports between a component and its subcomponents

Connections can now be established between the interface of outer component and the interface
of its inner subcomponents. To create such connections, use the new connection button in the
button bar of the AADL diagram editor and click, in sequence, the two ports to be connected.
Another way to do this is to select a port in the outer component interfaces and use the Connect
contextual menu option.

Note that only the direction and type compatible ports are given in the dialog box. The new
diagram will look as follows after connecting the four ports of the Process interface is:

5.10 Connect ports between subcomponents

To connect ports between subcomponents of a same component, use the new connection button
in the button bar of the AADL diagram editor and click, in sequence, the two ports to be
connected. Another way to do this is to select a port in one of the subcomponent interfaces and
use the Connect contextual menu option.

STOOD AADL Tutorial © Ellidiss – February 2015 - page 53

Note that only the direction and type compatible ports are given in the dialog box. The new
diagram will look as follows after connecting all the remaining subcomponents:

5.11 Specify flows

AADL connections represent point to point interaction between two ports of the same type and
having compatible directions. Even if they do not refer to the same data type, several
connections may participate in the same more global data flow. Stood has a particular way to
express such flow specifications.

page 54 - STOOD AADL Tutorial © Ellidiss – February 2015

For each port involved in a given flow, the flow name must be inserted into the Feature
declaration section to replace the default name Flow. In section 5.8, we already changed these
names into myFlow, so that the AADL code generator can produce the corresponding flow
specification.

5.12 Specify real-time properties

Threads that have been created are aperiodic. When Threads are periodic or sporadic, more
details about their real time behaviour can be managed by the tool. This subcomponent sub-
category can be modified using the contextual menu Change into. To illustrate this feature, let
us change the two drivers from aperiodic Threads into periodic Threads:

Note that the graphical notation has changed to comply with the AADL rules. Real-time
properties must be entered into the model as standard AADL Properties. We can specify for
instance that keyboard_driver has a period of 100 ms a deadline of 50 ms and a
compute_execution_time of 1ms..1ms:

Similar modifications can now be done for the Thread screen_driver to change it into a
periodic Thread and to add appropriate real-time Properties. This information is included by

STOOD AADL Tutorial © Ellidiss – February 2015 - page 55

the code generator at the most appropriate location in the AADL source text:

5.13 Specify modes

AADL Modes can be defined to represent the operational states of a component, using a state
diagram editor to specify them. We are going to illustrate this on the Process
calc_Process. The state diagram editor is launched using the Open state diagram
contextual menu:

A new graphical editing area is representing AADL Modes and transitions representing AADL
Mode Transitions. To create a new Mode, use the buttons or contextual menu:

page 56 - STOOD AADL Tutorial © Ellidiss – February 2015

States are given a default name that can be modified using the Rename contextual menu. Let us
create two Modes: idle and running:

Transitions can be created using the new transition button or contextual menu. First click the
origin Mode and then the destination Mode:

Transitions are given a default name that can be changed using the Rename contextual menu:

Transitions must also be attached to a triggering Event. Selection of the Event is done using
the select transition event button or the Transition event contextual menu. This action opens a
dialog box showing all the Ports and Subprograms defined in the interface of the current
component. Note that only In and In Out Event Ports can be used to trigger Mode
Transitions.

STOOD AADL Tutorial © Ellidiss – February 2015 - page 57

The complete graphical Modes definitions as well as the corresponding generated AADL
source text fragment are shown below:

Note that using the state diagram editor with AADL Threads or Subprograms generates a
Behavior Annex subclause instead of a Modes subclause.

5.14 Generate the AADL code for the process

To generate textual AADL code from a graphical model in Stood, the Code tab is selected. The
new button bar shows two buttons. The first button on the left is called add pragma and may be
used to customize the code generation. Pressing this button opens a dialog box showing the list
of possible pragmas that can be selected. Note that some pragmas may have already been
automatically inserted by Stood, as it is the case here.

The AADL code generation is started by pressing the full extraction button. This opens a
dialog box which is used to specify the part of the Design to be generated. Mostly, we need the
whole Design to be generated, which is the default.

page 58 - STOOD AADL Tutorial © Ellidiss – February 2015

When the Ok button is pressed, the extraction messages are displayed and the AADL Inspector
is opened in a separate window to view the code generated. The messages file lists the abstract
component types and implementations that were created to fully describe our Process. Note
that the context of the Process is also generated as a System having the same name as the
current Project and which also contains the two Device components.

5.15 Show generated AADL code

The AADL generated code can be shown by changing the selection in the lower left list of the
Stood window from extraction messages to aadl.

The AADL code can be edited with Stood, although the corresponding file in the repository is
easily located for remote access. To locate a particular file, select the corresponding entry in
the lower left list and use the Location contextual menu.

The screenshot below shows the result of an AADL code generation that only uses the
information that has been inserted during the previous modelling steps:

STOOD AADL Tutorial © Ellidiss – February 2015 - page 59

Note that this view has new buttons that can be used to activate AADL compliant tools such as
AADL Inspector or Osate. To user the later, the environment variable OSATE_PATH must
have been properly configured in the initialisation file (stood.ini or .stoodrc).

5.16 Generate Ada code

Without changing anything in the design model, you can generate Ada, C or C++ source code.
The process for generating Ada code (for example) is very similar to generating the AADL
code, i.e.:

(a) Select the Code tab again:

(b) Change the source language tab from aadl to Ada:

(c) Press the full extraction button, followed by the OK button in the dialog box. The generated
files are shown by selecting the appropriate items in the selection list:

page 60 - STOOD AADL Tutorial © Ellidiss – February 2015

Note that the generated Ada source files are stored in a default location in the Workspace. The
location of each file is found using the Location contextual menu:

5.17 Save the design

It is recommended that the design is saved to the design directory regularly. This is done by
selecting Design/Save design.

STOOD AADL Tutorial © Ellidiss – February 2015 - page 61

6 Conclusion

This tutorial does not provide information about all the possible modelling and model
processing features of Stood. In particular, this first version of the document does not give
explanations about the following important topics that are nevertheless already supported by
Stood:

- Create a new Design from a remote AADL textual specification.
- Update an existing Design from a remote AADL textual specification.
- Create an AADL model from legacy Ada or C source files.
- Use the integrated Design verification tools.
- Perform software to hardware binding.

Moreover, the AADL Inspector companion tool may be included with your distribution of
Stood. In that case, this tool is automatically opened after the AADL code has been generated
and gives the opportunity to perform advanced model verifications such as scheduling analysis
and virtual execution at the AADL level. Please refer to the AADL Inspector user manual for
further details.

page 62 - STOOD AADL Tutorial © Ellidiss – February 2015

STOOD AADL Tutorial © Ellidiss – February 2015 - page 63

Sales office:
TNI Europe Limited

Triad House
Mountbatten Court

Worall Street
Congleton
Cheshire

CW12 1AG
UK

info@ellidiss.com
+44 1260 291 449

Technical support :
Ellidiss Technologies
24 quai de la douane

29200 Brest
Brittany
France

aadl@ellidiss.fr
+33 298 451 870

www.ellidiss.com

