Stood and DO-178B

Technical Note

E uro p (=] Pierre Dissaux,

TNI-Europe Limited

Mountbatten Court, Worrall Street
Congleton CW12 1DT
UK
+44 (0) 1260 291449
pierre.dissaux@tni-world.com

1 Introduction

Stood is the state of the art solution for mission critical software development in avionics, space, defense,
ground transportation and other demanding industrial systems. Stood and his companion tool Reqtify, offer a
full support for high quality ground or embedded real-time software projects in Ada or C/C++.

Stood is the result of a multi-year experience and collaboration with major European clients on high-profile
industrial projects, such as the Airbus multi-generation aircrafts, the Tiger helicopter and a wide range of
satellites. Leveraging from this experience, Stood and Reqtify, offer comprehensive and powerful support for
the Software Requirements and Software Design activities, as specified in domain-related international industrial
standards, such as DO-178B, ECSS-E40, ISO/IEC-12207 and EN-50128.

This technical note presents how Stood and Reqtify used together, comply with the DO-178B objectives.

2 Coverage of DO-178B objectives
2.1 Software Planning Process (Section 4)

2.1.1 Software Planning Process Objectives (Section 4.1)

"... The objectives of the software planning process are:"

4.1.a. "The activities of the software development processes and integral processes of the software life cycle that
will address the system requirements and software level(s) are defined"

Stood may be included into any existing software development environment. In addition, it is highly
customizable, especially to interact with Software Configuration Management (use of a file system database,
customization of the interface with configuration management tools, support of change management) and
Software Quality Assurance (customizable tools to perform rules compliancy checks, requirements traceability).

4.1.b. "The sofiware life cycle(s), including the inter-relationships between the processes, their sequencing,
feedback mecanisms, and transition criteria are determined"

Stood covers a well identified process in the life-cycle. Forward and reverse bridgers between upsteam and
downstream tools provide a high flexibility in defining a full support of the development activities, including
waterfall and evolutionary approaches. Inter-relationships and transition criteria are well defined and
documented, even if they’re customizable, and sequencing may be clearly expressed by the use of successive
tools or successive steps inside a given tool.

Stood and DO-178B - Technical Note - P. Dissaux - TNI-Europe - 27 Nov. 2003 1



4.1.c. "The software life cycle environment, including the methods and tools to be used for the activities of each
software life cycle process have been selected"”

Stood offers appropriate methods support and tools for the Design Process, the Coding Process, part of the
Verification Process and full requirements traceability throughout the software life cycle.

4.1.e. "Software development standards consistent with the system safety objectives for the software to be
produced are defined"

Stood is compliant with SW development standards upto critical level, due to a large experience in aerospace
software developments.

2.1.2 Software Development Environment (Section 4.4.1)

"... Guidance for the selection of software development environment methods and tools includes:"

4.4.1.a. "During the software planning process, the software development environment should be chosen to
minimize its potential risk to the final airborne software"

Stood is used for the architectural and detailed design phases, and has been developed upon specific
requirements to support acrospace software developments. Moreover, it has been used for more than ten years
within such projects. In addition, Reqtify, the transversal requirements traceability tool of the suite has been set
up to avoid redundancies within the project database.

4.4.1.b. "The use of qualified tools or combinations of tools and parts of the software development environment
should be chosen to achieve the necessary level of confidence that an error introduced by one part would be
detected by another. An acceptable environment is produced when both parts are consistently used together"

Point to point communication features have been developed between Stood and its upstream and downstream
tools. In addition, the requirements traceability tool, Reqtify, can check information handled by all the tools in
the development chain. Stood is used upto critical level software developments, so have a huge certification
credit, and Reqtify is DO178-B qualified as a verification tool (DO178-B section 12.2.2).

4.4.1.c. "Software verification process activities or software development standards, which include consideration
of the software level, should be defined to minimize potential software development environment-related errors"

Stood is based on semi-formal techniques (i.e. HOOD, UML, AADL). That means that an extensive use of good
software engineering practices contributes to a better control of the software architecture by the development
team. However, sensible parts of the software code may not be generated automatically if required to minimize
the impact of the tools potential discrepencies.

2.2 Software Development Processes (Section 5)

2.2.1 Software Design Process (Section 5.2)

"The objectives of the software design process are:"
5.2.1.a. "The software architecture and low-level requirements are developed from the high-level requirements"

Stood is used to perform the design process activities. This tool complies with the HOOD design method
(Hierarchical Object-Oriented Design), that is based on a modular hierarchical top-down decomposition. A
complete list of high-level requirements may be imported during the design activities. Then graphical edition is
used to build the software architecture in terms of well defined interacting modules. The standard design rules
enforce high cohesion and low coupling. Textual edition, fully consistant with the graphical architecture, is used
to support the detailed design activities and identify the low-level requirements.

Stood and DO-178B - Technical Note - P. Dissaux - TNI-Europe - 27 Nov. 2003 2



5.2.1.b. "Derived low-level requirements are indicated to the system safety assessment process"

Stood includes a requirements management feature and can be connected to Reqtify. Any reference to a known
high-level requirement, and any derived low-level requirement may be explicitely identified and highlighted by
Reqtify and documented in the traceability matrix.

2.2.2 Software Coding Process (Section 5.3)

"The objective of the software coding process is:"

5.3.1.a. "Source code is developed that is traceable, verifiable, consistent, and correctly implements low-level
requirements"

The textual notation used to perform the HOOD detailed design activity includes specific sections to either insert
the applicative source code, either express the coding requirements with a pseudo-code. Each coding section is
fully consistent with the detailed design data structure encompassing the low-level requirements. Automatic code
generation can be used to produce a design-consistent source code skeleton. The "round-trip" engineering feature
of Stood can be used to maintain design and code consistency throughout the coding process.

2.2.3 Integration Process (Section 5.4)

"The objective of the integration process is."
5.4.1.a. "The Executable Object Code is loaded into the target hardware for hardware/software integration"

The software interface of the target hardware, as well as the required libraries may be described during the
design process activities, and managed by the automatic code generator during the coding process activities.
Additionally, the code generator of Stood may be customized to fully support any compilation and linking chain,
and thus facilitate the integration process.

2.3 Software Verification Process (Section 6)

2.3.1 Review and Analyses of the Low-Level Requirements (Section 6.3.2)

"... These reviews and analyses confirm that the software low-level requirements satisfy these objectives:"

6.3.2.a. "Compliance with high-level requirements: The objective is to ensure that the software low-level
requirements satisfy the software high-level requirements and that derived requirements and the design basis for
their existence are correctly defined"

Stood can ask Reqtify to compile all the high-level requirements that must be satisfied , and keep them available
all along the design activities. The step by step top-down modular decomposition process recommended by the
HOOD method enforces a rigorous and consistent design structure to support the requirements. At any level in
that hierarchy, the standard description framework for each HOOD module (the ODS: Object Description
Skeleton) includes a set of sections to describe the compliancy with high-level requirements and justify the
existence of derived requirements:

- Statement of the problem

- Referenced documents

- Structural requirements

- Functional requirements

- Behavioural requirements

- Justification of design decisions

6.3.2.c. "Compatibility with the target computer: The objective is to ensure that no conflicts exist between the

software requirements and the hardware/software features of the target computer, especially, the use of
resources (such as bus loading), system response times, and input/output hardware"

Stood and DO-178B - Technical Note - P. Dissaux - TNI-Europe - 27 Nov. 2003 3



In HOOD, the hardware/software features of the target computer are represented by Environment Objects which
interface is precisely defined. The cross-reference table provided by Stood also enables the verification of all the
interactions between the applicative modules and the Environment Objects. Finally, a section of the ODS can be
used to specify the Implementation Constraints.

6.3.2.d. "Verifiability: The objective is to ensure that each low-level requirement can be verified"

It is recommended by the HOOD method that the low-level requirements map software entities of the same
module (i.e. operations, types, constants, exceptions, data). All these entities are part of the Stood design
database and can be accessed individually and documented. It is also possible to use the pseudo code sections to
better formalize the low-level requirements, and thus to provide the ability to perform external verifications. In
addition, Reqtify can be used to analyse the test cases and check the unit testing coverage.

6.3.2.e. "Conformance to standards: The objective is to ensure that the Software Design Standards were
followed during the software design process, and that deviations from the standards are justified"

Stood complies strictly to the HOOD method, that is formally defined by the HOOD Reference Manual. Most of
this compliancy is hard-wired into the edition features of the tool. However, as the underlying model is semi-
formal only, there is a need to provide a verification tool to check the compliancy of the current software design
towards the rules of the method. This is achieved by the HOOD checker tool that is included into the standard
version of Stood. In addition, this rules checker may be customized in order to follow any amendment made to
the standard rules by the project. Compliancy to emerging standards like UML2.0, defined by the OMG, and
AADL (Avionics Architecture Description Language), defined by the SAE, is also provided.

6.3.2.f. "Traceability: The objective is to ensure the high-level requirements and derived requirements were
developed into the low-level requirements"

Stood includes its own requirements coverage analysis feature, but Reqtify may be used more widely, to collect
the high-level requirements from any file or modeling tool, collect the low-level requirements from Stood, and
provide all the relevant coverage information dynamically. Reqtify has been qualified as a verification tool
according to section 12.2.2 of the DO178-B, for the AIRBUS A380 developments.

2.3.2 Review and Analyses of the Software Architecture (Section 6.3.3)

"... These reviews and analyses confirm that the software architecture satisfies these objectives:"

6.3.3.a. "Compatibility with the high-level requirements: The objective is to ensure that the software architecture
does not conflict with the high-level requirements, especially functions that ensure system integrity, for example,
partitioning schemes"

The hierarchical top-down modular decomposition process enforced by the HOOD method leads to a precise and
very well controlled definition of the software architecture. This iterative process and its associated rules are
fully supported by Stood and ensure that the high-level requirements are taken into account, and consistently
down to the terminal modules of the hierarchy thanks to the Implemented By relationship of the HOOD
method.

6.3.3.b. "Consistency: The objective is to ensure that a correct relationship exists between the components of the
software architecture. This relationship exists via data flow and control flow"

The relationships between the components of the software are restricted by precise visibility rules that are

controled by Stood during the graphical edition and upon specific request to the design checker.

During the HOOD architectural design activities, all the dependencies between the modules must be represented

by an appropriate Use relationship. These relationships cover functional dependencies (control flow and

associated data flows and exception flows) and structural dependencies (data type inheritance, aggregation and

instanciation). During the HOOD detailed design and coding activities, the dependencies are deduced from an

appropriate analyses of the pseudo code or code and are used by various processing features of Stood:

- Cross-references tables showing low-level dependencies between all the components of the software
architecture.

- Automatic update of the Required Interface sections of the documentation framework (ODS).

- Production of graphical dependency graphs (call trees, data access, type structure, ...).

Stood and DO-178B - Technical Note - P. Dissaux - TNI-Europe - 27 Nov. 2003 4



- Design checker, to compare architectural design dependencies and detailed design dependencies.
- Code generator, that use this information to automatically insert the right references to the remote modules,
and to order properly the declarations in the source code.

6.3.3.c. " Compatibility with the target computer: The objective is to ensure that no conflicts exists, especially
initialization, asynchronous operation, synchronization and interrupts, between the software architecture and
the hardware/software features of the target computer"

Each software interface of the hardware and software libraries or other remote utility used by the design are
represented by Environment Objects that are fully included into the design model. Stood can thus check the
correctness of any reference to hardware/software feature of the target computer. In addition, these software
interfaces are automatically updated each time the design is opened. This ensures that environment changes are
taken into account.

6.3.3.d. "Verifiability: The objective is to ensure that the software architecture can be verified, for example,
there are no unbounded recursive algorithms"

Each software architecture element is represented by an appropriate entity of the HOOD design hierarchy. This
description is automatically updated by Stood during the architectural and detailed design activities. Verification
post-processors may access this database to perform any appropriate action and may be customized to fit project
recommendations. The verification post-processors that are included in the standard version of Stood are:

- A HOOD rules checker

- A design metrics checker

- Arequirements coverage checker

- A schedulability checker

6.3.3.e. "Conformance to standards: The objective is to ensure that the Software Design Standards were
followed during the software design process and that deviations to the standards are justified, especially
complexity restrictions and design constructs that would not comply with the system safety objectives"

Stood complies strictly to the HOOD method, that is formally defined by the HOOD Reference Manual. Most of
this compliancy is hard-wired into the edition features of the tool. However, as the underlying model is semi-
formal only, there is a need to provide a verification tool to check the compliancy of the current software design
towards the rules of the method. This is achieved by the HOOD checker tool that is included into the standard
version of Stood. In addition, this rules checker may be customized in order to follow any amendment made to
the standard rules by the project.

6.3.3.f. "Partitioning integrity. The objective is to ensure that partitioning breaches are prevented or isolated"

Thanks to the HOOD method, each software module is perfectly located towards the others within a tree
structure that defines the scope of each software component and the visibility rules. This structure and rules are
propagated to the source code when the automatic code generator of Stood is used. Additionally, it is possible to
export a complete subsystem, represented by a branch of the tree, in order to delegate the corresponding
development activities outside the scope of the main system. It is also possible to re-import this subsystem
without breaching the structural and visibility rules of the overall design.

2.3.3 Review and Analyses of the Source Code (Section 6.3.4)

"... The topics should include:"

6.3.4.a. "Compliancy with low-level requirements: The objective is to ensure that the Source Code is accurate
and complete with respect to the software low-level requirements, and that no Source Code implements an
undocumented function"

The use of the automatic code generation feature of Stood ensures that the source code will be structured with a
one to one mapping with the design entities supporting the low-level requirements. The design structure that is
defined for each module (ODS), also contains the documentation, and a visual indicator shows the completeness
of this design structure, and especially the documentation sections:

- Ared tick indicates that required information is missing.

- An orange tick indicates that required information is uncomplete.

Stood and DO-178B - Technical Note - P. Dissaux - TNI-Europe - 27 Nov. 2003 5



- A green tick indicates that all the required information is present.
Alternatively, Reqtify may be used to analyse the design documentation and the source code, and to check that
no source code implements an undocumented function.

6.3.4.b. "Compliancy with the software architecture: The objective is to ensure that the Source Code matches the
data flow and control flow defined in the software architecture”

Following the rules of the HOOD method, every access to remote data must be encapsulated by operations. The
consequence of that rule is that, at design level, all data flows and control flows between modules can be
represented graphically by the Use relationships, and textually by the operation declarations (list of typed
parameters) and calls. These operation declarations are defined formally in Stood (with an Ada like syntax) and
are generated in the source code. In addition, it is recommended either to perform the coding activity through the
design tool, or to use the round-trip engineering feature to feed the operations body code back to the design
structure. It is then possible to also check the control flows defined in the source code comply with the software
architecture...

6.3.4.c. "Verifiability: The objective is to ensure that the Source Code does not contain statements and structures
that cannot be verified and that the code does not have to be altered to test it"

By customizing the code generator of Stood, it is possible to include into the generated source code, any
appropriate comment, directive or code, such as conditional compilation, to breach the visibility rules for testing

purpose.

6.3.4.d. "Conformance to standards: The objective is to ensure that the Software Code Standards were followed
during the development of the code, especially complexity restrictions and code constraints that would be
consistent with the system safety objectives. Complexity includes the degree of coupling between software
components, the nesting levels for control structures, and complexity of logical or numeric expressions. This
analysis also ensures that deviations to the standards are justified"

For the part of the code that is automatically generated, it is possible to customize the code generator of Stood
in order to comply with the software code standards. Additionally, the HOOD design process is based on the
high consistency and low coupling principles, and the design structure is automatically propagated to the source
code by the code generator.

6.3.4.e. "Traceability: The objective is to ensure that the software low-level requirements were developed into
Source Code.

This objective may be reached either by using the automatic code generator of Stood, or by using Reqtify, the
requirements traceability tool, or both. Reqtify has been qualified as a verification tool according to section
12.2.2 of the DO178-B, for the AIRBUS A380 developments.

6.3.4.f. "Accuracy and consistency: The objective is to determine the correctness and consistency of the Source
Code, including stack usage, fixed point arithmetic overflow and resolution, resource contention, worst-case
execution timing, exception handling, use of uninitialized variables or constants, unused variables or constants,
and data corruption due to task or interrupt conflicts"

It is recommended by the HOOD method to insert the source code into the design structure either by direct
coding or by round-trip engineering. This code may thus be analysed and processed by the verification utilities
offered by Stood. Static lexical verification are especially provided with the cross-references table and the
HOOD rules checker.

Stood and DO-178B - Technical Note - P. Dissaux - TNI-Europe - 27 Nov. 2003 6



3 References

. RTCA, Software Considerations in Airborne Systems and Equipment Certification (DO-178B), 1992.

. ISO/IEC, Information technology, Software life cycle process (ISO/IEC 12207), 1995

. ECSS, Space Engineering: Software (ECSS-E40B), ESA Publication, 2000.

. HOOD User Group, HOOD Reference Manual release 3.1, Masson & Prentice-Hall, 1993.

. HOOD User Group, HOOD Reference Manual release 4.0, HUG, 1995.

. A. Burns, A. Wellings, HRT-HOOD: A Structured Design Method for Hard Real-Time Ada Systems,

Elsevier, 1995

. J.P. Rosen, An Industrial Approach for Software Design, HUG, 1997.

. P. Dissaux, HOOD4 and Ada95, Proceedings DASIA conference, Lisbon 1999.

9. T. Vardanega, Development of On-Board Embedded Real-Time Systems: An Engineering Approach,
ESA Technical Report STR-260, 1999.

10. P. Dissaux, Real-Time C Code Generation from a HOOD Design, Proceedings DASIA conference,
Montreal 2000.

11. P. Dissaux, HOOD Patterns, Proceedings DASIA conference, Nice 2001.

12. P. Farail, P. Dissaux, COTRE: a new approach for modeling real-time software for avionics, Proceedings
DASIA conference, Dublin 2002.

13. P. Dissaux, HOOD and AADL, Proceedings DASIA conference, Prague 2003

14. SAE, Draft Avionics Architecture Description Language (AADL), AS2C, 2003

AN AW

[e BN

Stood and DO-178B - Technical Note - P. Dissaux - TNI-Europe - 27 Nov. 2003



	Introduction
	Coverage of DO-178B objectives
	Software Planning Process (Section 4)
	Software Planning Process Objectives (Section 4.1)
	Software Development Environment (Section 4.4.1)

	Software Development Processes (Section 5)
	Software Design Process (Section 5.2)
	Software Coding Process (Section 5.3)
	Integration Process (Section 5.4)

	Software Verification Process (Section 6)
	Review and Analyses of the Low-Level Requirements (Section 6.3.2)
	Review and Analyses of the Software Architecture (Section 6.3.3)
	Review and Analyses of the Source Code (Section 6.3.4)


	References

