
Stood 4.1

User's Manual
part II: Architectural Design

1. Modules and Components.....p. 3

2. HOOD Diagrams................... p. 7

3. Graphical edition....................p. 37

4. State-Transition Diagrams.....p.135

5. Inheritance Tree.................... p.147

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-1

Pierre Dissaux

page II-2 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

1. Modules and Components
A HOOD Application is described as set of cooperating sub-systems. From the
most general point of view, these sub-systems will be called Modules.

These Modules build a tree structure describing various levels of abstraction for
the same Application. At the highest level, the overall Application may be
handled by a unique Module, called the Root Module. At the lowest level,
leaves of the tree are called Terminal Modules and will contain all the
information regarding a very limited part of the Application. At intermediate
levels, branches of the tree, called Non Terminal Modules, help in organizing
and partitioning the Application.

Each Module, whatever its position in the hierarchy is, may encompass
software Components of the Application. These Components may be of
following kinds:

• Functional elements: Operations, Exceptions

• Data description elements: Types, Constants, Data

• Behavioural elements: States, Transitions

Architectural design with STOOD aims to build a complete HOOD hierarchy
of Modules, complying with methodological recommendations, and to identify
all necessary Components. This strong software structure will then be ready to
be filled up during detailed design phase.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-3

This process may of course follow an iterative way, and STOOD will
automatically keep internal model consistency at any time.

Practically, results of architectural design phase with STOOD is stored in one
unique file called Stood.dg, and located in a directory named as the
Application. Take care to save your work from time to time, in order to keep
this file as up to date as possible. If backup process on your system does not
allow to save the overall Application directory, the one file to save to be able to
recover an architectural design is Stood.dg.

To perform architectural design tasks with STOOD, graphical edition is
required, and both multi-views HOOD diagrams and State-Transition Diagrams
need to be drawn:

a State-Transition Diagram

page II-4 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

a HOOD diagram

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-5

page II-6 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

2. HOOD Diagrams editor

2.1 Drawing area.................................. p. 9
2.2 Text input area p.14
2.3 Window menu................................ p.18
2.4 View menu..................................... p.20
2.5 Create menu................................... p.21
2.6 Edit menu....................................... p.30

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-7

A HOOD diagram editor may be opened by one of the following actions:

• Select graphic editor item of editors menu in main editor
• Press gra button on button bar of main editor
• Select duplicate item of window menu in another graphic editor

Before opening a HOOD diagram editor, a Project and an Application would
better have been selected. In this case, displayed diagram will show current Root
Module. If no Application was selected before opening graphical editor, or if
current Application is deselected, no diagram will be displayed and no graphical
edition will be possible until another Application is selected in main editor.

A graphic editor is composed of a large drawing area where graphical edition
may be performed, a small text input area where additional information about
graphical entities may be entered, a menu bar and a button bar.

page II-8 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

2.1. Drawing area

Drawing area shows only one HOOD diagram at a time, describing a particular
level of abstraction in HOOD hierarchy. Inside drawing area, it is possible to
select, create, move, resize and delete graphical elements. General principles of
graphical edition are explained below, but more detailed information regarding
practical edition of each HOOD entity is provided in § 3.

Drawing area may be switched on one of the five provided views to show
Operations, Types, Constants, Exceptions or Data. Current view is
mentioned in a label at top left side of this window area.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-9

2.1.1. Diagram scale

It is generally not possible to display a full HOOD diagram without making
graphical entities too small to be readable. Scale of drawing area may be
controlled by dedicated buttons and list at the right hand of graphic editor
button bar.

Proposed scaling rates are from 25% up to 400%. They may be obtained by
clicking on zoom-in (+) or zoom-out (-) buttons, or directly selecting chosen
rate on the scrolling list.

page II-10 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

2.1.2. Select, move and resize graphical entities

Within drawing area, graphical entities may be selected by a simple click on left
mouse button. Dragging handles are displayed on current selected component.
There is no possible multiple selection for graphical entities.

While selected, some entities may be moved or resized. To move an entity,
select it and drag it without releasing left mouse button. To resize it, drag one of
the dragging handles. Some entities have fixed location or size. There is no
"undo" function for move and resize operations. Take care to save your
diagrams from time to time, and before major changes.

If new location of a move is not valid, a dialog box will be displayed:

Some move may have other effects than only affecting the display. For instance,
moving a Module box inside another one will change Design Tree structure.
Please refer to detailed description for each kind of entity.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-11

2.1.3. Create new graphical entities

An easy way to create new graphical entities, is to use drawing area pop-up
menu. This menu appears when clicking on center mouse button on UNIX
platforms, or right mouse button on Windows platforms, and when mouse
pointer is located inside drawing area.

When current view is operation, drawing area pop-up menu contains items to
create Object, Class or Instance_Of Modules, Operations or
Operation_Sets, Op_Use and Implemented_By relationships: ,
Exception Flows: , direct: , reverse: or bidirectional:
DataFlows. Please refer to create menu description for further details (§ 2.5).

page II-12 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

When current view is type, drawing area pop-up menu contains items to create
Object, Class or Instance_Of Modules, Types or Type_Sets, Type_Use and
Implemented_By relationships: , Inheritance relationships: ,
Attributes relationships: or labels: . Please refer to create menu
description for further details (§ 2.5).

When current view is respectively constant, exception or data, drawing area
pop-up menu contains items to create Object, Class or Instance_Of Modules,
Constants (resp. Exception or Data) or Constant_Sets (resp.
Exception_Sets or Data_Sets), or Implemented_By relationships: .
Please refer to create menu description for further details (§ 2.5).

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-13

2.2. Text input area

As soon as a graphical entity has been selected inside drawing area, additional
information must generally be inserted within text input area. This information
may be simply a name, or a set of properties, regarding the kind of selected
entity.

This text input area may contain one or several tabs. General tab is always
present, and other tabs may be added or removed with a tool configuration
action (refer to part I of this user’s manual). General tab contains zero, one or
several fields composed of a fixed generic field name, and relevant variable value
for current selected entity. Take care not to alter field names while typing field
values, else a syntactic error will occur. Would this happen, please cancel
changes before going on (select cancel item in text input area pop-up menu).

page II-14 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

Please refer to § 3 to get a description of the fields to be entered in General tab,
for each kind of graphical entity :

• For a Module: refer to 3.1.3
• For an Operation: refer to 3.3.3
• For an Operation_Set: refer to 3.4.3
• For an Exception: refer to 3.5.3
• For a DataFlow: refer to 3.6.6.3
• For an Exception_Flow: refer to 3.6.7.3
• For a Type: refer to 3.7.3
• For a Type_Use label: refer to 3.8.7.3
• For a Constant or Data: refer to 3.9.3

While pressing center or right mouse button, while mouse pointer is located
inside text input area, a pop-up menu shows general purpose text editing
functions:

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-15

: Cancel previous text change or cut, paste or delete command.

 : Copy to a text buffer and erase currently selected text.

 : Copy currently selected text to a text buffer.

 : Paste text buffer contents at insertion point.

 : Erase currently selected text.

 : Select all contents of text input area.

 : Save text changes.

page II-16 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

Note that, in text input area, pushing button acts as save command.

 : Restore previously saved version of the text.

 : Open a standard dialog box to select a file which contents
will be pasted at current insertion point.

 : Open a standard dialog box to select a file which location will
be used as a include link for some documentation tools.

 : Open a standard dialog box to select a file in which
current text will be copied.

 : Provide contextual help regarding current textual edition. Please refer to
detailed chapters related to each kind of graphical entity. These help files may
be customized by editing the files contained in config/ods_help
configuration directory (refer to part I of this User’s Manual).

 : Provide a template current textual edition. Please refer to detailed
chapters related to each kind of graphical entity. These template files may be
customized by editing the files contained in config/ods_template
configuration directory (refer to part I of this User’s Manual).

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-17

2.3. Window menu of graphic editor

Window menu from main menu bar provides general functions to control graphic
editor.

: provide general information about graphic editor. This information is
displayed in a dialog box.

page II-18 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

This help information may be customized by changing contents of gra and
gra.more files in config/help configuration directory.

 : open another graphic editor. Practically, it is simply a shortcut to
graphic editor item of editors menu of main editor.

 : direct print of current HOOD diagram on standard printer. For
Windows, used printer is the default one. For UNIX, a PostScript file is created
in working directory, and direct printing is performed if a printer queue has first
been defined in fastprint.sh file of internalTools configuration
directory.

 : close current graphic editor, but has no effect on recent graphical editing
actions that remain valid.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-19

2.4. View menu of graphic editor

HOOD4 diagrams should be described with two separated but consistent
views: a structural view that shows data structures (Types) and their
dependencies, and a functional view that shows services (Operations) and their
relationships. In order to ease creation and handling of other kinds of graphical
components, STOOD provides three additional views to manage Constants,
Exception and Data. Note that all these views refer to the same set of
Modules.

Only one view of one HOOD diagram may be shown at a time on a graphic
editor. Current displayed view may easily be identified by a dedicated label at
top left side of drawing area. view menu from graphic editor main menu bar, or
predefined switches from button bar should be used to change current view.

page II-20 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

2.5. Create menu of graphic editor

create menu of main menu bar of graphic editor should be used to create
graphical entities. Items list of this menu varies as regards current view (refer to
§ 2.4 to change view if required). Some menu items are the same for each view,
whereas other items are specific to current view.

2.5.1. create menu items that are common to all views

Creation and setting of HOOD Modules does not depend on current view.
That is why relevant menu items are always proposed by create menu.
Shortcuts may also be available with buttons.

 or : Create a new HOOD Object (refer to § 3.2.1). A grey
rectangle is shown at mouse pointer location, and may be dragged to chosen
place. A mouse button click will then actually create a new Object. It will be
given a default name. Refer to § 3.1.3 to learn how to change properties of a
HOOD Module.

 or : Create a new HOOD Class (refer to § 3.2.2). It behaves
exactly the same as for HOOD Objects.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-21

 : Create a new HOOD Instance_Of (refer to § 3.2.4).
When this menu item is selected, a dialog box provides the list of visible
Generic Applications which could be taken as a template for new Module.

After having chosen one of proposed Generics, create process becomes similar
to creating regular Objects or Classes.

For a given Project, the list of proposed Generic Applications may be
controlled at first level with system editor, and more generally by setting a new
path (SavePath property in stood.ini or .stoodrc initialization file) to
search STOOD Applications on your system or network. Please refer to part I
of this User’s Manual for more detailed information.

page II-22 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

2.5.2. create menu items for Operation view

 or : When choosing this menu item or pressing appropriate
shortcut button, a new Operation is created. Please refer to § 3.3.2 for further
details.

 : When choosing this menu item, a new empty Operation_Set
is created. Please refer to § 3.4.2 for further details. As an extension to HOOD4,
Internal Operation_Sets may also be created with STOOD.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-23

 or : When choosing this menu item or pressing appropriate shortcut
button, a new Op_Use or Implemented_By relationship is created. Please refer
respectively to § 3.6.2 or 3.10.2 for further details about creating Op_Use or
Implemented_By relationships for Operations and Operation_Sets.

 : When choosing this menu item, a new Exception_Flow is created on an
existing Op_Use relationship. Please refer to § 3.6.6.2 for further details.

 : When choosing this menu item, a new direct DataFlow is created on an
existing Op_Use relationship. Please refer to § 3.6.5.2 for further details.

 : When choosing this menu item, a new reverse DataFlow is created on an
existing Op_Use relationship. Please refer to § 3.6.5.2 for further details.

 : When choosing this menu item, a new bidirectional DataFlow is created
on an existing Op_Use relationship. Please refer to § 3.6.5.2 for further details.

page II-24 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

2.5.3. create menu items for Type view

 or : When choosing this menu item or pressing appropriate shortcut
button, a new Type is created. Please refer to § 3.7.2 for further details.

 : When choosing this menu item, a new empty Type_Set is created.
Note that Type_Sets are STOOD extensions to HOOD4. Please refer to §
3.4.2 for further details.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-25

 or : When choosing this menu item or pressing appropriate shortcut
button, a new Type_Use or Implemented_By relationship is created. Please
refer respectively to § 3.8.2 or 3.10.2 for further details about creating
Type_Use or Implemented_By for Types.

 or : When choosing this menu item or pressing appropriate shortcut
button, a new Inheritance relationship is created. Please refer to § 3.8.4 for
further details.

 or : When choosing this menu item or pressing appropriate shortcut
button, a new Attributes relationship is created. Please refer to § 3.8.3 for
further details.

 : When choosing this menu item, a new label is created on an existing
Type_Use, Inheritance or Attributes relationship. Please refer to § 3.8.7 for
further details.

page II-26 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

2.5.4. create menu items for Constant view

 or : When choosing this menu item or pressing appropriate
shortcut button, a new Constant is created. Please refer to § 3.9.2 for further
details.

 : When choosing this menu, a new empty Constant_Set is
created. Note that Constant_Sets are STOOD extensions to HOOD4. Please
refer to § 3.4.2 for further details.

 or : When choosing this menu item or pressing appropriate shortcut
button, a new Implemented_By relationship is created. Please refer to § 3.10.2
for further details about creating Implemented_By relationships for
Constants. Note that "use" relationship for Constants have no meaning for
HOOD (even if STOOD enables their creation).

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-27

2.5.5. create menu items for Exception view

 or : When choosing this menu item or pressing appropriate
shortcut button, a new Exception is created. As an extension to HOOD4,
Internal Exceptions may also be created with STOOD. Please refer to § 3.5.2
for further details.

 : When choosing this menu, a new empty Exception_Set is
created. Note that Exception_Sets are STOOD extensions to HOOD4. Please
refer to § 3.4.2 for further details.

 or : when choosing this menu item or pressing appropriate shortcut
button, a new Implemented_By relationship is created. Please refer to § 3.10.2
for further details about creating Implemented_By relationships for
Exceptions. Note that "use" relationship for Exceptions have no meaning for
HOOD (even if STOOD enables their creation).

page II-28 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

2.5.6. create menu items for Data view

 or : When choosing this menu item or pressing appropriate shortcut
button, a new Data element is created. Please refer to § 3.9.2 for further details.
With standard HOOD configuration, Provided Data are prohibited. Attempt to
create Provided Data will raise a warning message:

 : When choosing this menu, a new empty Data_Set is created. Note
that Data_Sets are STOOD extensions to HOOD4. Please refer to § 3.4.2 for
further details.

 or : neither Implemented_By nor "use" relationships should never be
used on data view with standard HOOD configuration.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-29

2.6. Edit menu of graphic editor

When graphical entities has been created within drawing area, edit menu
provides a set of additional editing functions related to these Modules,
Components, or relationships. If chosen menu item is not appropriate regarding
currently selected graphical entity, a warning message is displayed in a dialog
box.

page II-30 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

2.6.1. edit menu items related to all entities

 or : remove selected entity from the diagram, but also deletes all
relevant information from STOOD internal storage. Last deleted entity may be
recovered with undo menu command.

 : recover last deleted entity. This command does not undo the other
editing actions.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-31

2.6.2. edit menu items related to Modules

 : go down one step in HOOD hierarchy. Selected child Module of
current diagram becomes parent Module of a new lower level diagram. Same
effect may be obtained in double-clicking inside the child Module box. As an
extension to HOOD4, STOOD also displays diagrams for Terminal
Modules.

 : go up one step in HOOD hierarchy. Parent Module of current diagram
becomes a child Module of a new higher level diagram. Same effect may be
obtained in double-clicking outside the parent Module box. As an extension to
HOOD4, STOOD also displays a pseudo HOOD diagram for the System
Configuration. So, if current parent Module is the Root Module, then it will
become a pseudo child of a pseudo parent representing current System
Configuration.

 : open a dialog box to copy one of the Modules of current Application.
A Module (and its sub-hierarchy) may be copied into a local clipboard, or to
build a new Root Module. Please refer to part I for further details.

 : create a new Module (and its sub-hierarchy) inside current Application
from local clipboard contents.

 : open a dialog box to replace one of the existing Modules of current
Application. A Module (and its sub-hierarchy) may be replaced by local
clipboard contents, or by another Root Module. Please refer to part I for
further details.

page II-32 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

 or : this menu item provides a direct way to change the kind
of currently selected Module. Please refer to § 3.2 for further details about
allowed kinds of Modules. The kind of a Module may also be controlled from
text input area (refer to § 3.1.3).

 or : open a State Transition Diagram for
currently selected Module. Please refer to § 4 for further details.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-33

2.6.3. edit menu items related to Components

 : when a closed Set is selected, this menu command opens it. Same effect
may be obtained by double-clicking on closed Set name.

 an open Set a closed Set

 : when an open Set is selected, this menu command closes it. Same effect
may be obtained by double-clicking on open Set name.

 : when a Constrained Operation is selected, this menu command clears
relevant trigger labels. When a Not Constrained Operation is selected, it only
adds a trigger arrow, but actual trigger labels need to be entered within text input
area (refer to § 3.3.3.3).

page II-34 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

2.6.4. edit menu items related to relationships

 : this menu command adds a loop to increase the number of handles
of selected relationship. One of the existing handles should be selected first to
define the location of the loop to be added.

 : this menu command has the opposite effect to previous one. If
possible, all useless loops will be flattened. This action may have be performed
several times to remove all existing loops.

 : when current view is type, this menu command opens a dialog box that
may be used to change selected relationship into Type_Use, Inheritance or
Attributes.

Same effect may be obtained by double clicking on a relationship.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-35

page II-36 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3. Graphical edition of HOOD entities
This chapter provides detailed information about editing actions for each kind of
graphical entity:

3.1 HOOD Modules............................. p 39
3.2 Kinds of HOOD Modules............... p 49

3.2.1 HOOD Object
3.2.2 HOOD Class
3.2.3 Generic Module and Formal Parameters
3.2.4 Instance_Of Generic Module
3.2.5 Op_Control Module
3.2.6 Environment Module
3.2.7 Summary of Module kinds

3.3 Operations...................................... p 71
3.4 Operation_Sets, and other Sets....... p 83
3.5 Exceptions...................................... p 89
3.6 Use, DataFlows, Exception_Flows. p 95
3.7 Types.. p 105
3.8 Type_Use, Attributes, Inheritance.. p 113
3.9 Constant and Data.......................... p 123
3.10 Include and Implemented_By...... p 129

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-37

page II-38 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.1. HOOD Modules

As explained in § 1, HOOD Modules are basic structuring entities of HOOD
Applications. Creating, deleting or moving Modules will change the
architectural properties of the Application. Modules are represented by boxes
in HOOD diagrams.

Graphical formalism may differ as regards the various kinds of Modules, as
described in § 3.2:

A plain Object or a Class:

An Instance_Of generic Object or generic Class:

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-39

An Environment Object or Class:

An Op_Control Object:

A Sporadic Object (HRT-HOOD):

A Cyclic Object (HRT-HOOD):

A Protected Object (HRT-HOOD):

page II-40 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.1.1. Select and resize an existing Module

A single mouse click within the box of a Module will select it. When a Module
is selected, dragging handles are shown on the borders of its box. These handles
may be used to resize the box:

Note that Provided Interface box cannot be resized.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-41

3.1.2. Create a new Module

As described in § 2, following commands may be used to create a new Module:

• item of create menu or drawing area pop-up menu.

• item of create menu or drawing area pop-up menu.

• item of create menu or drawing area pop-up
menu.

• or buttons.

• item of edit menu (to create a local copy of clipboard
contents).

After having performed one of these actions, a grey box shape appears on
display area. It should be located at wished place with mouse pointer and fixed
with a single mouse click.

Newly created Module is given a default name based on parent Module name,
with a variable suffix to comply with name unicity rule. If command was
used, default name is clipboard.

page II-42 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.1.3. Edit Module name and kind

When a Module is selected, its properties can be edited within General tab of
text input area:

 item of text input area pop-up menu provides on-line information about
these two fields:

Note that contents of these help box may be custonized, by editing
gra_txt_obj and gra_txt_obj.more files in config/help
configuration directory (refer to part I).

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-43

3.1.3.1. module name

While naming a Module in module name field, please take care not to use
forbidden characters nor a too long string. Restrictions may come from:

• Compliancy with HOOD identifiers naming rules. These rules are
checked when accepting text input, and a dialog box will be
displayed in case of lexical or syntactic error.

• Target language (Ada, C, C++) naming rules. Except abnormal use
of reserved words, uncompliancies to these rules will not be
checked by STOOD, and will lead to compilation errors.

• Current file system naming rules. Module names are used to
create files in Application storage area. Uncompliancies to these
rules could lead to information loss at detailed design phase. In
case of Applications shared between UNIX and Windows platforms,
Operation names should fit both constraints.

3.1.3.2. module kind

module type field may be used to change current kind of selected Module.
Allowed changes depend on current context. Please refer to § 3.2 for further
details about possible kinds of Modules.

At this level, a single letter should be typed to set Module kind. Another way
to perform the same action is to use item of edit menu. In some
cases, this letter appear in the top left corner of Module box:

page II-44 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

• essential ones:

A for: Active
E for: Environment
O for: Op_Control

• to be used in very particular cases:

F for: Formal_Parameters
V for: Virtual_Node

• HRT-HOOD Objects types:

Sp for: Sporadic
Cy for: Cyclic
Pr for: Protected

Note that new Modules types may be added by tool configuration. Refer to
part I of this User’s Manual for further details.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-45

3.1.4. Move a Module

When a Module is selected, it can be moved by dragging mouse pointer while
keeping left mouse button pressed. Special events may happen when mouse
button is released while mouse pointer reaches some particular areas (drag and
drop):

• if destination is not a valid location for a Module, following dialog
box will be displayed:

• if destination is a sibling Module, this means that current Module
will fall down one step in HOOD hierarchy.

• if destination is outside parent Module box, this means that current
Module will climb up one step in HOOD hierarchy.

These two last actions should be confirmed in a dialog box:

page II-46 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.1.5. Delete a Module

To delete a Module, it should be selected first, and item of edit menu or

 button should be used.

There is no dialog box to confirm action, but it can be cancelled with menu
item. This undelete command can be used only for last delete command.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-47

page II-48 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.2. Kinds of HOOD Modules

General speaking, a HOOD Module is a set of software components describing
part of or a whole Application. We already saw that a Module could be Root,
Terminal or Non Terminal in a Design Tree (refer to part I).

Modules can also be classified by other properties, and especially depending on
the kind of Components they actually contain. All combinations between these
two classifications are not valid, and HOOD rules specify which kind of
Modules may be Root, Terminal or Non Terminal within an Application
hierarchy. A summary of valid combinations is provided in § 3.2.7.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-49

Within STOOD graphic editor drawing area, Terminal and Non Terminal
Modules may be distinguished by the thickness of their border line:

Non Terminal Module:

Terminal Module:

page II-50 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.2.1. HOOD Object

3.2.1.1. What is a HOOD Object ?

Historically, HOOD Modules used to be called “objects”. This ambiguous
terminology should be avoided. Anyway, HOOD Objects still exist in
HOOD4, but they are now opposed to HOOD Classes. Both Objects and
Classes being Modules. Compared to other Object Oriented methods, HOOD
brings the particularity to mix Classes and Objects in the same models.

At terminal level, HOOD Objects are Modules that contain Data and
Operations altering these Data. In the context of Object Oriented Modelling,
they should be considered as “singletons”, that is the unique instances of non-
formalized Classes. They are also the right design option to describe static
instances of substantial part of the Application. For example, in a HOOD
model of an aircraft, two HOOD Objects could be used to describe right and
left engines, and highlight their interactions with control system.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-51

3.2.1.2. Calling Operations of a HOOD Object

When calling an Operation belonging to a HOOD Object, identity of the
receiver should be specified by using a dotted notation (in Ada, or similar name-
space specification for other languages). In previous example, control system
could start the two engines as follow:

left_engine.start;
right_engine.start;

3.2.1.3. Creating HOOD Objects

HOOD Objects may only be created in a graphic editor (except Root Objects
that are created from main editor (refer to part I). To create a new Object, open
a HOOD diagram at specified level in the hierarchy, and then use object module
item of create menu or drawing area pop-up menu.

page II-52 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.2.2. HOOD Class

Explicit description of Object Oriented classes is a new feature of HOOD4.
Even if nothing forbade their identification as Abstract Data Types in HOOD
3.1, this was often an argument to deny Object Orientation of HOOD. This
point was highlighted by an old terminology mistake: classes in HOOD 3.1
were dealing with Generic Modules.

HOOD4 now fully support OO classes, inheritance, polymorphism, and
mapping to Ada95 and C++ or Java is quite direct. Anyway, HOOD4 remains
highly compatible with HOOD 3.1, and it is possible to build a full HOOD4
design without any class.

3.2.2.1. HOOD Class Module and Type

As opposed to HOOD Objects, HOOD Classes do not contain applicative
Data (except when modelling “class variables” or “static data members”). They
describe a data structure (Type) and all Operations dealing with this data
structure. In HOOD, this data structure is called main Type of the Class. The
Class may encompass secondary Types used locally or directly linked to main
one (pointer on main Type, ...).

It is interesting to note that, like in Ada95, the two main properties of OO
classes are split in HOOD: Encapsulating features are managed by a Class
Module (containing a consistent set of a Class Type and its Operations), and
instantiating features are supported by the Class Type itself. Of course, when
producing C++ code, both merge into a unique class.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-53

A given Class Module should not define several Class Types. In the case
where such a situation appears, STOOD will map the Class Module to first
Class Type found (that is the first element of Provided Types list).

3.2.2.2. HOOD Class and Class library

HOOD Classes are thus minimal sets of highly consistent software
components. This is why they appear as being an optimal choice for Terminal
Modules of HOOD hierarchy. A strict compliance to HOOD rules for
Application breakdown (identifying sub-Modules to get the highest
consistency and lowest coupling), should lead to define HOOD Classes ! It is
mandatory for a HOOD Class to be a Terminal Module.

page II-54 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

If while designing, it seems necessary to create a HOOD Module providing
several Class Types, this Module should be Non Terminal and will require to
be broken down into elementary Class Modules providing each of them a
unique Class Type.

Such a design structure is a Class library and may spread in depth over several
levels of HOOD hierarchy. This solution provides a way to offer different
formalized interfaces to a set of Classes, where implementation entities may
easily be hidden to users. For instance, Abstract Classes, that cannot be
instantiated, may be hidden at higher level of Class library if subclassing needs
to be forbidden.

3.2.2.3. Operation receivers

One of the main differences between a HOOD Object and a HOOD Class is
that the latter need first to be instantiated to be “used” (that is for its
Operations to be called). When calling an Operation belonging to a HOOD
Class, identity of the actual receiver (one of the current instances of the Class),
should be specified among Parameter list. This particular Parameter
(Operation receiver), is called me in HOOD4.

When a HOOD Module is a Class, me Parameter is automatically inserted
when a new Operation of this Class is created. This Parameter has for Type
main Type of the Class, and an in out mode (receiver may be modified by
Operation execution).

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-55

3.2.2.4. Calling Operations of a HOOD Class

If we design previous example with HOOD Classes, we would define a Class
engines providing (at least) a Type engine (whatever its name is) and an
Operation start.

Control system could thus declare internal variables being two instances of this
Class and call their respective Operation:

-- in Ada
-- with engines; use engines;

l,r : engine;
start(l);
start(r);

// in C++
// #include engines.h

engine l,r;
l.start();
r.start();

page II-56 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.2.2.5. Designing with HOOD Classes

It is often uneasy to make the right design choice between an Object and a
Class for a given Application entity. Software analysis phase outputs could be
a guide for that, but they are generally highly dependent on the actual analysis
process: a conventional Functional Analysis will often lead to Objects, whereas
Object Oriented Analysis approaches will identify Classes for everything.

In general case, there is no direct mapping, and it is a full design choice to
represent a given Application entity as an Object or a Class. Here are a few
criteria for choosing a Class:

• Similar entities appear frequently, and there is no need to manage
them individually at architectural design phase.

• Entities are dynamically instantiated at run-time (there is no way
to define a precise number of instances at design phase).

• Static interactions (is kind of, is part of) between a set of Modules
seams more important to be described at architectural design
phase than their dynamic interactions (uses operations of).

• A Module is clearly a basic unit for general purpose reuse.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-57

3.2.2.6. Creating HOOD Classes

Classes may only be created in graphic editor (except Root Classes that are
created from main editor: (refer to part I). To create a new Class, open a
HOOD diagram at specified level in the hierarchy, and then use class module
item of create menu or drawing area pop-up menu.

In some cases, you may also make an Object become a Class. If the Object
contains a main Type and Operations having at least a Parameter
of this Type, it may be changed into a Class by setting main Type property
class to yes.

To perform this change, select relevant Object, change display view to types,
select main Type, and modify class property inside General tab of text input
area. This change may be reversed.

page II-58 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.2.3. Generic Module

In addition to OO classes derivation and instantiation, genericity provides
another powerful way to manage components reuse. Generics (previously
badly named “classes”), were early introduced among HOOD concepts to
describe parametric Modules.

Generic Modules are particular kind of Modules for which some internally
used Components are temporarily left undefined. Typical implementations of
HOOD Generic Modules are Ada generic units and C++ templates.

3.2.3.1. Formal_Parameters

These undefined Components are called “formal parameters” of Generic.
When describing contents of a Generic Module, formal parameters may be
used anywhere, but are not actually part of it. To define formal parameters in a
correct way regarding HOOD visibility rules, they need to be located outside
the Generic Module.

Practically, when defining a Generic Module, another very particular Module,
called Formal_Parameters need be created to provide parametric
Components. These Components do not need to be fully defined, but only
declared, and may be Operations, Types, Constants and Exceptions.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-59

3.2.3.2. Designing with Generic Modules

Generic Modules are an efficient way to provide reusable entities. A classical
example is the definition of a stack of elements. Whatever this stack is designed
as a HOOD Object (that is it actually contains stack elements), or a HOOD
Class (it only defines stack structure and operations), it will be a lot more
reusable if we can describe it with the Type of stack element as a formal
parameter. Type of stack elements will thus be only declared, and referred
everywhere it is needed in stack implementation.

In order to comply with HOOD visibility rules, and to emphasize the fact that
a Generic Module is a reusable entity and should thus be accessed from
everywhere in an Application, it should be a Root Module. That is why, when
creating a new Root Module in main editor (refer to part I of this User’s
Manual), you may choose generic. There is no other way to create a Generic
Module.

page II-60 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.2.4. Instance_Of a Generic Module

A Generic Module is never fully designed, due to the incomplete definition of
its formal parameters. To practically use a Generic Module, it is required to
fully define these parameters. A same Generic Module may of course be used
many times in a given Application, by setting different actual values to formal
parameters.

3.2.4.1. Instantiating Generic Modules

The fact of setting values to formal parameters is called instantiation of relevant
Generic Module, and the result of this affectation is a new kind of HOOD
Module called Instance_Of.

When an Instance_Of is created, it must refer to a precise Generic Module,
and fully define all formal parameters. Definition of formal parameters (which
then become “actual parameters”) may be allocating a value or making a
reference to an existing and visible Component. There is no other needed work
to complete an Instance_Of definition.

3.2.4.2. Creating an Instance_Of

Creation of Instance_Of Modules can be performed in graphic editor, with
instance of generic item of create menu or drawing area pop-up menu. A list of
currently visible Generic Modules will then be displayed, and one of them
should be selected.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-61

To make a Generic Module visible from a given Application, it should be
declared in root modules list of current Project. If it is not, use system editor to
add it to the list, and if it doesn’t even appear in system editor, change
SavePath initialization property. Please refer to part I for further details.

Provided Interface of an Instance_Of is automatically copied from relevant
Generic. This interface will also be automatically updated each time the
Application is loaded, in order to follow Generic changes. Definition of actual
parameters must be performed within a textual editor (refer to part III).

An Instance_Of may also be a Class, if it was created from a Generic Class.
Note that, in this case, two sequential instantiations are required to use this
piece of code somewhere. First instantiation transforms Generic Class into
Instance_Of Class, and second instantiation builds variables which Type is
main Type of this Class.

page II-62 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.2.4.3. Libraries of Generic Classes

Due to its tidy visibility rules, HOOD4 provides a very efficient way to
organize Classes libraries, and especially libraries of Generic Classes (for
instance libraries of templates in C++). Generic Classes may be grouped into a
common Generic Module from which they will share the unique formal
parameters list.

A Generic Module could for example be designed to define various kinds of
collections (stacks, lists, ...) of elements which Type could be a common formal
parameter. This constrained design structure provides an actual warranty for an
efficient use and maintenance of the library.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-63

3.2.5. Op_Control Module

HOOD Classes are the Object Oriented way to use HOOD Modules. At the
opposite, there is a “pure” Functional way to define HOOD Modules. These
kinds of Modules are called Op_Controls. They have the strong particularity
to contain only one Operation, and nothing else.

To create an Op_Control, it is first needed to create a plain Object, then to
change its module type property, in text input area, by setting it to O.
Op_Controls cannot be Root Modules and cannot be broken down.

Existence of Op_Controls is often justified by the need to create “dispatching”
entities. Nevertheless, this task may easily be performed by a plain HOOD
Object. In our previous "aircraft" example, if we limit the functions of the
"control_system" to the action of starting the two engines, we could use an
Op_Control for that. Practically, it is likely that control_system would have to
perform other tasks. This situation often occurs, so we strongly recommend to
avoid using Op_Controls.

page II-64 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.2.6. Environment Module

HOOD Projects generally encompass several Applications or libraries. We
already described in part I how such a Project could be defined thanks to main
editor and system editor. Anyway, when designing a given Application, it is
likely that explicit references to the other members of the Project will be
required.

In accordance to HOOD rules, only Provided Interface of external Root
Modules should be seen from current Application. In other words, other
Application of the same Project or libraries can be represented locally by a
dedicated Terminal Module containing only a Provided Interface and no
Internals. These Modules are called Environment, and due to HOOD
visibility rules, they must be located at the same level as current Root Module.

Environments may be Objects or Classes, Active or Passive. Generics are in
effect kinds of Environments, but we saw previously that, due to the need of
instantiation, they are managed in a different way (refer to § 3.2.3).

In STOOD, Environments may be represented graphically like other
Modules. In this case, they appear in a pseudo HOOD diagram of current
System Configuration. To get access to this diagram, go up once from Root
level. It is not mandatory to represent each member of current Project by an
Environment, but this may be helpful to control finely dependencies and code
generation. On the contrary, some Environments may be omitted graphically to
reduce complexity of very large Projects, of when there is a too large number of
libraries.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-65

To create an Environment, first select System Configuration diagram in
graphic editor, and create a new Object or Class at this level. Environments
may also be created when drawing Use relationships which refer to external
Modules. In this last case, an Environment box is created outside parent
Module borders:

When giving a name to an Environment, in text input area, two events may
occur:

• Given name is the same as one of the elements of root modules list
in main editor (that is one of the Applications or libraries of current
Project). In this case, Environment is automatically updated from
relevant Root Module interface. This update will occur each time
current Application is loaded, so Environment interface will follow
relevant external Application changes.

• Given name doe not match any name of known Applications in the
Project. In this case, Provided Interface of the Environment will
have to be created manually, and an warning message will appear
when checking HOOD rules. To highlight these unbounded
Environments, they are tagged by a letter E.

page II-66 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

In all cases in STOOD, an Environment remains only a local copy of a true or
virtual other Application or library of current Project. They should never be
broken down with Include relationship. If their local interface is changed and is
not consistent with remote reference interface, these modifications won’t be
saved, and will be lost at next loading.of the Application.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-67

3.2.7. Summary of HOOD Modules kinds

3.2.7.1. Main Module Kinds towards HOOD hierarchy

Following table summarize the allowed combinations of HOOD Module kinds
towards their location in Design Tree hierarchy.

Root Non
Terminal

Terminal

HOOD Object

HOOD Class

HOOD Generic

Instance_Of

Op_Control (O)

Environment (E)

Forbidden: Allowed: Mandatory:

3.2.7.2. Passive and Active Modules

HOOD Modules may also be classified as regards their dynamic behaviour
inside the Application:

• Passive (P: default value)
• Active (A)

page II-68 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

An Active Module is supposed to run one or several independent execution
threads (tasks, processes, ...), whereas a Passive Module executes its
Operations within calling thread. An Application without any Active Module,
will have only one execution thread (the one triggered when launching main
procedure). To enable Active Modules communications, Operations
Constrained by Protocol should be used. These Constraints define various
kinds of synchronization protocols between separate threads. Please refer to §
3.3.3.3 for further details.

Except Op_Controls. and Formal_Parameters, all kinds of Modules may be
Active or Passive. An Active Module is identified graphically by a A letter in
top left corner of its box. This indicator sometimes conflicts with other
information, typically the E letter for Environment. As an Environment may
easily be identified by its location within Design Tree, STOOD will display A
rather than E each time it is possible.

3.2.7.3. Other kinds of Modules

We didn’t describe above in details other kinds of HOOD Modules that may be
mentioned in other parts of this manual or in other papers about HOOD. Here
are briefly some of them:

• Virtual Node (V) for distributed Applications (refer to part I).

• Multiple Instance_Of (not supported).

• Cyclic (Cy), Sporadic (Sp) and Protected (Pr) Objects
(HRT_HOOD).

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-69

3.2.7.4. Changing Modules kinds

When creating a new HOOD Module inside STOOD graphic editor, its
default kind will be:

• Passive Environment, if current diagram is the one of the System
Configuration.

• Terminal Passive, else.

Terminal Passive may be changed into other kinds of Modules as follow:

• into a Terminal Active: change module type property to A.

• into an Op_Control: change module type property to O.

• into a Non Terminal: create child Modules inside its diagram.

• into a Design: copy as root module then delete it.

• into a Generic: copy as generic then delete.

• an Object into a Class: set class property of its main Type to yes.

• a Class into an Object: set class property of its main Type to no.

Module kind may be changed with module type field of text input area when
relevant Module box is selected within drawing area. item of edit
menu may also be used for that purpose.

page II-70 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.3. Operations

HOOD Operations describe functional services of a Module. During code
generation, they are directly mapped to subprograms (Ada) or functions (C and
C++).

To be used by a remote client Module, an Operation must be declared in
Provided Interface of server Module. To avoid an Operation from being used
from outside, it should be located inside the Internals of the Module.

Concept of “protected” Operation does not exist in HOOD. Such Operations
are supposed to be visible only from sub-Classes. To create a C++ protected
Operation, it should be located in Provided Interface of its Class Module,
and an additional flag will have to be set before code generation (Pragma
protected, refer to part IV).

Operations are defined by a declarative part, located in the Provided Interface
or the Internals, and a body (OPeration Control Structure: OPCS) always
located in the Internals of Terminal Modules. Only declarative part may be
managed during architectural design phase. Operation bodies should be defined
during detailed design phase (refer to part III).

In STOOD, graphic editor is the best place to create, move, delete and edit
declarative part of an Operation. Display area should be first switched to
operation view. Some of these actions may also be performed in text editors.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-71

3.3.1. Select an existing Operation

Within drawing area, an Operation may be selected by a single click on its
name. The name of currently selected Operation is surrounded by a thin
rectangle, so it may easily be identified. Another single click will deselect it.

3.3.2. Create a new Operation

As described in § 2, when display area shows operation view, item

of drawing area pop-up menu, or of create menu, or button may be used
to create a new Operation. After having performed one of these actions, a
string “operation” appears and may be moved with mouse pointer. It can be
dragged to one of the following locations, as regards required scope:

• The Provided Interface of parent Module.

• The Provided Interface of a child Module if any.

• The Internals of parent Module if there is no child.

After having chosen the right location, a single click will fix the Operation. It
may be moved later if required (refer to § 3.3.4).

page II-72 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

Another indirect way to create Operations is by drawing Implemented_By
links for Operation_Sets. This is described in § 3.10.

3.3.3. Edit Operation declarative part

When an Operation is selected in drawing area, its declarative part may be
edited inside General tab of text input area. Declarative part of a HOOD
Operation contains five fields that are described below.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-73

 item of text input area pop-up menu provides on-line information about
these five fields:

Note that contents of these help box may be custonized, by editing
gra_txt_ope and gra_txt_ope.more files in config/help
configuration directory (refer to part I).

page II-74 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.3.3.1. operation name and overloading

operation name field must be used to insert actual name of selected Operation.
Default name is operation and should be changed into a more explicit name.
If it remains unchanged, a warning message will appear while checking HOOD
rules, as Operation is a reserved word and should not be used for identifiers.
When giving a name to an Operation, please take care not to use forbidden
characters nor a too long string. Restrictions may come from:

• Compliancy with HOOD identifiers naming rules. These rules are
checked when accepting text input, and a dialog box will be
displayed in case of lexical or syntactic error.

• Target language (Ada, C, C++) naming rules. Except abnormal use
of reserved words, uncompliancies to these rules will not be
checked by STOOD, and will lead to compilation errors.

• Current file system naming rules. Operation names are used to
create files in Application storage area. Uncompliancies to these
rules could lead to information loss at detailed design phase.

Overloading of Operations is allowed by HOOD. This means that several
Operations may have the same name inside a same Module. Operation
declaration field should be different for each of them, however. In order to help
handling overloaded Operations, STOOD provides an extended syntax for
Operation names. This syntax consists in a suffix identifying each overloading:

draw#1 for: draw(me : in out line)
draw#2 for: draw(me : in out rectangle)

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-75

This suffix (built with a “#” followed by one digit) represents full Operation
declaration. This suffix is automatically removed during code generation. Note
that while designing for C++, suffix “#0” represents the destructor of a Class,
and will be changed into relevant valid syntax at code generation.

the_class#0 means: ~the_class

3.3.3.2. operation parameters list

operation declaration field must be used to declare Operation Parameters list.
This Parameters list needs to be written in compliance with HOOD syntax
(and not target language syntax), which is derived from Ada one. STOOD
specific extensions help in using some C/C++ syntactic features.

HOOD Parameters are typed variables or constants, with a “passing mode”
additional property. Passing modes deal with both DataFlow direction (in, out
or in out, like in Ada syntax) and Parameter Type specifiers (nothing, * or &,
like in C/C++ syntax). Default values may also be specified optionally.

General syntax for accepting Operation Parameters list in STOOD is as
follow: ([…] means 0 or 1; {…} means 0 or more)

(1) Par_list ::= [(Param2{; Param2})]
 [return [Spe]Return_type]
(2) Param ::= Par_name : Dir [Spe]Par_type
 [:= Par_value]

page II-76 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

Par_name means Parameter name and is an identifier. A Parameter
name may be used only once within a given Parameters list. When an
Operation belongs to a Class (C++ member functions or Ada95 primitive
operations), a dedicated Parameter name me should be used to identify
Operation receiver. In the particular case of static member functions, dedicated
Parameter name myclass should be used.

Par_type means Parameter type and is a reference to an existing
local or remote Type. If it is remote, dotted notation should be used.

Return_type means return type and is a reference to an existing local or
remote Type. If it is remote, dotted notation should be used. Note that there is
no direct way to specify here a const return Type. This feature will be
obtained by setting an additional flag before code generation (Pragma
return_const: refer to part IV).

Par_value means Parameter default value and may be a reference to
an existing local Constant, Data or Operation with a return value, a reference
to a remote Constant or remote Operation with a return value (with dotted
notation), or a string delimited by double quote characters. If default value itself
contains double quote characters, it should be surrounded by HOOD text field
separators: --|”a string”|--.

Dir means DataFlow direction and specifies whether a Parameter is
produced by client (in), by server (out) or produced by client and modified by
server (in out). Note that this information may also appear on HOOD
diagrams when drawing Use relationships (refer to § 3.6.5). These passing
modes come directly from Ada language definition, but may also be favourable
when using C or C++. in flow direction will generally be used to control
const keyword insertion during C and C++ code generation.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-77

Spe means Parameter type specifier and indicates whether a
Parameter is passed by_value, by_pointer or by_reference. Default
passing mode is by_value, and to ease Parameters list input in STOOD,
by_pointer should be written * and by_reference should be written &.
These tokens come obviously from C/C++ syntax, but a * passing mode in
Ada95 will be translated into access. More complex passing modes may also
be specified directly inside Parameters list, like ** or *&, but array arguments
cannot. To specify an array argument, a new Type should be first declared, and
may then be referred inside a Parameters list.

Operations Parameters may also appear as DataFlows carried by Use
relationships on HOOD diagrams (refer to § 3.6.5).

Please note that this syntax differs lightly from the one of HOOD Standard
Interchange Format (SIF). STOOD sif extractor performs automatically all
required syntax transformations to fit HOOD4 requirements.

page II-78 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.3.3.3. real-time properties

trigger label field should be used to specify behavioural constraints of
the Operation. A HOOD Module external behaviour is driven by the way its
Provided Operations react. HOOD specifies a set of predefined Operation
Constraints to manage Real-Time features of an Application at architectural
design phase.

Operation Constraints may be classified as follow:

• State Constraints indicate to a client that called Operation
receptiveness may depend on server internal State. If a non
buffered printer is busy, another request will be refused: “print”
Operation of “printer” Module is constrained by STATE. Internal
States and Transitions of a Module should be described with a
State Transition Diagram (STD: refer to § 4).

• Protocol Constraints refer to multi-tasking Applications
synchronization Operation calls. A “wait-reply” protocol will be
simply identified by a HSER (Highly Synchronous Execution
Request) Constraint. An “acknowledge” protocol will be identified
by a LSER (Loosely Synchronous Execution Request) Constraint.
Other HOOD4 predefined protocol Constraints are: ASER
(ASynchrous Execution Request), ASER BY_IT (hardware
interrupt), RLSER (Reporting LSER), and RASER (Reporting
ASER). A “time-out” may also be specified with TO constraint.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-79

• Concurrency Constraints may be used to provide coordinated
access to shared Data within a multi thread Application (mutual
exclusion). HOOD4 predefined concurrency constraints are:
MTEX (MuTual EXclusion), ROER (Read Only Execution Request)
and RWER (Read Write Execution Request).

Some Constraints require an additional parameter. It identifies interrupt source
by a string for ASER BY_IT, and a numeric delay value for TO.

ASER BY_IT “timer 1ms”
TO 1.5

A same Operation may carry several Constraints, and trigger label
description field should be filled in with a list of elementary Constraints
separated by a space character. Note that only first listed Constraint will be
displayed on relevant HOOD diagram, not to overload too much graphical
description. For a good understanding of the diagram, please take care to order
listed Constraints and put most important one at the beginning. Constraints
order have no other effect.

Practical use of Operation Constraints is often limited by actual available
implementation of regarding concepts into target context (language and executive
environment). For Ada Applications, and especially with Ada95,
implementation of most of them is quite straightforward, and protocol
Constraints will lead to task entries and concurrency Constraints to protected
entries or procedures. For other languages, or for dedicated Ada run-time
environments, a specific mapping should be defined first. Note that STOOD
offers powerful customization capabilities in order to implement such specific
mapping into code generators.

page II-80 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.3.3.4. object-oriented properties

abstract and inherited fields should be used to provide additional information
regarding polymorphism of Operations belonging to a Class inheritance
hierarchy. These two fields are flags that could be set to yes or no (no is
default value).

An Abstract Operation should belong to a Class that has sub-Classes. This
flag indicates that this Operation is not implemented locally and must be
redefined inside at least one of the sub-Classes. With STOOD, to highlight
Abstract Operations in HOOD diagrams, their name are surrounded by square
brackets. At code generation, no body will be produced for Abstract
Operations.

An Inherited Operation should belong to a sub-Class, and is simply a local
reference to relevant super-Class Operation. An Inherited Operation should
have the same name and Parameters list as inheriting one, except the Type of
its receiver (me). With STOOD, to highlight Inherited Operations in HOOD
diagrams, their name are surrounded by rounded brackets. They help controlling
HOOD visibility rules, and are not translated at code generation. Use of
Inherited Operations is optional.

Note that a sub-Class Operation may also overload a super-Class Operation
of the same name. In this case, abstract and inherited flags should be kept to no.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-81

3.3.4. Move an Operation

An Operation may be moved inside a same diagram, under certain conditions.
In all cases, moving an Operation is a simple "drag and drop" action, performed
by following sequence:

• select wished Operation without releasing left mouse button.
• drag it while keeping left mouse button pressed.
• release left mouse button at destination location.

Allowed move actions are:

• changing the rank of selected Operation within the list.
• moving an Operation from or to an open Operation_Set
• moving from Internals to Provided Interface (or reverse)
• moving to Provided Interface of sibling Modules.

Note that moving from parent to child Provided Interfaces (or reverse) are
forbidden.

3.3.5. Delete an Operation

To delete an Operation, it should be selected first, and item of edit

menu or button should be used. There is no dialog box to confirm action,
but it can be cancelled with menu item.

page II-82 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.4. Operation_Sets

It is likely that for actual Applications, the number of Provided Operations of
some Modules become too large to be displayed on a diagram without making it
unreadable. This may even appear in a simple Terminal Class. Hopefully,
HOOD provides a dedicated view for Operations, but this is not always
sufficient.

Another operational need is to define functional entities at a higher level of
abstraction than an elementary Operation. This often appear when describing
high level Modules interfaces, where identifying “I/O operations” could be more
convenient than describing in detail all those Operations. Please note that all
Sets should be fully filled in at the end of design process. STOOD provides
solutions to automatically update Set contents, while drawing
Implemented_By relationships (refer to § 3.10).

To fit these two requirements, HOOD provides the concept of
Operation_Set, which represents a group of elementary Operations, or of
other lower level Operation_Sets. To ease understanding, all Operations
belonging to a given Operation_Set should be logically linked. This logical link
should follow current design style: it may be functional (put, get, read, write, ...
are all I/O Operations), or more Object-Oriented (open, close, print, ... may
work on a same file).

Operation_Sets are identified by their name, which appear on HOOD
diagrams surrounded by braces. An Operation_Set may be open or closed, to
show or hide its contents. To open a closed Set or close an open Set, just
double-click on its name in drawing area. You may also select relevant Set on
the diagram, and use enter (to open) or exit (to close) items of edit menu.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-83

Theoretically, Operation_Sets should be located only within Provided
Interface of a Module. As an extension, Internal Operation_Sets can easily
be introduced into STOOD for Terminal Modules if required (please contact
technical support). Note that STOOD also extends HOOD Operation_Set
concept to other components. It is thus possible to define Type_Sets,
Constant_Sets, Data_Sets and Exception_Sets. Following chapters refer to
all kinds of Sets.

3.4.1. Select, open and close an existing Set

Within drawing area, a Set may be selected by a single click on its name. The
name of currently selected Set is surrounded by a thin rectangle, so it may
easily be identified. Another single click will deselect it.

A double-click on a closed Set will open it, whereas a double-click on an open
Set will close it. enter and exit items of edit menu may also be used to open and
close Sets.

page II-84 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.4.2. Create a new Set

As described in § 2, when display area shows operation (respectively type,

constant, exception or data) view, (resp. ,

, , or) item of drawing area pop-up
menu, or of create menu may be used to create a new Operation_Set (resp.
Type_Set, Constant_Set, Exception_Set, or Data_Set). After having
performed one of these actions, a string called operation_set (resp.
type_set, Constant_Set, exception_set, or data_set) appears and
may be moved with mouse pointer. It can be dragged to one of the following
locations:

• The Provided Interface of parent Module (except for Data_Sets).
• The Provided Interface of any child Module (except for Data_Sets).
• The Internals of parent Module if there is no child.

After having chosen the right location, a single click will fix the Set. It may be
moved later if required (refer to § 3.4.4).

Another indirect way to create Sets is by drawing Implemented_By links for
higher level Sets, as described in § 3.10.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-85

3.4.3. Edit Set properties and contents

When a Set is selected in drawing area, its HOOD definition appears inside
General tab of text input area:

set: { set_name: set_contents}

set_name represents the name of the Set. When creating a new Set,
its default name will be operation_set (or type_set, constant_set,
exception_set, data_set, regarding current view). Note that
Operation_Set is a HOOD reserved word and should be changed into a more
explicit applicative name, else a warning message could appear while checking
HOOD rules.

set_contents is the list of contained Components (Operations, Types,
Constants, Exceptions or Data) or other Sets of the same kind. This field
cannot be modified textually: it is automatically deduced from graphical
description. Default contents is empty, and to add an element to a Set, first
open it, and then move the element (an elementary Component or another Set)
between the two braces. Set definition inside text input area will be
automatically updated.

page II-86 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.4.4. Move a Set

A Set may be moved inside a same diagram, under certain conditions. In all
cases, moving a Set is a simple "drag and drop" action performed with following
sequence:

• select wished Set without releasing left mouse button.
• drag it while keeping left mouse button pressed.
• release left mouse button at destination location.

Allowed move actions are:

• changing the rank of selected Set within the list.
• moving an Set from or to another open Set
• moving from Internals to Provided Interface (or reverse)
• moving to Provided Interface of sibling Modules.

Note that moving from parent to child Provided Interfaces (or reverse) are
forbidden.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-87

3.4.5. Delete a Set

To delete a Set, it should be selected first, and item of edit menu or
button should be used. There is no dialog box to confirm action, but it can be
cancelled with menu item.

Note that a Set must be empty to be deleted. Else, following warning message
will be displayed:

page II-88 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.5. Exceptions

A HOOD Exception may be defined to deal with errors or other exceptional
situations that arise during Application execution. An Exception comes in
response to a previous Operation call. Called Operation may “raise” an
Exception and calling Operation may “handle” it or “propagate” it to its own
caller. Exceptions that are not handled inside applicative code, will be processed
by run-time executive or produce an error.

A HOOD Exception should be declared only inside Provided Interface of a
Module. As an extension, Internal Exceptions can easily be introduced into
STOOD for Terminal Modules if required (please contact technical support).
Exceptions are fully defined by their declarative part. Exceptions “raising” and
“handling” code are fully defined inside relevant Operation bodies.

To specify along which Use relationship a raised Exception is propagated, an
Exception Flow may also be inserted in the diagram (refer to § 3.6.6).

3.5.1. Select an existing Exception

Within drawing area, an Exception may be selected by a single click on its name.
The name of currently selected Exception is surrounded by a thin rectangle, so
it may easily be identified. Another single click will deselect it.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-89

3.5.2. Create a new Exception

As described in § 2, when display area shows exception view, item

of drawing area pop-up menu, or of create menu, or button may be used to
create a new Exception. After having performed one of these actions, a string
called exception appears and may be moved with mouse pointer. It can be
dragged to one of the following locations:

• The Provided Interface of parent Module.
• The Provided Interface of any child Module.
• The Internals of parent Module if there is no child.

After having chosen the right location, a single click will fix the Exception. It
may be moved later if required (refer to § 3.5.4)

page II-90 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.5.3. Edit Exception properties

When an Exception is selected in drawing area, its declarative part may be
edited inside General tab of text input area. Declarative part of a HOOD
Exception contains only two fields that are described below.

3.5.3.1. exception name

exception name field must be used to insert actual name of selected Exception.
Default name is exception and should be changed into a more explicit name.
If it remains unchanged, a warning message will appear while checking HOOD
rules, as Exception is a reserved word and should not be used for identifiers.

When giving a name to an Exception, please take care not to use forbidden
characters nor a too long string. Restrictions may come from:

• Compliancy with HOOD identifiers naming rules. These rules are
checked when accepting text input, and a dialog box will be
displayed in case of lexical or syntactic error.

• Target language (Ada, C++) naming rules. Except abnormal use of
reserved words, uncompliancies to these rules will not be
checked by STOOD, and will lead to compilation errors.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-91

• Current file system naming rules. Exception names are used to
create files in Application storage area. Uncompliancies to these
rules could lead to information loss at detailed design phase.

3.5.3.2. list of raising operations

exception raised by field must be used to specify the list of local
Provided Operations that could actually raise selected Exception. List
separator is a comma.

page II-92 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.5.4. Move an Exception

An Exception may be moved inside a same diagram, under certain conditions. In
all cases, moving an Exception is a simple "drag and drop" action, that may be
performed by following sequence:

• select wished Exception without releasing left mouse button.
• drag it while keeping left mouse button pressed.
• release left mouse button at destination location.

Allowed move actions are:

• changing the rank of selected Exception within the list.
• moving an Exception from or to an open Exception_Set
• moving from Internals to Provided Interface (or reverse)
• moving to Provided Interface of sibling Modules.

Note that moves from parent to child Provided Interfaces (or reverse) are
forbidden.

3.5.5. Delete an Exception

To delete an Exception, it should be selected first, and item of edit menu

or button should be used. There is no dialog box to confirm action, but it
can be cancelled with menu item.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-93

page II-94 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.6. Op_Use relationships

When operations view of HOOD diagrams is displayed, only two kinds of
relationships are shown. Implemented_By relationships specifies existing links
between parent Operations and local child Operations (refer to § 3.10). All
other dependencies between Modules that are shows on operation view are
called Use relationships (they are also sometimes called Op_Use).

Use relationships show functional links between two distinct Modules, that’s
why they are displayed only on operation view of HOOD diagrams. A Use
relationship between Module “client” and Module “server” means that “at
least one Operation of client calls at least one Provided Operation of server”.

Use relationships do not describe all elementary functional calls between each
Operation, that could quickly become unreadable. On the contrary, they
provide a high level description of functional dependencies between Modules.
They act as the same level as a with clause in Ada or a #include in C/C++.
More detailed dependencies can be analysed with HOOD Required Interface
descriptions and STOOD cross references tables (refer to part III).

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-95

Use relationships provide the unique way to exchange variable Data between
HOOD Modules. Practically, these Data are carried by actual values of called
Operations Parameters. An use relationships is thus a medium for DataFlows
between Modules. Note that graphical description of DataFlows remains
optional on HOOD diagram. Their formal and exhaustive definition is fully
provided by Operations Parameters list (refer to § 3.3.3.2).

In accordance to HOOD visibility rules, a Use relationship may only be drawn
from a local Module to a “sibling” Module, an “uncle” Module or an
Environment Module.

If “server” Module provides Exceptions, the only way to catch such an
Exception inside “client” Module, is a response to a previous server Provided
Operation call. An Use relationships is thus also a medium for
Exception_Flows between HOOD Modules. Like DataFlows, graphical
descriptions of Exception_Flows are optional on HOOD diagrams.

page II-96 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.6.1. Select an existing Use relationship

Within drawing area, a Use relationship may be selected by a single click on one
of its segments. Dragging handles are then shown at the ends of each segment, so
it may easily be identified.

3.6.2. Create a new Use relationship

As described in § 2, when display area shows operation view, item of

drawing area pop-up menu, or of create menu, or button may be used to
create a new Use relationship. After having performed one of these actions,
source Module should be selected first by a single click, then destination
Module should be selected by another single click.

Source must be one of the child Modules of current diagram, and destination
may be one of its siblings or existing uncles, or an Environment Module. When
the area outside parent borders is used as destination, and is not an existing
uncle box, a new Environment box is created.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-97

3.6.3. Move an Use relationship

An Use relationship may be moved by dragging one of its handles with the
mouse. If additional handles are required, select one of existing handles, and use

 item of edit menu to create new segments. If useless segments need to
be removed, use item of edit menu (refer to § 2.6.4).

3.6.4. Delete an Use relationship

To delete an Use relationship, it should be selected first, and item of edit

menu or button should be used. There is no dialog box to confirm action,
but it can be cancelled with menu item.

Deletion of a Use relationship also deletes related DataFlows and
Exception_Flows.

page II-98 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.6.5. DataFlows

3.6.5.1. Select an existing DataFlow

Within drawing area, a DataFlow may be selected by a single click on its
arrow. The arrow of currently selected DataFlow is surrounded by a thin
rectangle, so it may easily be identified.

3.6.5.2. Create a new DataFlow

As described in § 2, when display area shows operation view, ,
, or items of drawing area pop-up menu or create menu may be used to
create a new empty DataFlow list. After having performed one of these actions,
a small arrow appears and may be moved with mouse pointer. It can be dragged
only along one of the existing Use relationships.

Direct DataFlows () represent in Parameters, reverse DataFlows ()
represent out Parameters, and bidirectional DataFlows () represent in
out Parameters.

After having chosen the right location, a single click will fix the DataFlow. It
may be moved later if required.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-99

3.6.5.3. Edit DataFlow list

When a DataFlow is selected in drawing area, data flow list may be edited
within text input area.

This list should be related to the Parameters that are actually passed by the
Operation calls associated to current Use relationship. Nevertheless, there is no
need to copy in data flow list all those Parameters, but simply to highlight
most important ones by writing an informal label. No consistency check
between data flow list and actual Parameters will be performed. The goal of
data flow list is to help understanding HOOD diagrams.

data flow list may contain any string enclosed by double quote
characters, or a list of valid identifiers delimited by commas. This string is used
as a label for relevant DataFlow on the diagram. When the string needs to
contain double quote characters, HOOD text delimiters --| |-- should be
used to enclose the overall string.

page II-100 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.6.5.4. Move a DataFlow

A DataFlow arrow may be moved with the mouse, along carrying Use
relationship. It cannot be moved to another Use relationship.

3.6.5.5. Delete a DataFlow

To delete a DataFlow, it should be selected first, and item of edit menu

or button should be used. There is no dialog box to confirm action, but it
can be cancelled with menu item.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-101

3.6.6. Exception_Flows

3.6.6.1. Select an existing Exception_Flow

Within drawing area, an Exception_Flow may be selected by a single click on its
bar. The bar of currently selected Exception_Flow is surrounded by a thin
rectangle, so it may easily be identified.

3.6.6.2. Create a new Exception_Flow

As described in § 2, when display area shows operation view, item of
display area pop-up menu, or create menu may be used to create a new empty
Exception_Flow list. After having performed one of these actions, a small bar
appears and may be moved with mouse pointer. It can be dragged only along
one of the existing Use relationships.

After having chosen the right location, a single click will fix the
Exception_Flow. It may be moved later if required.

page II-102 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.6.6.3. Edit Exception list

When an Exception_Flow is selected in drawing area, exception list may be
edited within text input area.

This list should be related to the Exceptions that are actually raised by the
Operation calls associated to current Use relationship. Nevertheless, there is no
need to copy in exception list all those Exceptions, but simply to highlight most
important ones by writing an informal label. No consistency check between
exception list and actually raised Exceptions will be performed. The goal of
exception list is to help understanding HOOD diagrams.

Listed Exceptions are also supposed to be Provided by destination Module of
the Use relationship.

exception list may contain any string enclosed by double quote characters, or a
list of valid identifiers delimited by commas. This string is used as a label for
relevant Exception_Flow on the diagram.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-103

3.6.6.4. Move an Exception_Flow

An Exception_Flow bar may be moved with the mouse, along carrying Use
relationship. It cannot be moved to another Use relationship.

3.6.6.5. Delete an Exception_Flow

To delete an Exception_Flow, it should be selected first, and item of

edit menu or button should be used. There is no dialog box to confirm
action, but it can be cancelled with menu item.

page II-104 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.7. Types

HOOD Types describe Data structures of a Module. During code generation,
they are directly mapped to types or subtypes (Ada) or typedef or class (C and
C++).

To be used by a remote client Module, a Type must be declared in Provided
Interface of server Module. To avoid a Type from being used from outside, it
should be located inside Internals of the Module. Concept of “private” Type
does not exist in HOOD. To create an Ada private Type, it should be located in
Provided Interface of its Module, and a specific field will be filled in during
detailed design phase (refer to part III).

Types are defined by a HOOD declarative part, located in the Provided
Interface or the Internals, and a target language description (Type body) also
located in the Provided Interface or the Internals, or both (for Ada private
Types). Only declarative part may be managed during architectural design
phase. Type bodies may be automatically produced at code generation but may
also be explicitly defined during detailed design phase (refer to part III).

In STOOD, graphic editor is the best place to create, move, delete and edit
declarative part of a Type. Some of these actions may also be performed in text
editors.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-105

3.7.1. Select an existing Type

Within drawing area, a Type may be selected by a single click on its name. The
name of currently selected Type is surrounded by a thin rectangle, so it may
easily be identified. Another single click will deselect it.

3.7.2. Create a new Type

As described in § 2, when display area shows type, item of drawing area

pop-up menu, or of create menu, or button may be used to create a new
Type. After having performed one of these actions, a string called type appears
and may be moved with mouse pointer. It can be dragged to one of the following
locations:

• The Provided Interface of parent Module.
• The Provided Interface of any child Module.
• The Internals of parent Module if there is no child.

After having chosen the right location, a single click will fix the Type.
It may be moved later if required (refer to § 3.7.4).

page II-106 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.7.3. Edit Type declarative part

When a Type is selected in drawing area, its declarative part may be edited
inside General tab of text input area. Declarative part of a plain Type contains
three fields, whereas it will contain two additional fields for a Class Type.
These five fields are described below.

 item of General tab of text input area pop-up menu provides on-line
information about these five fields:

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-107

3.7.3.1. type name

name field must be used to insert actual name of selected Type. Default name is
type and should be changed into a more explicit name. If it remains unchanged,
a warning message will appear while checking HOOD rules, as Type is a
reserved word and should not be used for identifiers.

When giving a name to a Type, please take care not to use forbidden characters
nor a too long string. Restrictions may come from:

• Compliancy with HOOD identifiers naming rules. These rules are
checked when accepting text input, and a dialog box will be
displayed in case of lexical or syntactic error.

• Target language (Ada, C, C++) naming rules. Except abnormal use
of reserved words, uncompliancies to these rules will not be
checked by STOOD, and will lead to compilation errors.

• Current file system naming rules. Type names are used to create
files in Application storage area. Uncompliancies to these rules
could lead to information loss at detailed design phase.

page II-108 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.7.3.2. type attributes

attributes field may be used to list Type structure elements if any. HOOD
Attributes may be mapped to Ada record elements, C struct elements or C++
data members. This field will be left empty for Types without structure
elements. General syntax for accepting Type Attributes list in STOOD is as
follow: ([…] means 0 or 1; {…} means 0 or more).

(1)Att_list ::= [(Att2{, Att2})]
(2)Att ::= Att_name Att_type [:= Att_value]

Att_name means Attribute name and is an identifier. An Attribute
name may be used only once within a given Attributes list.

Att_type means Attribute Type and is a reference to an existing local
or remote Type. If it is remote, dotted notation should be used. Note that,
unlike Operation Parameter Types, no specifier may be attached to Attribute
Types. To define pointer, reference or array Attributes, a new Type should be
declared first, else full declaration will have to be deferred until coding.

Att_value means Attribute default value and may be a reference to an
existing local Constant, Data or Operation with a return value, a reference to a
remote Constant or remote Operation with a return value (with dotted
notation), or a string delimited by double quote characters. If default value also
contains double quote characters, it should be surrounded by HOOD text field
separators: --|”a string”|--.

Types Attributes may also appear as labels carried by Attributes relationships
on HOOD diagrams (refer to § 3.8).

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-109

3.7.3.3. to be or not to be a class

We saw above that a HOOD Module is a Class Module if its main Type is a
Class Type (refer to § 3.2.2). In fact, as regards its HOOD declarative part, a
HOOD Type may be of following kinds:

• an elementary or array Type (numeric, enumeration, string, ...),
for which only name field is required at this level.

• a structured Type (record, struct), for which name and attributes
fields should be filled in.

• a true Object Oriented Class (tagged record, class), for which
name, attributes, inherits and abstract fields should contain
appropriate values.

Additional class field should be used to change a structured Type (class : no)
into a Class (class : yes) and reverse.

inherits field should be used to specify super-Classes if any. Multiple
inheritance is allowed by HOOD and C++, but not supported by Ada95.
Default contents of inherits field is empty except if Inheritance links were
drawn on the diagram (refer to § 3.8).

abstract field should simply set to yes if selected Class is an abstract one
(in C++, a Class having pure virtual member functions should be abstract).
Default value of this field is no.

page II-110 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.7.4. Move a Type

A Type may be moved inside a same diagram, under certain conditions. In all
cases, move of a Type is a simple "drag and drop" action, that is performed by
following sequence:

• select wished Type without releasing left mouse button.
• drag it while keeping left mouse button pressed.
• release left mouse button at destination location.

Allowed move actions are:

• changing the rank of selected Type within the list.
• moving a Type from or to an open Type_Set
• moving from Internals to Provided Interface (or reverse)
• moving to Provided Interface of sibling Modules.

Note that moves from parent to child Provided Interfaces (or reverse) are
forbidden.

3.7.5. Delete a Type

To delete a Type, it should be selected first, and item of edit menu or

 button should be used. There is no dialog box to confirm action, but it can
be cancelled with menu item.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-111

page II-112 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.8. Type_Use, Attributes and Inherits relationships

When type view of HOOD diagrams is displayed, four kinds of relationships
may be shown. Implemented_By relationships specifies existing links between
parent Types and local child Types (refer to § 3.10). All other dependencies
between Modules that are shows on type view are Type_Use, Attributes or
Inheritance relationships.

These three last relationships show structural links between two distinct
Modules, that’s why they are displayed only on type view of HOOD
diagrams.

A Type_Use relationship between a Module “client” and a Module “server”
means that “at least one Type of client refers at least one Provided Type of
server”.

An Attributes relationship means that “at least one structured Type of client
has at least one Attribute of a Type Provided by server”. In this case, “client”
may of course be a Class.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-113

An Inheritance relationship means that “client Class is a sub-Class of at least
one Class Type Provided by server”. In this case “client” must be a Class, and
“server” should be a Class or a Class library.

Like Op_Use relationships, Type_Use, Attributes and Inheritance
relationships do not describe all elementary references between each Type, that
could quickly become unreadable. On the contrary, they provide a high level
description of structural dependencies between Modules. They act as the same
level as a with clause in Ada or a #include in C/C++. More detailed
dependencies can be analysed with HOOD Required Interface descriptions,
and STOOD cross references tables (refer to part III: detailed design).

In accordance with HOOD visibility rules, a Type relationship may only be
drawn from a local Module to a “sibling” Module, an “uncle” Module or an
Environment Module.

Type_Use, Attributes and Inheritance relationships may optionally carry a
label on HOOD diagram, which should be consistent with attributes and inherits
fields of “client” Type (refer to § 3.7.3). In addition, inheritance tree provide a
synthetic view of all Inheritance relationships that have been defined in the
Application (refer to § 5).

page II-114 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.8.1. Select an existing Type relationship

Within drawing area, a Type relationship may be selected by a single click on
one of its segments. Dragging handles are then shown at the ends of each
segment, so it may easily be identified.

3.8.2. Create a new Type_Use relationship

As described in § 2, when display area shows type view, item of drawing

area pop-up menu, or of create menu, or button may be used to create a
new Type_Use relationship. After having performed one of these actions,
source Module should be selected first by a single click, then destination
Module should be selected by another single click. Like Op_Use relationships,
destination of a Type_Use may be a uncle or Environment box outside parent
borders.

An alternate way to create a Type_Use relationship is to select an existing
Attributes or Inheritance relationship and double click on it or activate
item of edit menu, and use displayed dialog box to set connection style to: Use.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-115

3.8.3. Create a new Attributes relationship

As described in § 2, when display area shows type view, item of drawing

area pop-up menu, or of create menu, or button may be used to create a
new Attributes relationship. After having performed one of these actions,
source Module should be selected first by a single click, then destination
Module should be selected by another single click. Like Op_Use relationships,
destination Module of Attributes relationships may be an uncle or
Environment box outside parent borders.

An alternate way to create a Attributes relationship is to select an existing
Type_Use or Inheritance relationship and double click on it or activate
item of edit menu, and use displayed dialog box to set connection style to:
Attr.

Note that in some cases, HOOD Attributes relationship may be a design
implementation of Class aggregation or composition that was identified during
OO Analysis phase. If used OO Analysis formalism was OMT or UML, this
relationship was also represented by a line terminated by a diamond, but at the
opposite side. This could be a source of misunderstanding.

page II-116 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.8.4. Create a new Inheritance relationship

As described in § 2, when display area shows type view, item of drawing

area pop-up menu, or of create menu, or button may be used to create a
new Inheritance relationship. After having performed one of these actions,
source Class should be selected first by a single click, then destination Class or
Class library should be selected by another single click. Like Op_Use
relationships, destination Module of Inheritance relationships may be a uncle
or Environment box outside parent borders.

An alternate way to create an Inheritance relationship is to select an existing
Attributes or Type_Use relationship and double click on it or activate
item of edit menu, and use displayed dialog box to set connection style to:
Inherits.

inherits field of declarative part of source Class is generally automatically
updated when Inheritance relationship is created. In case of Class libraries,
first listed Class will be used by default, and actual super-Class may have to be
specified manually.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-117

3.8.5. Move a Type relationship

Any Type relationship may be moved by dragging one of its handles with the
mouse. If additional handles are required, select one of existing handles, and use

 item of edit menu to create new segments. If useless segments need to
be removed, use item of edit menu (refer to § 2.6.4).

3.8.6. Delete a Type relationship

To delete any Type relationship, it should be selected first, and item of

edit menu or button should be used. There is no dialog box to confirm
action, but it can be cancelled with menu item.

Deletion of any Type relationship also deletes related labels.

page II-118 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.8.7. Type relationships labels

3.8.7.1. Select an existing label

Within drawing area, a Type relationship label may be selected by a single click
on its arrow. The arrow of currently selected label is surrounded by a thin
rectangle, so it may easily be identified.

3.8.7.2. Create a new label

As described in § 2, when display area shows type view, item of drawing
area pop-up menu or create menu may be used to create a new empty label on
any Type relationship. After having performed one of these actions, a small
arrow appears and may be moved with mouse pointer. It can be dragged only
along one of the existing Type relationships.

After having chosen the right location, a single click will fix the label.
It may be moved later if required.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-119

3.8.7.3. Edit label string

When a label is selected in drawing area, label field may be edited within
General tab of text input area.

Labels may have different meaning regarding the style of Type relationship.
They have a pure informational role, but they should help understanding the
diagram. If destination Module is a Class, there is no ambiguity on which Type
is used, but if it provides several Types, a label could be used to specify which
Types are actually used. for Attributes relationship, if origin Module is a
Class, a label could be used to specify which Attributes are of remote Type.

label field may contain any string enclosed by double quote characters, or a list
of valid identifiers delimited by commas. This string is displayed on the
diagram. When the string needs to contain double quote characters, HOOD text
delimiters --| |-- should be used to en close the overall string.

page II-120 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.8.7.4. Move a label

A label arrow may be moved with the mouse, along carrying Type relationship.
It cannot be moved to another Type relationship.

3.8.7.5. Delete a label

To delete a label, it should be selected first, and item of edit menu

or button should be used. There is no dialog box to confirm action, but it
can be cancelled with menu item.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-121

page II-122 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.9. Constants and Data

HOOD Constants (respectively Data) describe instances of HOOD Types
(target language predefined Types or applicative Types), that are global to
current Module (if defined in the Internals), or global to the parent of current
Module (if defined in the Provided Interface).

To comply with information hiding principles, variable Data should only
be located inside the Internals of a Terminal Module. On the contrary, due to
their read-only property, Constants may be located either in the Provided
Interface, either in the Internals of a Module.

Other instances of Type that are not global to a given Module, are of following
kinds:

• Attributes, which scope is related Type, sub-Classes and all
relevant instances.

• Parameters, which scope is related Operation declarative part and
body.

• Local variables and Constants, which scope is related block of
code (OPeration Control Structure or OBject Control Structure).

At architectural design phase, Constants and Data are fully defined by their
name. More information will have to be provided during detailed design phase
(refer to part III).

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-123

3.9.1. Select existing Constant or Data

Within drawing area, a Constant (respectively: Data) may be selected by a
single click on its name. The name of currently selected Constant (resp. Data)
is surrounded by a thin rectangle, so it may easily be identified. Another single
click will deselect it.

3.9.2. Create new Constant or Data

As described in § 2, when display area shows constant (respectively data) view,
 (resp. ,) item of display area pop-up menu, or of create menu,

or button may be used to create a new Constant (resp. Data). After
having performed one of these actions, a string called constant (resp. data)
appears and may be moved with mouse pointer. It can be dragged to one of the
following locations:

• The Provided Interface of parent Module (except for Data).
• The Provided Interface of any child Module (except for Data).
• The Internals of parent Module if there is no child.

After having chosen the right location, a single click will fix the Constant (resp.
Data). It may be moved later if required (refer to § 3.9.4).

page II-124 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.9.3. Edit Constant or Data name

When a Constant (resp. Data) is selected in drawing area, its name may be
edited inside General tab of text input area.

constant name (resp. data name) field must be used to insert actual name
of selected Constant (resp. Data). Default name is constant (resp. data)
and should be changed into a more explicit name. If it remains unchanged, a
warning message will appear while checking HOOD rules, as Constant (resp.
Data) is a reserved word and should not be used for identifiers.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-125

When giving a name to a Constant (resp. Data), please take care not to use
forbidden characters nor a too long string. Restrictions may come from:

• Compliancy with HOOD identifiers naming rules. These rules are
checked when accepting text input, and a dialog box will be
displayed in case of lexical or syntactic error.

• Target language (Ada, C, C++) naming rules. Except abnormal use
of reserved words, uncompliancies to these rules will not be
checked by STOOD, and will lead to compilation errors.

• Current file system naming rules. Constant (resp. Data) names are
used to create files in Application storage area. Uncompliancies to
these rules could lead to information loss at detailed design phase.

page II-126 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.9.4. Move Constant or Data

A Constant (resp. Data) may be moved inside a same diagram, under certain
conditions. In all cases, move of a Constant (resp. Data) is a simple "drag and
drop" action, that is following sequence:

• select wished Constant (resp. Data) without releasing mouse
button.

• drag it while keeping left mouse button pressed.
• release left mouse button at destination location.

Allowed move actions are:

• changing the rank of selected Constant (resp. Data) within the list.
• moving a Constant (resp. Data) from or to an open Set
• moving from Internals to Provided Interface (or reverse)
• moving to Provided Interface of sibling Modules.

Note that moves from parent to child Provided Interfaces (or reverse) are
forbidden.

3.9.5. Delete Constant or Data

To delete a Constant (resp. Data), it should be selected first, and item

of edit menu or button should be used. There is no dialog box to confirm
action, but it can be cancelled with menu item.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-127

page II-128 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.10. Include and Implemented_By relationships

During architectural design phase, Non Terminal Modules are broken down
into lower level Modules. The link between a Non Terminal Module (the
parent) and its child Modules is called the Include relationship. Combination of
all Include relationships constitute HOOD Design Tree of current
Application.

While designing, Include relationships are indirectly controlled by creating,
moving and deleting Modules, and do not need other formalized actions.

An Include relationship is a one to many link between Modules. It does not
provide any information on the way each Component Provided by a parent
Module is linked to related entities of child Modules. Implemented_By
relationships should be defined to perform this task.

An Implemented_By relationship is a one to one link between one parent
Component and one related child Component. It should be defined for each
Operation, Operation_Set, Type, Constant and Exception Provided by a
Non Terminal Module. As an extension to HOOD4, STOOD also supports
Implemented_By relationships for Type_Sets, Constant_Sets and
Exception_Sets.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-129

3.10.1. Select an existing Implemented_By relationship

Within drawing area, an Implemented_By relationship may be selected by a
single click on one of its segments. Dragging handles are then shown at the ends
of each segment, so it may easily be identified.

3.10.2. Create a new Implemented_By relationship

As described in § 2, item of drawing area pop-up menu, or of create menu,

or button may be used to create a new Implemented_By relationship.
After having performed one of these actions, one parent Provided Component
should be selected by a single click, and one child Provided Component should
be selected by another single click.

page II-130 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

Note that actual effect of this creation will depend on which Component has
been selected first:

• If first selected Component is parent's one, then a top-down
update process will be performed.

• If first selected Component is child's one, then a bottom-up update
process will be performed.

These update processes are detailed below for each kind of Component.

3.10.2.1. Create an Implemented_By for Operations

With a top-down create action, child's Operation declarative part is replaced by
parent's one, but Operation names and Parameters Type are kept unchanged.

With a bottom-up create action, parent's declarative part is replaced by child's
one, but Operation names and Parameters Type are also kept unchanged.

After creation, any change in declarative part of any Operations linked along a
chain of Implemented_By relationships, will be automatically propagated to
the others, except for changes regarding the name of Operations and the Type
of Parameters.

3.10.2.2. Create an Implemented_By for Operation_Sets

With a top-down create action, child's Operation_Set contents is replaced by
parent's one. With a bottom-up create action, parent's Operation_Set contents
is replaced by child's one.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-131

These actions will automatically create all required Operations with their
Parameters list. After creation, no change will be automatically propagated.

Although HOOD design process is mainly top-down, it may be profitable to
define only empty Operation_Sets at high level in HOOD hierarchy, and only
complete full Operations declarative parts when reaching Terminal Modules.
Then, creating Implementing_By in bottom-up mode, will automatically
update higher levels interfaces.

3.10.2.3. Create an Implemented_By for Types

With a top-down create action, child's Type declarative part is replaced by
parent's one, but Type names are kept unchanged.

With a bottom-up create action, parent's Type declarative part is replaced by
child's one, but Type names are also kept unchanged.

Update of inherits field may behave differently depending on whether super-
Class is also Implemented_By or not, and according to any existing
Inheritance relationships.

After creation, any change in declarative part of any Type linked along a
chain of Implemented_By relationships, will be automatically propagated to
the others, except for changes regarding the name of Types, and inherits fields.

3.10.2.4. Create an Implemented_By for Constants or Exceptions

No specific action is performed while drawing top-down or bottom-up
Implemented_By relationships for Constants or Exceptions.

page II-132 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

3.10.3. Move an Implemented_By relationship

An Implemented_By relationship may be moved by dragging one of its handles
with the mouse. If additional handles are required, select one of existing handles,
and use item of edit menu to create new segments. If useless segments
need to be removed, use item of edit menu (refer to § 2.6.4).

3.10.4. Delete an Implemented_By relationship

To delete an Implemented_By relationship, it should be selected first, and

 item of edit menu or button should be used. There is no dialog box
to confirm action, but it can be cancelled with menu item.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-133

page II-134 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

4. State-Transition Diagrams editor

4.1 Drawing area.................................. p.138
4.2 Text input area............................... p.139
4.3 Window menu................................ p.142
4.4 Create menu................................... p.143
4.5 Edit menu....................................... p.145

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-135

As explained in § 3.3.3.3, HOOD Modules may provide Operations that are
Constrained by State. This means that actual use of specified functional
service depends on current internal State of server Module.

During architectural design phase, States of a Module are defined by drawing a
State-Transition Diagram (STD). Additional information will be required during
detailed design phase (refer to part III).

HOOD4 State-Transition Diagrams are based on a simplified use of finite state
automatons standard formalisms. The aim is to explain how Provided
Operations calls may be constrained, and is not to describe fully internal
behaviour of a Module.

State-Transition Diagrams are composed of:

• States, simply identified by their name at this level, and which will
be linked later to state variables values (Data, Attributes, ...).

• Transitions, which are triggered by an Event, and which may
imply a change of state. In HOOD4, Events must be directly
linked to Provided Operations invocations. Such Provided
Operations are thus Constrained by State.

Note that it is quite easy to map Transition Events to Provided Operations,
and this mapping is performed while drawing the STD, but it may be much
more difficult to map States to state variables values, and this will be only
feasible during detailed design phase (please, refer to part III).

page II-136 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

Concerning this point, it should be noted that designing a STD for a Terminal
or a Non Terminal Module have not the same impact on HOOD design. A
STD for a Terminal Module may be fully implemented at detailed design
phase and be then be used to automatically produce code. At the opposite, A
STD for a Non Terminal Module will remain purely informative, and may
simply help understanding Application behaviour at high level, but will not be
used to produce any code (state variables for Non Terminal Modules are
undefined).

A STD is thus attached to a HOOD Module. To launch a STD editor, one of
the following actions should be performed:

• select state transition diagram editor item of editors menu of main
editor: this will open a STD on Root Module.

• select state-transition diagram item of pop-up menu of modules area
of main editor: this will open a STD on selected Module.

• select state-transition diagram item of edit menu of graphic editor, or
press related shortcut button: this will open a STD on selected
Module.

Like HOOD diagrams editor, STD editor is composed of a drawing area, a text
input area, a menu bar, and a button bar. For general information regarding the
use of STD editor (graphical or textual edition), please refer to chapters
describing these functions for graphic editor (§ 2).

Following chapters describe only specific functions provided by STD editor.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-137

4.1. Drawing area

Drawing area of State-Transition Diagram editor is very similar to drawing area
of HOOD diagrams graphic editor. Please refer to § 2.1 for general purpose
information about diagram scale and visible part (§ 2.2.1), selecting, moving and
resizing graphical entities (§ 2.2.2).

STD editor drawing area also provides a pop-up menu to ease creating new
graphical entities:

Please refer to § 4.4 below for further details.

page II-138 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

4.2. Text input area

Text input area of STD editor behaves the same as text input area of HOOD
diagrams graphical editor. In particular, please refer to § 2.2 to get information
on using text input area pop-up menu:

Anyway, contents of text input area is different and refer to STD graphical
entities:

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-139

4.2.1. Editing a State

When a State is selected in drawing area, its properties may be changed within
General tab of text input area:

label field refer to State name. State names are HOOD design identifiers,
but they may not be a coding identifier (except in simplest cases where States
are implemented by an enumeration type).

initial state is a simple flag to be set to yes or no. A unique initial state
should be defined in a STD.

page II-140 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

4.2.2. Editing a Transition

When a Transition is selected in drawing area, its properties may be changed
within General tab of text input area:

label field refer to Transition name. Transition names are HOOD design
identifiers, but they may not be a coding identifier (except in simplest cases
where Transition names are the same as their triggering Operation).

event field identifies Provided Operation that triggers selected Transition.
This field should contain the name of an existing Provided Operation of current
Module, or be left empty, else following warning message will be displayed:

Note that a same Provided Operation may trigger several Transitions. Actual
determinism of the automaton is not controlled automatically. During detailed
design phase, additional information will have to be provided (transition
condition) in the case of several Transitions from the same State and triggered
by the same Operation.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-141

4.3. Window menu of STD editor

Window menu of STD editor has is similar behaviour as the same menu in
HOOD Diagrams graphic editor. Please refer to § 2.3 for further details.

To close a STD, use the Quit command of Window menu. A STD is always
attached to a parent editor (generally a HOOD diagram editor). When parent
editor is closed, a warning message asks for confirmation to also close all
attached STD editors.

page II-142 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

4.4. Create menu of STD editor

This menu, which is redundant with drawing area pop-up menu and buttons,
should be used to create graphical entities on a STD.

 : create a new State. A grey rectangle is shown at mouse pointer location,
and may be dragged to chosen place. A single mouse button click will actually
create the State box. New State is given a default name that may be changed in
label field within text input area. initial state field of text input area is set to no.

 : same as above, but automatically create an initial State. initial state field
of text input area is set to yes. Internal concurrency is not managed at present
within STD designed with STOOD. There should be only one initial State in a
given STD. While trying to create a second initial State, a warning message is
displayed in a dialog box:

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-143

 : create a new Transition between two existing States. Origin and
destination States should be designated by mouse clicks. A dialog box ask then
to identify which Provided Operation call will trigger the Transition. If cancel
button is selected, event field of text input area will be left empty.

If selected Provided Operation is not constrained by STATE yet, this
Constraints label will be automatically added to its properties (refer to §
3.3.3.3):

page II-144 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

4.5. Edit menu of STD editor

 : copy selected State into an internal buffer. No multiple selection is
presently supported by STOOD.

 : create a new State with a copy of current contents of internal buffer.

 or button : delete selected State or Transition. This action can be
cancelled with undo menu item.

 : cancel last delete action.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-145

page II-146 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

5. Inheritance Tree

Inheritance Tree may be launched from editors menu of main editor.

STOOD Inheritance Tree provides an additional observation point for the
Application. With type view of HOOD diagrams, Inheritance relationships
may be defined (refer to § 3.8.4), and super-Classes may be identified precisely
within text input area (refer to § 3.7.3.3). These relationships describe a graph of
dependencies between HOOD Modules, which is transverse to HOOD
breakdown Design Tree.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-147

Inheritance Tree shows Inheritance links that are defined inside current
Application, and also those regarding Provided Classes of Environment
Modules. That is why an Inheritance Tree may show Modules that are not
part of current Application

In case of multiple Inheritance, only one link is displayed in order to draw a
simple tree and not a full graph. A Class which inherits from several super-
Classes is shown by a grayed box to indicate that part of the information has
been hidden.

page II-148 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

Inheritance Tree is not an editor, and nothing may be modified at this level.
Only a window menu is provided to control the display.

 menu item or button may be used to redraw Inheritance Tree. It may
not be always be updated automatically when Inheritance information is
changed within HOOD diagrams editor.

The other menu items are similar to those of graphic editor (refer to § 2.3). in
particular, Inheritance Tree may be printed:

 : direct print of current HOOD Inheritance Tree on standard printer. For
Windows, used printer is the default one. For UNIX, a PostScript file is created
in launching directory, and direct printing is performed if a printer queue has
first been defined in fastprint.sh file of internalTools configuration
directory.

STOOD v4.1 User’s Manual part II © TNI - Jan 2000 - page II-149

page II-150 - STOOD v4.1 User’s Manual part II © TNI - Jan 2000

